From Classical Planning to Hierarchical Planning, From Modeling Problems to Solving Them.

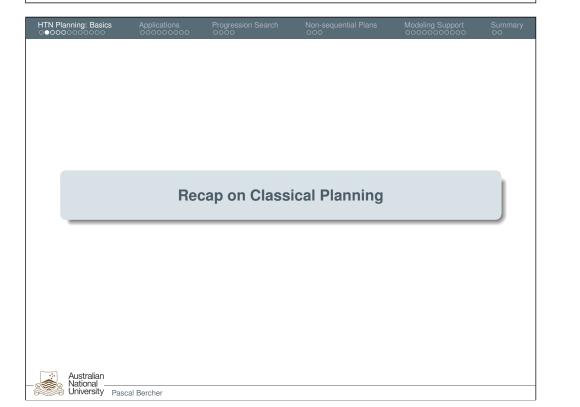
Pascal Bercher

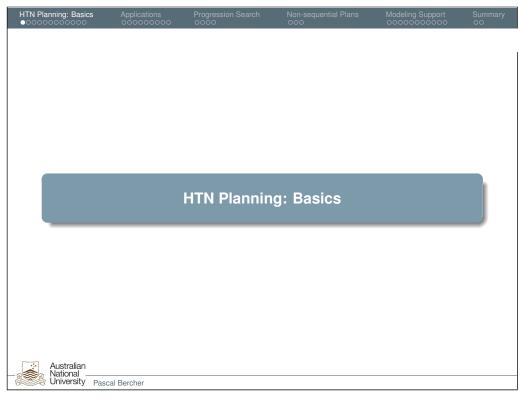
(Intelligent Systems and Foundations Clusters)

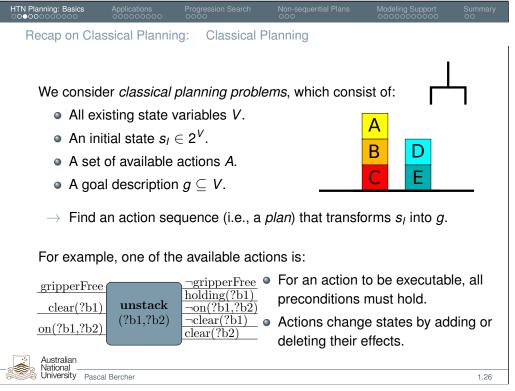
School of Computing
College of Systems and Society
The Australian National University

June 16, 2025

Australian Research Council



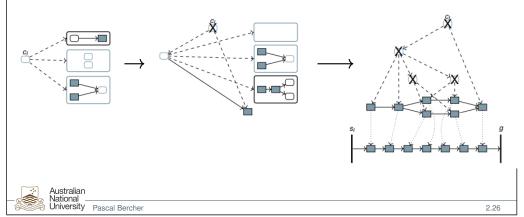


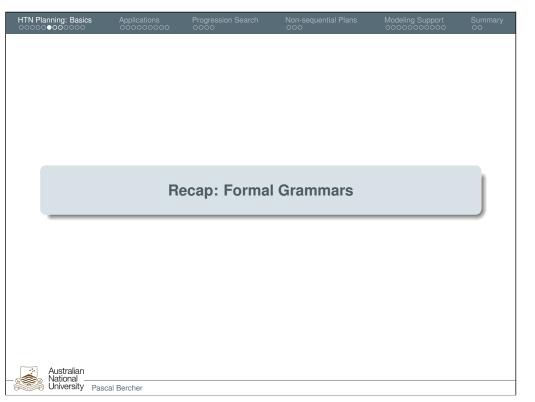


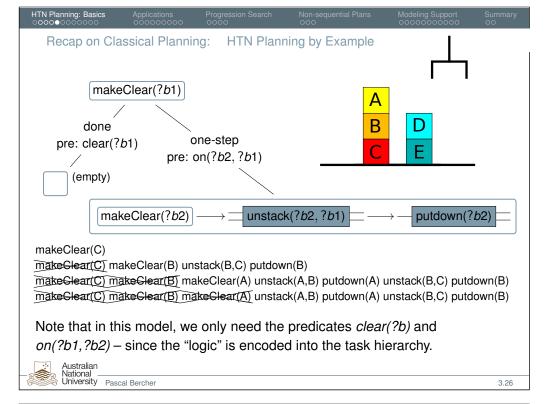
Recap on Classical Planning: <u>H</u>ierarchical <u>Task Network</u> (HTN) Planning

In HTN Planning,

- we do not plan for state-based variables, instead,
- we have initial compound tasks that need to be refined for which the model contains "methods", the refinement rules.
- The solution is an executable, primitive task network (refinement).







Recap: Formal Grammars: Definitions

Recap from Theoretical Computer Science:

A *context-free grammar G* is a tuple $\langle N, \Sigma, S, R \rangle$ where

- N is a finite set of non-terminal symbols,
- Σ , disjoint from N, is a finite set of *terminal symbols* (Σ is also called *alphabet*),
- $S \in N$ is the start symbol,
- $R \subseteq N \times (N \cup \Sigma)^*$ is a finite set of *production rules*.

Languages:

- A language L is any (possibly infinite) set of words (sequences of symbols). E.g., the sets \emptyset , $\{abc, \ldots, xyz\}$, and $\mathbb N$ are languages.
- The *language of a grammar*, $L(G) \subseteq \Sigma^*$, is the set of terminal words obtainable by refining S by only using production rules.

Australian National — University Recap: Formal Grammars: Example

- Let $G = \langle \{a, b\}, \{S, A, B\}, S, \{S \rightarrow aB, B \rightarrow Ab, A \rightarrow S, A \rightarrow \epsilon\} \rangle$, so we have:
 - Terminal symbols: {a, b}
- Production rules:
- Non-terminals: {S, A, B}
- ightharpoonup S
 ightarrow aBightharpoonup B o Ab

Start symbol: S

 $ightharpoonup A
ightharpoonup S \mid \epsilon$

- Some example derivations:
 - $S \longrightarrow aB \longrightarrow aAb \longrightarrow ab$
 - $S \longrightarrow aB \longrightarrow aAb \longrightarrow aSb \longrightarrow \cdots \longrightarrow aabb$
- So, the language of G is $L(G) = \{a^n b^n \mid n > 1\}$

National

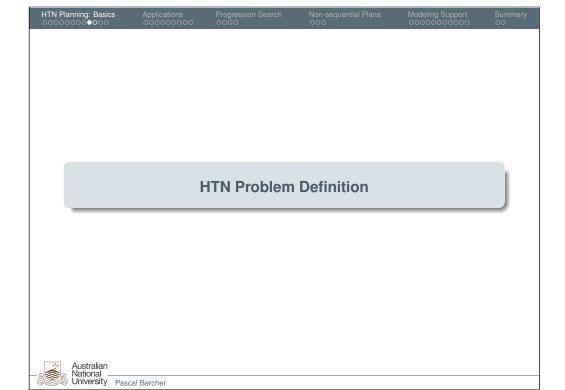
5.26

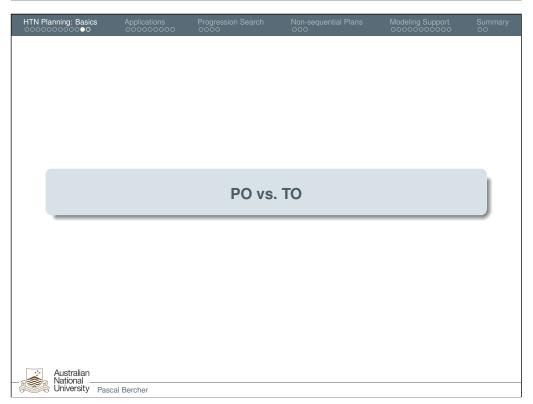
HTN Problem Definition: Based on Grammars/Languages

- Actions are defined by their name: $\delta: N_P \to 2^V \times 2^V \times 2^V$. Thus, solutions are (the same as) sequences of action names.
- Thus, any solution set sol(P) is a language. Let:
 - $L_H(\mathcal{P}) = \{\bar{p} \mid \bar{p} \in L(G_P), \text{ where } G_P \text{ is the induced grammar } \}$
 - $L_{\mathcal{C}}(\mathcal{P}) = \{\bar{p} \mid \bar{p} \in sol(\mathcal{P}'), \text{ where } \mathcal{P}' \text{ is the induced classical problem } \}$
- Now we can decompose the solution criteria:
 - L_H just looks at the word produced by the hierarchy,
 - L_C just looks at the executable words that produce the goal.
 - \rightarrow sol $(\mathcal{P}) = L_{H}(\mathcal{P}) \cap L_{C}(\mathcal{P}).$

This observation gives a new/simplified view on HTN planning:

HTN planning = classical planning + grammar to filter solutions





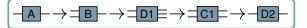


Let:

Australian

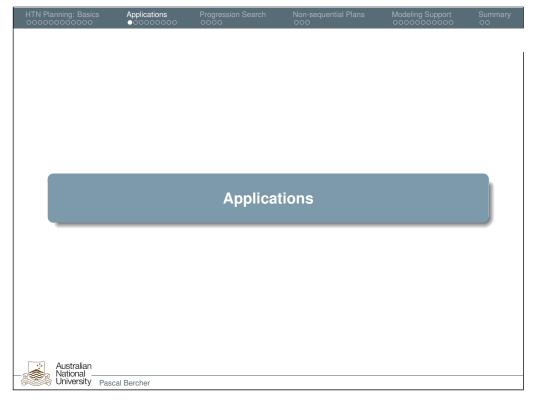
National

Can we create the following task network?



No! Not anymore...

7.26



Robotics (here: Mars Rovers Spirit and Opportunity) Mars Rovers:

Source: left https://commons.wikimedia.org/wiki/File: KSC-03PD-0786.jpg

middle https://commons.wikimedia.org/wiki/File:Curiosity_ Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg

right https://commons.wikimedia.org/wiki/File:

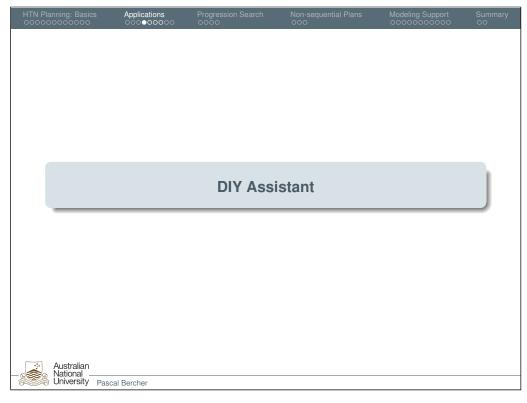
NASA_Mars_Rover.jpg

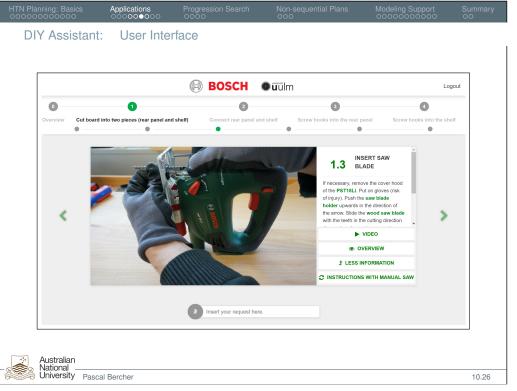
Copyright: public domain

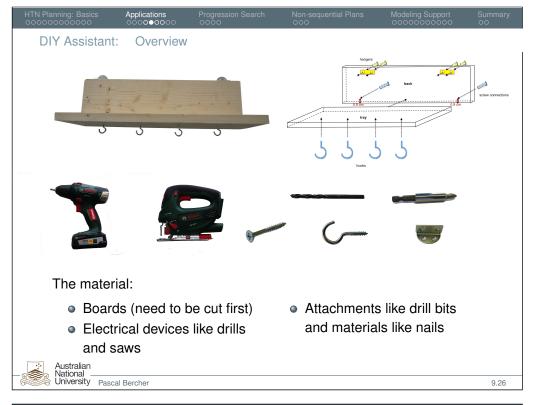
• https://www.nasa.gov/ and papers about MAPGEN. Further reading:

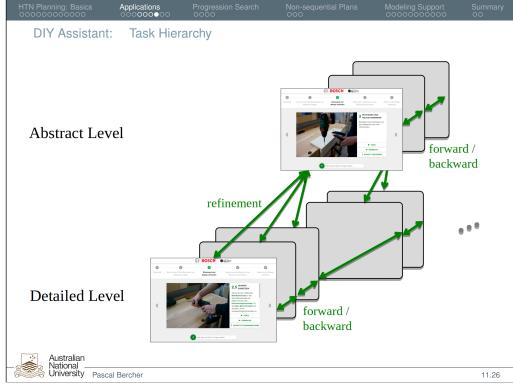
Australian National

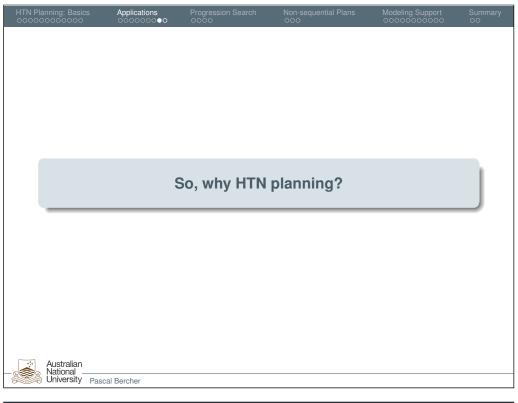
University Pascal Bercher

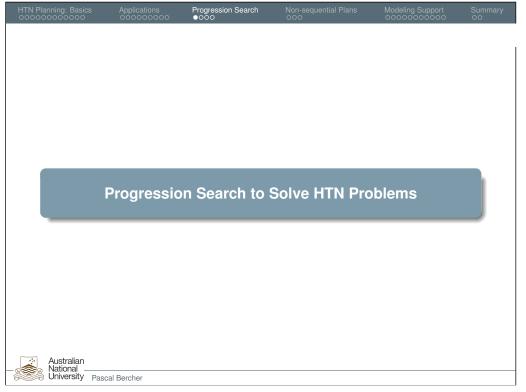












So, why HTN planning?

There are three main motivations:

- Modeling should be made easy, and experts often have hierarchical, "rule-based" knowledge.
- We get more control over solutions. We can exclude more. More technically:
 - TO HTN planning: exactly context-free, e.g., $L = \{a^n b^n \mid n \in \mathbb{N}\}.$
 - PO HTN planning: strictly above context-free, strictly within context-sensitive.
- Present action plans on multiple levels of abstraction.

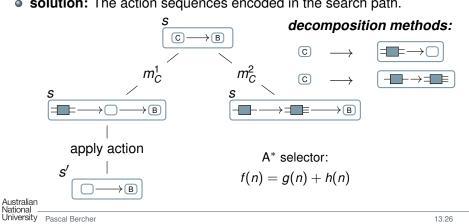
National

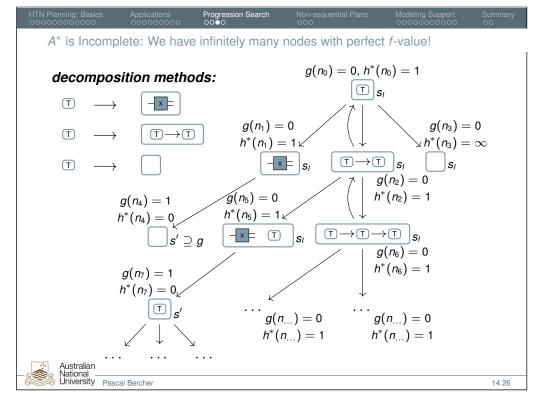
Pascal Bercher

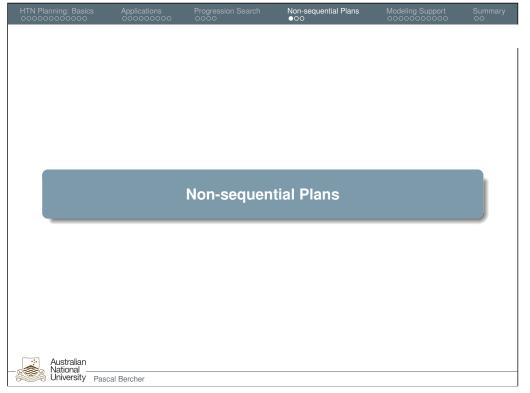
12.26

HTN Progression Search via A*

- **node selection:** Select a node with minimal *f* value.
 - *g*: cost incurred so far (number of progressed/applied actions)
 - h: estimate of number of actions to still be applied
- node expansion:
 - primitive? Progress it! (Update the state.)
 - compound? Apply all its decomposition methods!
- **solution:** The action sequences encoded in the search path.







Key Messages

So, what about progression search?

- Progression search is a state-of-the-art approach.
- (There are several heuristics and pruning techniques.)
- However, even with perfect heuristic and total-order HTN problems, search might get stuck in an infinite loop. Depending on properties of the hierarchy. (Keyword: grow-and-shrink cycle!)
- The issue can be solved, but it's not implemented yet.

What about other algorithms?

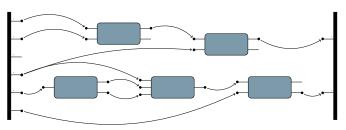
- There's planning as SAT (translation into a series of SAT formulae).
- Search in the space of POCL plans (see later!). But: usually that's done for planning with time only. More crucially: The results from earlier apply to that paradigm as well!

So, currently, only planning as SAT guarantees termination in all cases.

Pascal Bercher

15.26

Motivation



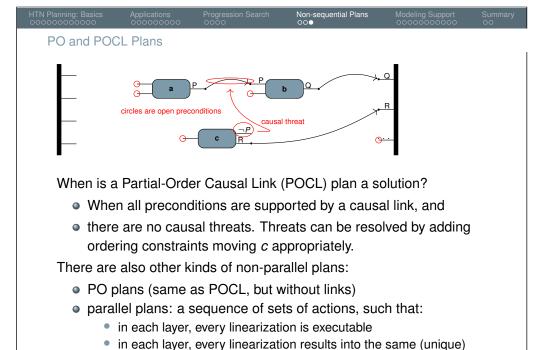
In such plans, every linearization is a classical solution!

Such partially ordered plans are used:

- In many HTN planning formalizations and planners.
- When we want to execute actions in parallel: minimize time (But be cautious, see next slide.)
- It's used for many plan optimizations techniques (see my IJCAI'24 survey on plan optimization)

Australian National

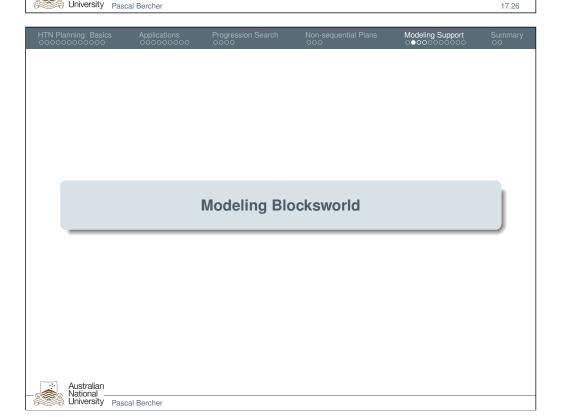
University Pascal Bercher

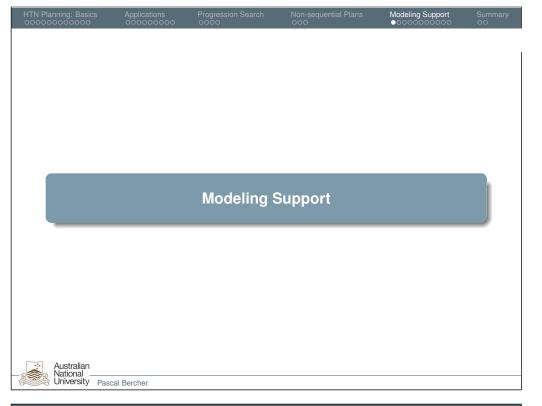


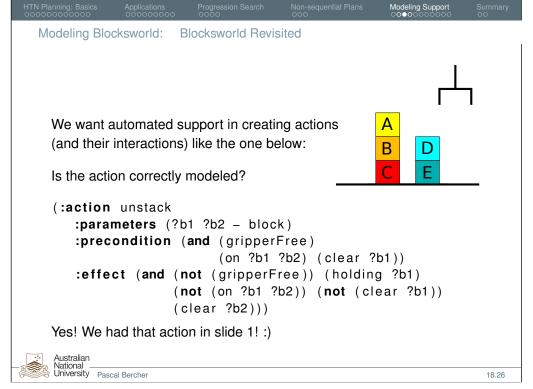
state

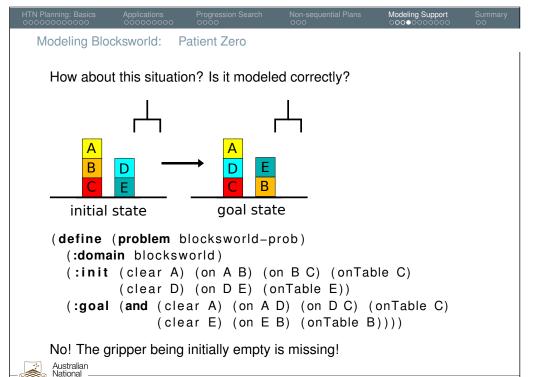
Australian

Vational









Example (Teaser) A more Complex Example:

We'll provide an example in the following domain:



- We have a remote (in the garage) and Meeseeks box (in the den)
- Rick wants the TV being turned on with the remote.

A more Complex Example Australian

A more Complex Example: Problem Definition

A lifted classical planning problem $\langle \mathcal{T}, \mathcal{P}, \mathcal{O}, \mathcal{A}, s_l, g \rangle$ consists of:

- \mathcal{T} is a finite set of hierarchical *types*. *Example(s)*: character object
- \bullet \mathcal{P} is a finite set of *predicate symbols*, each with fixed arity, i.e., it takes a sequence of typed variables. Examples: At(?room - room,?object - object)
- \bullet \mathcal{O} is a finite set of (typed) *objects* used to ground action schemas (and predicates). Examples: Box, Remote - object; Rick, Meeseeks - character
- A is a finite set of *action schemas* of the form:

 $(name(\vec{x}), pre(\vec{x}), add(\vec{x}), del(\vec{x}))$

where \vec{x} is a list of (typed) variables. *Examples:* next slide!

- s_l is the initial state, given as a finite set of ground atoms.
- g is the goal description, a finite set of ground atoms.

National

A more Complex Example: Example: Lifted Classical Planning Problem

Types: room, object; character - object (i.e., character is-a object) Objects: Remote, Box – object; R, M – character; Den, Garage – room

 $s_l = \{At(Den,R), At(Garage,Remote), At(Den,Box), TV-Off()\}$ $g = \{\mathsf{TV-On()}\}\$

Available action schemata:

PushBox(?room,?character):

({At(?room,Box), At(?room,?character)},{At(?room,M)},∅)

GoTo(?room-f,?room-t,?character):

({At(?room-f,?character)},{At(?room-t,?character)},{At(?room-f,?character)})

PickUp(?object,?room,?character):

({At(?room,?character), At(?room,?object)},

{Has(?object,?character)},{At(?room,?object)})

Give(?object,?room,?character-f,?character-t):

({Has(?object,?character-f), At(?room,?character-f), At(?room,?character-t)}, {Has(?object,?character-t)}, {Has(?object,?character-f)})

TurnTVOn(?character):

({Has(Remote,?character), At(Den,?character), TV-Off()},{TV-On()},{TV-Off()})

Pascal Bercher

22.26

A more Complex Example: Modeling is hard... Example 2

Recall the action **PushBox(**?room,?character**)**: $(\{At(?room,Box),At(?room,?character)\},\{At(?room,M)\},\emptyset)$

Q: How many Meeseeks can we have at any time?

- A: One:
 - If a Meeseeks presses the box, it has to be in said room already! Then, adding At(?room,M) doesn't change anything.
 - If Rick presses the box multiple times, adding At(?room,M) doesn't matter: states are sets.
- Better A: No! It's one per room!
 - Rick could use the Meeseeks box in any room, or press it again once the Meeseeks left.
 - Maybe unanticipated side effects:
 - Meeseeks get "fused" when walking into a room with a Meeseeks.
 - ► All Meeseeks share one inventory. (Only one Has(?object,M)!)

Thus, modeling is hard... The model might not do what we think/want...

A more Complex Example: Example Problem, Solutions Recap: $s_i = \{At(Den,Box), At(Den,R), At(Garage,Remote), TV-Off()\}.$ Solution 1 (Rick does it himself): {At(Den,Box), At(Garage,R), At(Garage,Remote), TV-Off()} GoTo(Den.Garage.R) {At(Den,Box), At(Garage,R), Has(Remote,R), TV-Off()} PickUp(Remote, Garage, R) {At(Den,Box), At(Den,R), Has(Remote,R), TV-Off()} GoTo(Garage, Den, R) TurnTVOn(R) {At(Den,Box), At(Den,R), Has(Remote,R), TV-On()} Solution 2 (Rick uses a Meeseeks): PushBox(Den,R) {At(Den,Box), At(Den,R), At(Den,M), At(Garage,Remote), TV-Off()} {At(Den,Box), At(Den,R), At(Garage,M), At(Garage,Remote), TV-Off()} GoTo(Den,Garage,M) PickUp(Remote, Garage, M) {At(Den, Box), At(Den, R), At(Garage, M), Has(Remote, M), TV-Off()} GoTo(Garage, Den, M) {At(Den,Box), At(Den,R), At(Den,M), Has(Remote,M), TV-Off()} Give(Remote, Den, M, R) {At(Den,Box), At(Den,R), At(Den,M), Has(Remote,R), TV-Off()} TurnTVOn(R) {At(Den.Box), At(Den.R), At(Den.M), Has(Remote,R), TV-On()} Recap: $g = \{TV-On()\}.$

A more Complex Example: How to provide Support?

We use the test-and-verify approach, based on hitting sets:

$$s_l = \{l, r\}$$
 $g = \{z\}$

I.e., we provide a set of of plans:

- Some are supposed to be solutions (but are not), white list plans
- others should not be solutions (but are). black list plans

We aim at a cardinality-minimal number of repairs that satisfy these constraints. (For "better" answers we will need LLMs.)

We do this via an NP-complete *Hitting Set* approach.

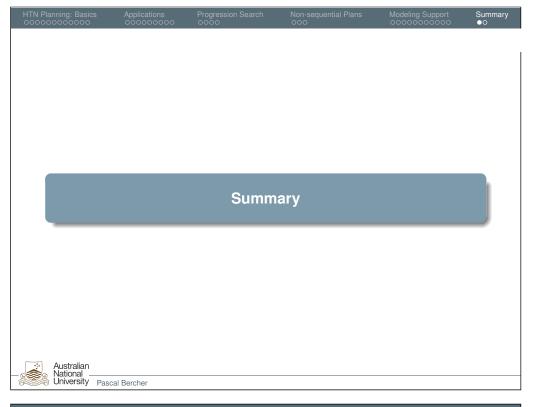
Australian National

Australian

National

University Pascal Bercher

25.26





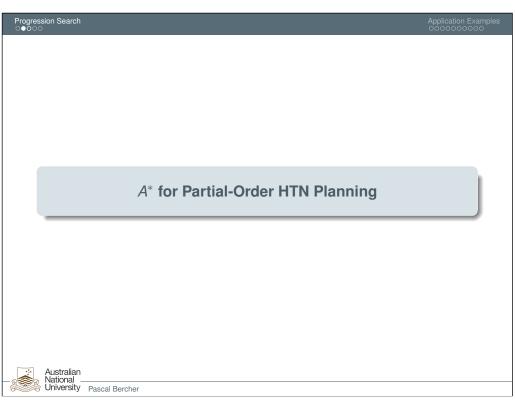
We learned about...

- HTN planning = classical planning + grammar as filter to exclude some solutions.
- Partial Order HTN planning can express more than Total-Order HTN planning.
- Even with perfect heuristic, the most famous approach for solving HTN problems, progression search, can get stuck in an infinite loop (even for TO HTN problems).
 - This happens only for "certain kind of hierarchies" and only for A*,
 i.e., for optimal solutions.
 - This can also be fixed by reformulation (not yet implemented)
 - Other optimal approaches exist as well, such as compilation as SAT
- Modeling domains is complex and error-prone, but
- there is support technology, such as providing solution and non-solution plans (to fix the model automatically).

Thank you! :)

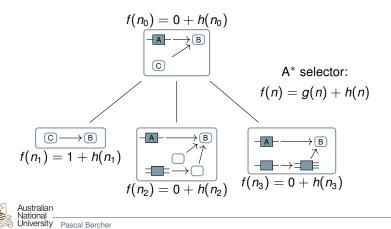
Australian National -

University Pascal Bercher

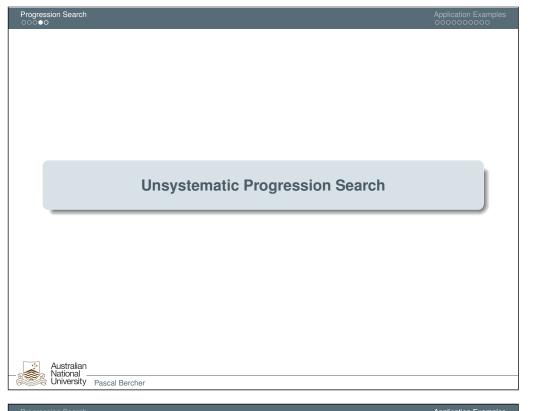


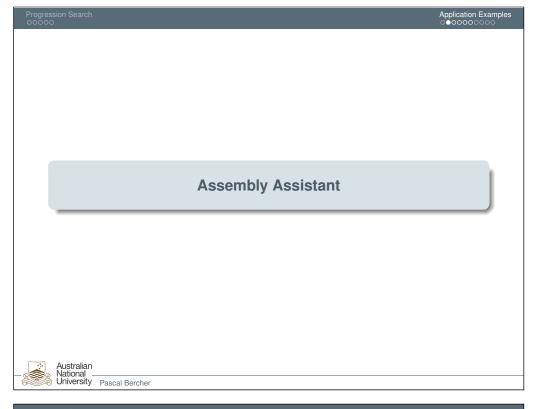
A* for Partial-Order HTN Planning: Overview

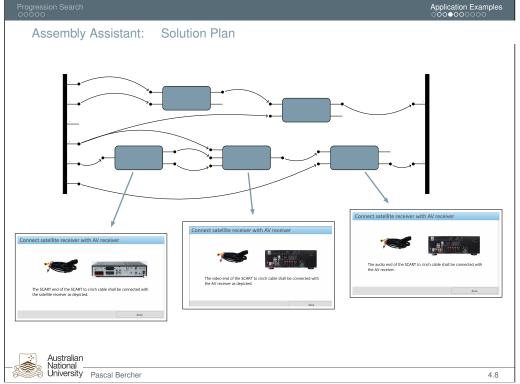
- Heuristics receive as input a search node (task network tn)
- and as output estimate:
 - the cost of a (cheapest) solution reachable from tn or
 - the number of progression steps to reach a (cheapest) solution.



Progression Search Unsystematic Progression Search: We can do better! (Make search systematic) decomposition methods: C m_D C We have redundancy! :(To fix: • Pick a compound task! m_C Don't apply actions m_C m_D apply A unless first compound m_D tasks are gone Only use TO HTNs! But: $\mathbb{C} \longrightarrow \mathbb{B}$ A* even with perfect heuristic is incomplete! Australian National University Pascal Bercher







 Progression Search
 Application Examples

 ○○○○○
 ○○○○○○○○○○

Assembly Assistant: Example: Home Theater Assembly Assistant

Sink devices:

- Television (requires video)
- Amplifier (requires audio)

Source devices:

- Blu-ray player
- Satellite receiver (both produce audio & video)

Australian National _

ty Pascal Bercher

Application Examples

3.8

Progression Searci

Assembly Assistant: Definitions, Examples

- Planning problems are usually defined in terms of a description language based on a first-order predicate logic.
 - Predicates, like *HasPort*(?device, ?port), express relationships between variables representing objects.
 - Constants, like AMPLIFIER and CABLE_HDMI, represent objects.
- States are sets of (ground) propositions, e.g.,
 - s ⊇ {HasPort(AMPLIFIER, HDMI), HasPort(AMPLIFIER, CINCH), HasPort(CABLE_HDMI, HDMI), IsConnected(AMPLIFIER, CABLE_HDMI, HDMI)}

(connected to each other)

Actions are defined by preconditions and effects, e.g.,

Australian (?cable, ?device, ?port)

University Pascal Bercher

Precondition: Has Port (? device ? port)

Assembly Assistant: Planning Problem Definition in the Home Theater Domain

Initial state:

- HasPort(..., ...) // which device has which ports?
- IsConnected(..., ...,) // how are the connections initially?
- HasSignal(...,...) // which device has which signals?

Action portfolio:

- *plugln(?cable*, ?device, ?port) // plugging in a cable
- plugOut(?cable, ?device, ?port) // in case plugging out is allowed

Goal description:

- HasSignal(..., ..., ...) // e.g., HasSignal(TV, VIDEO, BR) denoting
- that the TV has the video signal of the blu-ray player

University Pascal Bercher

6.8

7.8

Application Examples

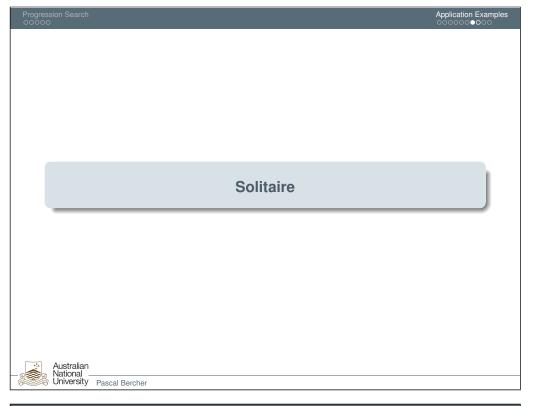
Solitaire: Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:

GNOME_Aisleriot_Solitaire.png

License: GNU General Public License v2 https://www.gnu.org/licenses/gpl.html

Copyright: Authors of Gnome Aisleriot



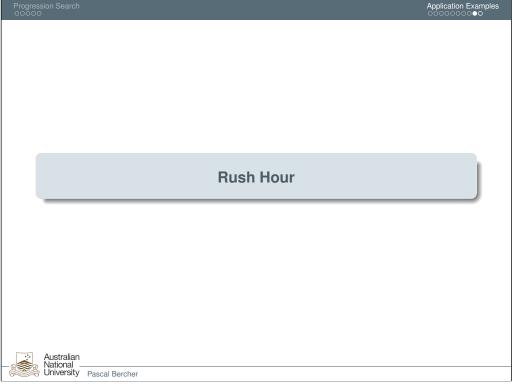


Photo made by Bercher (Dec. 2020) at the ANU.

8.8

8.8

Application Examples

Rush Hour: Games, e.g., Rush Hour

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out to the right.

Modeling this was a research project; reach out if interested in more!

Australian National University Pascal Bercher

Rush Hour: Games, e.g., Rush Hour

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out to the right.

Australian National University Pascal Bercher