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Introduction

Example

copyright: see slide 46[1] (modified)

How to – automatically – find a(n optimal/good) way from Arad to
Bucharest?

(The edge numbers indicate action/traversal costs.)
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Introduction

Introduction

Search is a systematic way to solve a certain class of problems.

How do these problems look like?

They have an initial state, one or more goal states, and a set of
actions with costs.

More formally, search problems are defined upon transition systems.
Note:

The transition system’s state does not necessarily coincide with a
state known from planning! Also possible, e.g., partial plan.
Also, don’t confuse the transition system’s state with a search node.
Search nodes can contain more information, like the path (sequence
of transitions) discovered to reach the respective node.
Depending on which problem to solve, we might need to rely upon
infinite state transition systems (e.g., for POCL and for hierarchical
problems).
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Introduction

Introduction, cont’d

What are solutions to search problems?

That depends on the definition of the transition system. Normally,
a solution to a search problem is a sequence of transitions from
the transition system’s initial state to a goal state. Its cost is the
sum of the actions’ costs.
A solution is called optimal if

it is the cheapest one, or
if it is the shortest one (if there are no action costs).
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Introduction

More examples

Pathfinding (cf. first slide)

All the ones from the last lecture!

Anything that can be described with a transition system, e.g.,
Cannibals and Missionaries, ...
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Formal Foundations of Search

How to Search?

Informally, search means:

Maintain a so-called search fringe (also called frontier or open
list) – a set of candidate search nodes (containing the respective
state and further information).

Initially, that fringe contains just the initial state.
Select and remove a “most promising” node from the fringe:

If it’s a solution, extract a transition from the
initial state/search node to it.
If it’s not, put all successor nodes into the fringe.

fringe:

selected:
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list) – a set of candidate search nodes (containing the respective
state and further information).

Initially, that fringe contains just the initial state.
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Formal Foundations of Search

Node Selections

Which are the most promising search nodes?

Base this estimate on well-informed heuristics→ informed search

Requires heuristics, but
potentially, they are much more efficient.

Do not use any information about the goal→ uninformed, blind search

Works also if no heuristics are known.
Often very inefficient compared to informed search.
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Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?

Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search

Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search

Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)

It is easier to obtain optimality guarantees

Ignore duplicates→ graph search

Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search

Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search

Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search
Requires a visited list (also called closed list or explored set).

Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search
Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).

We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Node Insertions

How to deal with states that were visited before?
Just visit them again→ tree search

Potentially less efficient (e.g., imagine a cyclic transition system
without a reachable solution)
It is easier to obtain optimality guarantees

Ignore duplicates→ graph search
Requires a visited list (also called closed list or explored set).
Potentially more efficient (but may also require more space due to
storing that set).
We need to be more careful if we want to guarantee optimal
solutions.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Formal Foundations of Search

Tree Search vs. Graph Search

copyright: see slide 46[1] (modified)
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Formal Foundations of Search

Basic Definitions and Properties

The following numbers are used to study time and space requirements
of search algorithms:

b Maximal branching factor of the transition system.

d Goal depth, i.e., shortest path of transitions from initial state to a
goal state.

m The actually deployed search depth. (Note: This is a property of
the search process, not (directly) of the transition system.)

h(n) Heuristic value of the search node’s state (more later).

g(n) Cost spent so far during search to reach a search node n.

g∗ The cost of an optimal solution.
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h(n) Heuristic value of the search node’s state (more later).

g(n) Cost spent so far during search to reach a search node n.

g∗ The cost of an optimal solution.
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Formal Foundations of Search

Basic Definitions and Properties, cont’d

The following are elemental properties of search algorithms:

Optimality A search algorithm is called optimal when it is guaranteed
to find a cost-optimal/shortest solution (if one exists).

Completeness There are different notions of completeness. We call a
search algorithm complete if:

If there is a solution, it finds one,
if there is a solution, an optimal one can be found, or
all solutions can be found.

These are differently strong notions; all of them can be
found in the literature. Be aware which one applies.

Correctness If a solution is returned, it is in fact a solution and if “no
solution exists” is returned, there does in fact not exist a
solution.
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Breadth-First Search (BFS)

BFS Algorithm

copyright: see slide 46[1] (modified)

Question:
In which way does this algorithm differ (e.g., is more precise)
than the generic graph-search algorithm?

Here, the goal test is done before insertion into the fringe (“early
goal test”), not after selection from the fringe.
The fringe is not “generic”, but implemented as FIFO.
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Breadth-First Search (BFS)

Example of BFS

Transition system:
move

move

put take put take

move
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Breadth-First Search (BFS)

Example of BFS, cont’d

At one glance:
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Breadth-First Search (BFS)

Properties of BFS

Optimality

Depends on the costs:
Without action costs or with unit costs:

Obviously (both for tree- and for graph search)
Even optimal with an “early goal test”

With action costs: No

Completeness

Depends on properties of the transition system:
Finite: Yes
Infinite: Only with finite branching factor.

Correctness Yes

Space

O(bd)

Time

Just as space. (If the fringe is implemented as a priority
queue rather than as queue (FIFO), the queue sorting
overhead needs to be added. This does not change the
asymptotic runtime, however.)
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Depth-First Search (DFS)

DFS Algorithm

copyright: see slide 46[1]

Just replace the FIFO fringe by a LIFO fringe.
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Depth-First Search (DFS)

Example of DFS

Transition system:
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Depth-First Search (DFS)

Example of DFS, cont’d

At one glance:
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Depth-First Search (DFS)

Properties of DFS

Optimality

No
Completeness

Depends on duplicate management:
Tree search: only if the transition system is acyclic
Graph search: only the weakest form of completeness
(and this only if the transition system is acyclic)

Correctness Yes

Space

O(b ·m) (If you only store the fringe.)

Time

O(bm) (If the fringe is implemented as a priority queue
rather than as stack (LIFO), the queue sorting overhead
needs to be added. This does not change the asymptotic
runtime, however.)
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Uniform Cost Search (UCS)

Algorithm and Remarks

Implements the generic tree-search or graph-search algorithms.

Implements fringe as priority queue that selects a node with
minimal cost value g(n).

UCS can be a regarded a modification of BFS by expanding the
cheapest rather than the shallowest node. Note: In contrast to
BFS, the early goal test is not allowed here! (Why? Example?)

UCS can also be regarded a special case of A∗ (covered later
this chapter), where no heuristic is used.

UCS is equivalent to Dijkstra’s algorithm.
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Uniform Cost Search (UCS)

Properties of Uniform Cost

Optimality

Yes
Completeness

Depends on duplicate management and action costs:
Tree search: If all action costs are strictly larger than 0.
Graph search: Yes (except for the strongest form of
completeness)
Again, for infinite transition systems the situation is more
complicated.

Correctness Yes

Space

O(b1+bg∗/εc), where g∗ denotes the cost of an optimal
solution, and ε the (positive) cost of the cheapest action.

Time Similar to space.
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Introduction

Motivation

So far, search was blind: we were sorting the fringe via FIFO,
LIFO, or by costs.

Search effort can be reduced significantly, if a heuristic is used to
sort the fringe.

Main issues to be solved:

What are heuristics? Where do they come from?

Are there formal properties of heuristics?

How to use/integrate the heuristic? (This forms the algorithm.)
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Introduction

What are Heuristics?

Heuriskein (Greek): Find, Discover

1957 Methods to identify problem-solving techniques, especially in
the field of mathematical proofs.

1963 Problem-solving processes that potentially deliver solutions.

1971 “Rules” that domain experts apply in order to find good
solutions.

At Present Techniques that improve the average performance of
problem-solving methods, but not necessarily the worst-case
performance.

In Search In the context of search methods: functions that estimate
solution costs or the goal distance.
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Examples for Heuristics

Sliding Tile Puzzle

2 1 4 8

9 7 11 10

6 5 15 3

13 14 12

Problem

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Solution

How far are we still away?

Number of misplaced tiles

“Distance” (horizontal and vertical distance) per tile to goal
position→ Manhatten distance

Ignore certain tiles and use resulting solution cost as estimate.
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Examples for Heuristics

Road Map

How to find a(n optimal/good) way from Arad to Bucharest?

copyright: see slide 46[1] (modified)

Possible heuristics?

Use the linear distance.
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Examples for Heuristics

POCL Planning Problem

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

How many modifications do we have to perform?

Number of open preconditions

Number of causal treats

There are a few POCL planning heuristics (for estimating the
number of missing modifications or missing actions).
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Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?

Perform a problem relaxation.
Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:

Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:

Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.
Solve the relaxed problem.

Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:

Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.
Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:

Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.
Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:
Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.

Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.
Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:
Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.

Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.
Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:
Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Heuristic Construction

How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.
Solve the relaxed problem.
Use the cost (or number of actions, etc.) of the problem in the
relaxed problem as approximation (i.e., heuristic) of the actual
problem.

Example Sliding Tile Puzzle:
Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.
Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.
Ignore tiles. Some tiles (i.e., state variables) do not exist.

In planning, we can exploit the underlying formalism to design a large
set of domain-independent heuristics.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Definitions and Properties of Heuristics

Definitions

Definition (Heuristic, Dominance)

Given a state transition system ts = (S, L, c, T , I,G), a heuristic h is a
function h : S → R+ ∪ {∞}. A heuristic h1 is said to dominate
another heuristic h2 if for all states s ∈ S, h1(s) ≥ h2(s).

Heuristics can estimate different metrics (cf. also last lecture). Most
common ones are:

Number of actions of a solution.

Costs of a solution.

Note: The states of a transition system are not necessarily the
same as the states of a planning problem! This depends on the
search procedure and the problem class.
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Definitions and Properties of Heuristics

Definitions, cont’d I

Definition (Perfect Heuristic)

A heuristic h∗ : S → R+ is called perfect, if for all states s ∈ S h∗(s)
is the cost of the cheapest transition from s to a goal s′ ∈ G. Further,
h∗(s) =∞ for all states s for which no goal state can be reached.

Definition (Safe Heuristic)

A heuristic h is called safe, if for all states s ∈ S h(s) =∞ implies
h∗(s) =∞.

Definition (Goal-aware Heuristic)

A heuristic h is called goal-aware, if all goal states, i.e., sG ∈ G holds
h(sG) = 0.
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Definitions and Properties of Heuristics

Definitions, cont’d II

Definition (Admissible Heuristics)

A heuristic h is called admissible, if for all states s ∈ S, it holds
h(s) ≤ h∗(s).

Explanation:

Admissible heuristics give a lower (i.e., non-overestimating) bound on
the “best” goal distance.
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Definitions and Properties of Heuristics

Definitions, cont’d III

Definition (Consistent Heuristics)

A heuristic h is called consistent, if for all transitions (s, l, s′) ∈ T
holds h(s)− h(s′) ≤ c(l) (equiv.: h(s) ≤ c(l) + h(s′)).

Explanation:

Consistency: When applying an action a, the heuristic value cannot
decrease by more than the cost of a.

h(s)

h(s’)

c(a)

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 32 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Introduction

How to Use the Heuristic During Search?

For selecting a search node from the search fringe, pick a search node
n with the cheapest f value. f can depend on many properties, for
example:

The heuristic value h(n) of n.

The cost value g(n) of n.

The depth d(n) of n.
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Introduction

Informed Search Algorithms

The most basic informed search algorithms are:

Greedy f (n) = h(n) (also called Greedy Best-first)

A∗ f (n) = g(n) + h(n)

Greedy A∗ f (n) = c(n) + w ∗ h(n),w > 1 (also called Weighted A∗)

Explanation:

Greedy search always expands the node that seems closest to a
goal.

A∗ tries to find a cost-minimal solution while taking the heuristic
into account during search.

Greedy A∗ is a “more greedy” version of A∗, taking into account
the heuristic to a larger extent.
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Greedy Search

The Search Problem

How to find a(n optimal/good) way from Arad to Bucharest?

copyright: see slide 46[1] (modified)
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Greedy Search

The Search Progress

Arad

366

copyright: see slide 46[1] (modified)

Reminder:

Always select a node with minimal f (n) = h(n).

Here, h is the linear distance.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Greedy Search

The Search Progress

Zerind

Arad

Sibiu Timisoara

253 329 374

copyright: see slide 46[1] (modified)

Reminder:

Always select a node with minimal f (n) = h(n).

Here, h is the linear distance.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Greedy Search

The Search Progress

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

copyright: see slide 46[1] (modified)

Reminder:

Always select a node with minimal f (n) = h(n).

Here, h is the linear distance.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Greedy Search

The Search Progress

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

copyright: see slide 46[1] (modified)

Reminder:

Always select a node with minimal f (n) = h(n).

Here, h is the linear distance.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Greedy Search

The Search Progress, Overview

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

copyright: see slide 46[1] (modified)
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Greedy Search

Properties of Greedy Search

Optimality

No (even for admissible and consistent heuristics)

Completeness

No (can get stuck in loops)

Correctness Yes

Space

O(bm)

Time

Just as space.
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A∗ Search

The Search Problem

How to find a(n optimal/good) way from Arad to Bucharest?

copyright: see slide 46[1] (modified)
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A∗ Search

The Search Progress

Arad

366=0+366

copyright: see slide 46[1] (modified)

Reminder:

Always select a node with minimal f (n) = g(n) + h(n).

Here, h is the linear distance.
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The Search Progress
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copyright: see slide 46[1] (modified)
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Here, h is the linear distance.
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A∗ Search

The Search Progress

Zerind

Arad

Sibiu

Arad

Timisoara
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Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea
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copyright: see slide 46[1] (modified)

Reminder:

Always select a node with minimal f (n) = g(n) + h(n).

Here, h is the linear distance.
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A∗ Search

The Search Progress, Overview

copyright: see slide 46[1] (modified)
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A∗ Search

Properties of A∗

Optimality

Depends on duplicate management and heuristics:
Tree search: If the heuristic is admissible.
Graph search: If the heuristic is consistent.
Again, for infinite transition systems, the situation is more
complicated.

Completeness

Depends on duplicate management and action costs:
Tree search: If action costs are strictly larger than 0.
Graph search: Yes (except for the strongest form of
completeness)
Again, for infinite transition systems the situation is more
complicated.

Correctness Yes

Space

O(b1+bg∗/εc), where g∗ denotes the cost of an optimal
solution, and ε the (positive) cost of the cheapest action.

Time

Just as space.
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Greedy A∗ Search

Properties of Greedy A∗

Optimality

Depends on duplicate management and heuristics:
Tree search: for w > 1, it’s bounded suboptimal if the
heuristic is admissible.
Graph search: for w > 1, it’s bounded suboptimal if the
heuristic is consistent.
bounded suboptimal: the solutions returned are at most a
factor w more costly than the optimal ones.
Again, for infinite transition systems, the situation is more
complicated.

Completeness

It depends... (see A∗ – no difference)

Correctness Yes

Space

O(bm)

Time

Just as space.
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Greedy A∗ Search

Notes about Greedy A∗

Greedy A∗, f (n) = g(n) + w ∗ h(h), allows to interpolate
between greedy search and A∗ search.

Greedy A∗ trades off plan quality against computational effort.
(Normally, Greedy A∗ is much more efficient than A∗.)

How does Greedy A∗ behave for different weights w ∈ R+
0 ?

How does it behave for w = 0?

How does it behave for w = 1?

How does it behave for w = 10101010?

Greedy Search
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Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.

Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:

Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:

Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.

Optimality, completeness.

Two important distinctions in search are:

Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:

Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:

Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:
Tree search vs. graph search.

Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:
Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:
Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:
Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.

Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Summary

Search is a method to systematically (and with known properties)
find solutions in state transition systems, i.e., a sequence of
transitions from the initial state to a goal state.
Interesting properties of search algorithms are:

Space and time requirement.
Optimality, completeness.

Two important distinctions in search are:
Tree search vs. graph search.
Uninformed search vs. informed search.

In informed search, heuristics play a central role. Important
properties are:

Admissibility.
Consistency.

Chapter: Search by Dr. Pascal Bercher Winter Term 2018/2019 45 / 46



Introduction to Search Uninformed Search Heuristics Informed Search Summary

Copyright Notes and Licenses
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Authors: Stuart Russel and Peter Norvig
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