
Lecture Hierarchical Planning

Chapter:
Solving (Non-Hierarchical) Planning Problems via Search

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 19, 2019)



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Overview:

1 Introduction

2 Classical Planning
Algorithm
Properties

3 POCL Planning
Algorithm
Properties

4 Planning as Refinement Search
Refinement Planning
Systematicity in POCL Planning

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 2 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:

Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.

ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).

Many more (what ever problem (class) fits to the current problem).

Search:

Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:
Progression search.

Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:
Progression search.
Regression search, e.g., via POCL planning.

Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

How to Solve Planning Problems?

Solving techniques:
Via reduction, i.e., compilation to other problems like:

SAT, i.e., Satisfiability.
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:
Progression search.
Regression search, e.g., via POCL planning.
Local search (not covered).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Search-based Planning

This chapter covers planning as heuristic search:

Forward progression search in the space of world states:
Classical Planning.

(Regression-like) search in the space of partial plans:
Partial-Order Causal Link (POCL) planning.

→ Both will be extended for hierarchical planning.

The (relaxed) planning graph as a basis for several heuristics
used for planning as heuristic search – both in non-hierarchical
and in hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Search-based Planning

This chapter covers planning as heuristic search:

Forward progression search in the space of world states:
Classical Planning.

(Regression-like) search in the space of partial plans:
Partial-Order Causal Link (POCL) planning.

→ Both will be extended for hierarchical planning.

The (relaxed) planning graph as a basis for several heuristics
used for planning as heuristic search – both in non-hierarchical
and in hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Search-based Planning

This chapter covers planning as heuristic search:

Forward progression search in the space of world states:
Classical Planning.

(Regression-like) search in the space of partial plans:
Partial-Order Causal Link (POCL) planning.

→ Both will be extended for hierarchical planning.

The (relaxed) planning graph as a basis for several heuristics
used for planning as heuristic search – both in non-hierarchical
and in hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Search-based Planning

This chapter covers planning as heuristic search:

Forward progression search in the space of world states:
Classical Planning.

(Regression-like) search in the space of partial plans:
Partial-Order Causal Link (POCL) planning.

→ Both will be extended for hierarchical planning.

The (relaxed) planning graph as a basis for several heuristics
used for planning as heuristic search – both in non-hierarchical
and in hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Search-based Planning

This chapter covers planning as heuristic search:

Forward progression search in the space of world states:
Classical Planning.

(Regression-like) search in the space of partial plans:
Partial-Order Causal Link (POCL) planning.

→ Both will be extended for hierarchical planning.

The (relaxed) planning graph as a basis for several heuristics
used for planning as heuristic search – both in non-hierarchical
and in hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.
Apply all applicable actions to that state, generating a set of
successor states.
Select the most-promising state and repeat until solution is found.

→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.

Apply all applicable actions to that state, generating a set of
successor states.
Select the most-promising state and repeat until solution is found.

→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.
Apply all applicable actions to that state, generating a set of
successor states.

Select the most-promising state and repeat until solution is found.
→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.
Apply all applicable actions to that state, generating a set of
successor states.
Select the most-promising state and repeat until solution is found.

→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.
Apply all applicable actions to that state, generating a set of
successor states.
Select the most-promising state and repeat until solution is found.

→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.
Apply all applicable actions to that state, generating a set of
successor states.
Select the most-promising state and repeat until solution is found.

→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

Classical planning, i.e., forward progression search, is
conceptually extremely simple:

Start with the initial state.
Apply all applicable actions to that state, generating a set of
successor states.
Select the most-promising state and repeat until solution is found.

→ This is essentially exactly standard search (cf. second lecture).

For classical problems, this approach is currently state of the art
(in combination with informed heuristics).

This algorithm will be extended for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Pseudo Code

Algorithm: Classical Planning
Input: A STRIPS planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 6 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 37[1] (modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}
moveLeft

TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 37[1] (modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 37[1] (modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 37[1] (modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 37[1] (modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 37[1] (modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Notes

Only for simplicity, we stored the action sequences directly in the
search nodes. Ordinarily, they are inferred from the search space
(just as in search).

For good/low runtimes, there exist various techniques that ensure
an efficient implementation:

Use efficient data structures (e.g., bit vectors rather than sets for
state representation).
Only apply actions that change the current state.
Test action applicability efficiently, e.g., relying on decision trees.
Cf. Successor Generators in the work by Malte Helmert. “The Fast
Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26 (2006), pp. 191–246

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 8 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Notes

Only for simplicity, we stored the action sequences directly in the
search nodes. Ordinarily, they are inferred from the search space
(just as in search).
For good/low runtimes, there exist various techniques that ensure
an efficient implementation:

Use efficient data structures (e.g., bit vectors rather than sets for
state representation).
Only apply actions that change the current state.
Test action applicability efficiently, e.g., relying on decision trees.
Cf. Successor Generators in the work by Malte Helmert. “The Fast
Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26 (2006), pp. 191–246

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 8 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Notes

Only for simplicity, we stored the action sequences directly in the
search nodes. Ordinarily, they are inferred from the search space
(just as in search).
For good/low runtimes, there exist various techniques that ensure
an efficient implementation:

Use efficient data structures (e.g., bit vectors rather than sets for
state representation).

Only apply actions that change the current state.
Test action applicability efficiently, e.g., relying on decision trees.
Cf. Successor Generators in the work by Malte Helmert. “The Fast
Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26 (2006), pp. 191–246

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 8 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Notes

Only for simplicity, we stored the action sequences directly in the
search nodes. Ordinarily, they are inferred from the search space
(just as in search).
For good/low runtimes, there exist various techniques that ensure
an efficient implementation:

Use efficient data structures (e.g., bit vectors rather than sets for
state representation).
Only apply actions that change the current state.

Test action applicability efficiently, e.g., relying on decision trees.
Cf. Successor Generators in the work by Malte Helmert. “The Fast
Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26 (2006), pp. 191–246

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 8 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Notes

Only for simplicity, we stored the action sequences directly in the
search nodes. Ordinarily, they are inferred from the search space
(just as in search).
For good/low runtimes, there exist various techniques that ensure
an efficient implementation:

Use efficient data structures (e.g., bit vectors rather than sets for
state representation).
Only apply actions that change the current state.
Test action applicability efficiently, e.g., relying on decision trees.
Cf. Successor Generators in the work by Malte Helmert. “The Fast
Downward Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 26 (2006), pp. 191–246

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 8 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Properties

Theorem

Classical Planning is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove().

Proof:
Follows from the properties of the underlying search algorithm.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Properties

Theorem

Classical Planning is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove().

Proof:
Follows from the properties of the underlying search algorithm.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in Classical Planning

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 10 / 37

take

put

take

moveLeft

put

moveLeft
take

moveRight

moveLeft load

moveRight

unload

put
moveRight

takemoveRight moveLeft

put

m
ov

eL
ef

t

take

load

moveRight

unload

put
moveRight

takemoveRight moveLeft

put
moveRight take

moveLeft

put

moveLeft
take

moveRight move

move

put take put take

move

move

unload load

move

move

copyright: see slide 37[1] (modified)



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in Classical Planning, cont’d

Problems with the Search-Guidance:

High branching factor: usually, many actions are applicable in the
current state – resulting in a large search fringes.

Which state to explore next is decided by heuristics (see later in
this chapter).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 11 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,
only insert required variable constraints (not yet covered here), and
only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,

only insert required variable constraints (not yet covered here), and
only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,
only insert required variable constraints (not yet covered here), and

only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,
only insert required variable constraints (not yet covered here), and
only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,
only insert required variable constraints (not yet covered here), and
only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,
only insert required variable constraints (not yet covered here), and
only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Motivation

The core idea behind POCL planning is Least Commitment.
Only make decisions that are actually required:

Only introduce an ordering if required,
only insert required variable constraints (not yet covered here), and
only insert actions if they contribute towards some precondition.

Consequently, search nodes are partially ordered plans which can
represent an exponential number of classical solutions in one node.
→ Prevents early commitment on when actions are applied.

In contrast to classical planning, POCL planning searches in a
regression-like fashion.

This algorithm will (also) be extended to a plan space-based
algorithm for hierarchical planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Example

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 37[1] (modified)

Classical (totally ordered) Solution:

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1moveLeft

TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc2,

CrateAtLoc1

}
sI =

{
TruckAtLoc1,

CrateAtLoc1

} {
TruckAtLoc1,

HoldCrate

} {
TruckAtLoc1,

CrateInTruck

} {
TruckAtLoc2,

CrateInTruck

}
⊇ g

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Example

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 37[1] (modified)

Totally ordered POCL solution:

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1moveLeft

TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc2,

CrateAtLoc1

}
sI =

{
TruckAtLoc1,

CrateAtLoc1

} {
TruckAtLoc1,

HoldCrate

} {
TruckAtLoc1,

CrateInTruck

} {
TruckAtLoc2,

CrateInTruck

}
⊇ g

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Example

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 37[1] (modified)

Partially ordered POCL solution:

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc2,

CrateAtLoc1

}
sI =

{
TruckAtLoc1,

CrateAtLoc1

} {
TruckAtLoc1,

HoldCrate

} {
TruckAtLoc1,

CrateInTruck

} {
TruckAtLoc2,

CrateInTruck

}
⊇ g

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:

Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:

Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.

Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:

Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.

Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:

Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.

Solutions are totally ordered action sequences.

POCL planning:

Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:

Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:

Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:
Nodes of the search tree/graph are partial plans.

Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:
Nodes of the search tree/graph are partial plans.
Edges are plan refinements.

Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:
Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).

Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Classical Planning vs. POCL Planning

Reminder classical planning:
Nodes of the search tree/graph contain states.
Edges are actions.
Plans are extracted from the traversal of the initial state to a goal state.
Solutions are totally ordered action sequences.

POCL planning:
Nodes of the search tree/graph are partial plans.
Edges are plan refinements.
Plans are nodes/partial plans with certain properties
(i.e., they fulfill the solution criteria).
Solutions are only partially ordered.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Reminder: Which flaws does this partial plan possess?

Three open preconditions.

Two causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Reminder: Which flaws does this partial plan possess?

Three open preconditions.

Two causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Reminder: Which flaws does this partial plan possess?

Three open preconditions.

Two causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Which refinements exist to fix these flaws?
Open preconditions:

Insert causal links (re-using actions).
Insert new actions plus causal links.

Causal threats:

Insert ordering constraints.

→ POCL planning refines search nodes in a flaw-directed way:
First pick a flaw, then apply all possible modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Which refinements exist to fix these flaws?
Open preconditions:

Insert causal links (re-using actions).

Insert new actions plus causal links.

Causal threats:

Insert ordering constraints.

→ POCL planning refines search nodes in a flaw-directed way:
First pick a flaw, then apply all possible modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Which refinements exist to fix these flaws?
Open preconditions:

Insert causal links (re-using actions).
Insert new actions plus causal links.

Causal threats:

Insert ordering constraints.

→ POCL planning refines search nodes in a flaw-directed way:
First pick a flaw, then apply all possible modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Which refinements exist to fix these flaws?
Open preconditions:

Insert causal links (re-using actions).
Insert new actions plus causal links.

Causal threats:

Insert ordering constraints.

→ POCL planning refines search nodes in a flaw-directed way:
First pick a flaw, then apply all possible modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Which refinements exist to fix these flaws?
Open preconditions:

Insert causal links (re-using actions).
Insert new actions plus causal links.

Causal threats:
Insert ordering constraints.

→ POCL planning refines search nodes in a flaw-directed way:
First pick a flaw, then apply all possible modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Plan Refinements

Let a search node contain the following partial plan:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Which refinements exist to fix these flaws?
Open preconditions:

Insert causal links (re-using actions).
Insert new actions plus causal links.

Causal threats:
Insert ordering constraints.

→ POCL planning refines search nodes in a flaw-directed way:
First pick a flaw, then apply all possible modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Resolving Causal Threats

Let (PS,≺,CL) be a partial plan, ps, ps′ ∈ PS plan steps, and

ps
TruckAtLoc1−−−−−−→ ps′ the causal link threatened by ps′′ ∈ PS.

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

ps ps′
ps′′

Which plan refinements resolve that causal threat?

Promotion: order ps′′ step before ps

Demotion: order ps′′ behind ps′

Note:
In case of lifting, we also get another refinement.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Resolving Causal Threats

Let (PS,≺,CL) be a partial plan, ps, ps′ ∈ PS plan steps, and

ps
TruckAtLoc1−−−−−−→ ps′ the causal link threatened by ps′′ ∈ PS.

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

ps ps′
ps′′

Which plan refinements resolve that causal threat?

Promotion: order ps′′ step before ps

Demotion: order ps′′ behind ps′

Note:
In case of lifting, we also get another refinement.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Resolving Causal Threats

Let (PS,≺,CL) be a partial plan, ps, ps′ ∈ PS plan steps, and

ps
TruckAtLoc1−−−−−−→ ps′ the causal link threatened by ps′′ ∈ PS.

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

ps ps′
ps′′

Which plan refinements resolve that causal threat?

Promotion: order ps′′ step before ps

Demotion: order ps′′ behind ps′

Note:
In case of lifting, we also get another refinement.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Resolving Causal Threats

Let (PS,≺,CL) be a partial plan, ps, ps′ ∈ PS plan steps, and

ps
TruckAtLoc1−−−−−−→ ps′ the causal link threatened by ps′′ ∈ PS.

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

ps ps′
ps′′

Which plan refinements resolve that causal threat?

Promotion: order ps′′ step before ps

Demotion: order ps′′ behind ps′

Note:
In case of lifting, we also get another refinement.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Pseudocode

Algorithm: POCL Planning
Input: A POCL planning problem 〈V ,A,PI〉
Output: A solution plan P or fail if none exists

1 fringe = {PI}
2 while fringe 6= ∅ do
3 P := nodeSelectAndRemove(fringe)
4 F := flawDetection(P)
5 if F = ∅ then return P
6 f := flawSelection(F)
7 fringe := {applyModification(m, f ) | m is a modification for f in P}
8 return fail

Note:
POCL planning was originally an alternative algorithm for classical
problems, i.e., no initial partial plan was given.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 17 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:

Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.
How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:

This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.
How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:
Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.
How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:

This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.
How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:
Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.

How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:

This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.
How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:
Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.
How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:

This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.
How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:
Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.
How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:

This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.
How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:
Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.
How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:
This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.

How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Algorithm, Choice Points

This algorithm has two choice points:
Node selection:

This is a backtrack point, i.e., the choice can be wrong. We need
to consider all possibilities.
How to select a node? Using standard search techniques (cf.
lecture on search), which may rely on heuristics.

Flaw selection:
This is not a backtrack point, i.e., the choice can not be wrong.
Every flaw needs to be resolved, so the order does not matter.
How to select a flaw? There are various possibilities, we only
cover a few.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: CrateInTruck of goal insert load

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: CrateInTruck of goal insert load

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: CrateInTruck of goal insert load

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: HoldCrate of load insert take
insert unload

open prec.: TruckAtLoc1 of load insert moveLeft

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: HoldCrate of load insert take
insert unload

open prec.: TruckAtLoc1 of load insert moveLeft

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: HoldCrate of load insert take
insert unload

open prec.: TruckAtLoc1 of load insert moveLeft

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: HoldCrate of load insert take
insert unload

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: HoldCrate of load insert take
insert unload

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: HoldCrate of load insert take
insert unload

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: CrateAtLoc1 of take insert causal link from init
insert put

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: CrateAtLoc1 of take insert causal link from init
insert put

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: CrateAtLoc1 of take insert causal link from init
insert put

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc2 of goal insert moveRight
insert causal link from init



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveLeft
TruckAtLoc1−−−−−−→ load by moveRight promote moveRight before moveLeft

demote moveRight after load

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft promote moveLeft before moveRight



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveLeft
TruckAtLoc1−−−−−−−→ load by moveRight promote moveRight before moveLeft

demote moveRight after load

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft promote moveLeft before moveRight



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveLeft
TruckAtLoc1−−−−−−−→ load by moveRight promote moveRight before moveLeft

demote moveRight after load

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft promote moveLeft before moveRight



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft —



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveRight
TruckAtLoc2−−−−−−−→ goal by moveLeft —

Discard partial plan due to unresolvable flaw!



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveLeft
TruckAtLoc1−−−−−−→ load by moveRight promote moveRight before moveLeft

demote moveRight after load

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft promote moveLeft before moveRight



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveLeft
TruckAtLoc1−−−−−−−→ load by moveRight promote moveRight before moveLeft

demote moveRight after load

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft promote moveLeft before moveRight



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight
insert causal link from moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft

causal threat: moveLeft
TruckAtLoc1−−−−−−−→ load by moveRight promote moveRight before moveLeft

demote moveRight after load

causal threat: moveRight
TruckAtLoc2−−−−−−→ goal by moveLeft promote moveLeft before moveRight



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc2 of moveLeft insert causal link from init
insert moveRight

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

open prec.: TruckAtLoc1 of moveRight insert causal link from moveLeft
insert moveLeft



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Example

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

CrateAtLoc1

TruckAtLoc2

CrateInTruck

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

put
CrateAtLoc1

¬HoldCrate
HoldCrate load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1 unload
HoldCrate

¬CrateInTruck

CrateInTruck

TruckAtLoc1

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

<

Flaws Modifications

Since there is no flaw: Return solution plan!



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness:

For efficiency:

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency:

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Causal Threats First (CTF):
Always select a causal threat flaw.

→ Gives a preference to causal threats: Only deal with link or action
insertions after the partial plan has no “internal” issues.

→ This strategy was part of the well-known POP algorithm by
Russell and Norvig’s text book Artificial Intelligence – A Modern
Approach and of the well-known POCL planners SNLP and
UCPOP. Here, the algorithm resolved all threats before any other
flaw (open condition) was selected.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Causal Threats First (CTF):
Always select a causal threat flaw.

→ Gives a preference to causal threats: Only deal with link or action
insertions after the partial plan has no “internal” issues.

→ This strategy was part of the well-known POP algorithm by
Russell and Norvig’s text book Artificial Intelligence – A Modern
Approach and of the well-known POCL planners SNLP and
UCPOP. Here, the algorithm resolved all threats before any other
flaw (open condition) was selected.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Causal Threats First (CTF):
Always select a causal threat flaw.

→ Gives a preference to causal threats: Only deal with link or action
insertions after the partial plan has no “internal” issues.

→ This strategy was part of the well-known POP algorithm by
Russell and Norvig’s text book Artificial Intelligence – A Modern
Approach and of the well-known POCL planners SNLP and
UCPOP. Here, the algorithm resolved all threats before any other
flaw (open condition) was selected.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Least-Cost Flaw-Repair (LCFR):
Always select a flaw that this “cheap” to repair, i.e., for which there
are the fewest modifications.

→ This strategy locally minimizes the branching factor of the search
space.

→ Nice special case: Fix flaws with just one modification! (This
choice can never be wrong!)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Least-Cost Flaw-Repair (LCFR):
Always select a flaw that this “cheap” to repair, i.e., for which there
are the fewest modifications.

→ This strategy locally minimizes the branching factor of the search
space.

→ Nice special case: Fix flaws with just one modification! (This
choice can never be wrong!)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Least-Cost Flaw-Repair (LCFR):
Always select a flaw that this “cheap” to repair, i.e., for which there
are the fewest modifications.

→ This strategy locally minimizes the branching factor of the search
space.

→ Nice special case: Fix flaws with just one modification! (This
choice can never be wrong!)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Left-Most Open Condition First (LMOCF):
Always select a precondition that is closest to the initial state.

→ This strategy first creates one long chain of actions that is rooted
in the initial state, then completes it starting from left to right.

→ Search nodes have only one linearization until the chain finally
roots in the initial state.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Left-Most Open Condition First (LMOCF):
Always select a precondition that is closest to the initial state.

→ This strategy first creates one long chain of actions that is rooted
in the initial state, then completes it starting from left to right.

→ Search nodes have only one linearization until the chain finally
roots in the initial state.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Left-Most Open Condition First (LMOCF):
Always select a precondition that is closest to the initial state.

→ This strategy first creates one long chain of actions that is rooted
in the initial state, then completes it starting from left to right.

→ Search nodes have only one linearization until the chain finally
roots in the initial state.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies

Which flaw to select?

For completeness: Does not matter!

For efficiency: Strategy as huge impact!

Some flaw selection strategies:

Flaw selection strategies can be combined/concatenated!

For instance, 〈CTF , LMOCF , LCFR〉 will:

First eliminate all causal threats,

among all non-threat flaws select a left-most open condition,

and among them some flaw with the fewest modifications.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Algorithm

Flaw Selection Strategies, Literature

There are many flaw selection strategies known to the literature. Some
pointers:

Håkan L. S. Younes and Reid G. Simmons. “VHPOP: Versatile
heuristic partial order planner”. In: Journal of Artificial Intelligence
Research (JAIR) 20 (2003), pp. 405–430

Martha E. Pollack et al. “Flaw Selection Strategies For
Partial-Order Planning”. In: Journal of Artificial Intelligence
Research (JAIR) 6 (1997), pp. 223–262

Mike Williamson and Steve Hanks. “Flaw Selection Strategies for
Value-Directed Planning”. In: Proc. of the 3rd Int. Conf. on
Artificial Intelligence Planning Systems (AIPS 1996). AAAI Press,
1996, pp. 237–244

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 21 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Properties

Theorem

POCL Planning is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove()).

Further, POCL planning does not provide the strongest form of
completeness. Why?

Proof:
Follows from:

The properties of the underlying search algorithm.
The fact that for each flaw all modifications that could possibly
resolve that flaw are branched into the search space.
The strongest form of completeness does not hold, since only
causally relevant actions can be added in POCL planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Properties

Theorem

POCL Planning is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove()).

Further, POCL planning does not provide the strongest form of
completeness. Why?

Proof:
Follows from:

The properties of the underlying search algorithm.

The fact that for each flaw all modifications that could possibly
resolve that flaw are branched into the search space.
The strongest form of completeness does not hold, since only
causally relevant actions can be added in POCL planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Properties

Theorem

POCL Planning is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove()).

Further, POCL planning does not provide the strongest form of
completeness. Why?

Proof:
Follows from:

The properties of the underlying search algorithm.
The fact that for each flaw all modifications that could possibly
resolve that flaw are branched into the search space.

The strongest form of completeness does not hold, since only
causally relevant actions can be added in POCL planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Properties

Theorem

POCL Planning is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove()).

Further, POCL planning does not provide the strongest form of
completeness. Why?

Proof:
Follows from:

The properties of the underlying search algorithm.
The fact that for each flaw all modifications that could possibly
resolve that flaw are branched into the search space.
The strongest form of completeness does not hold, since only
causally relevant actions can be added in POCL planning.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Reminder: Search-Guidance in Classical Planning

take

put

take

moveLeft

put

moveLeft
take

moveRight

moveLeft load

moveRight

unload

put
moveRight

takemoveRight moveLeft

put

m
ov

eL
ef

t

take

load

moveRight

unload

put
moveRight

takemoveRight moveLeft

put
moveRight take

moveLeft

put

moveLeft
take

moveRight

Main issue in classical
planning:

High branching factor,
which usually allows many
actions to be applicable in
the current state – resulting
in a large search fringes.
(Dealt with by heuristics).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 23 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in POCL Planning

For mainly two reasons the branching factor in POCL planning is
usually very small:

Due to the regression-like search procedure and the fact that only
causally relevant actions are selected.

The explicit flaw selection step allows to select flaws which
produce a small branching factor.

Problems with the Search-Guidance:

Despite smaller branching factor, we still need to decide on which
partial plans to work next→ use heuristics!

Heuristic design is more complicated here, because there are
more constraints to respect (the partial plan rather than just a
state).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in POCL Planning

For mainly two reasons the branching factor in POCL planning is
usually very small:

Due to the regression-like search procedure and the fact that only
causally relevant actions are selected.

The explicit flaw selection step allows to select flaws which
produce a small branching factor.

Problems with the Search-Guidance:

Despite smaller branching factor, we still need to decide on which
partial plans to work next→ use heuristics!

Heuristic design is more complicated here, because there are
more constraints to respect (the partial plan rather than just a
state).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in POCL Planning

For mainly two reasons the branching factor in POCL planning is
usually very small:

Due to the regression-like search procedure and the fact that only
causally relevant actions are selected.

The explicit flaw selection step allows to select flaws which
produce a small branching factor.

Problems with the Search-Guidance:

Despite smaller branching factor, we still need to decide on which
partial plans to work next→ use heuristics!

Heuristic design is more complicated here, because there are
more constraints to respect (the partial plan rather than just a
state).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in POCL Planning

For mainly two reasons the branching factor in POCL planning is
usually very small:

Due to the regression-like search procedure and the fact that only
causally relevant actions are selected.

The explicit flaw selection step allows to select flaws which
produce a small branching factor.

Problems with the Search-Guidance:

Despite smaller branching factor, we still need to decide on which
partial plans to work next→ use heuristics!

Heuristic design is more complicated here, because there are
more constraints to respect (the partial plan rather than just a
state).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Properties

Search-Guidance in POCL Planning

For mainly two reasons the branching factor in POCL planning is
usually very small:

Due to the regression-like search procedure and the fact that only
causally relevant actions are selected.

The explicit flaw selection step allows to select flaws which
produce a small branching factor.

Problems with the Search-Guidance:

Despite smaller branching factor, we still need to decide on which
partial plans to work next→ use heuristics!

Heuristic design is more complicated here, because there are
more constraints to respect (the partial plan rather than just a
state).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

POCL planning is often referred to as refinement planning.

Informally, refinement in the context of POCL planning means
that a partially developed plan gets more specialized via adding
constraints (such as causal links, actions, ordering constraints).

More generally, refinement search is a theoretical concept, where
each search node is interpreted as the set of solution candidates
that it induces, i.e., that can be reached from it.
Example In POCL planning that’s the set of totally ordered action

sequences that can be derived from the current partial plan.

Refinement operators (the modifications) restrict these sets.

It allows to compare different planning algorithms and to define
certain properties.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

POCL planning is often referred to as refinement planning.

Informally, refinement in the context of POCL planning means
that a partially developed plan gets more specialized via adding
constraints (such as causal links, actions, ordering constraints).

More generally, refinement search is a theoretical concept, where
each search node is interpreted as the set of solution candidates
that it induces, i.e., that can be reached from it.
Example In POCL planning that’s the set of totally ordered action

sequences that can be derived from the current partial plan.

Refinement operators (the modifications) restrict these sets.

It allows to compare different planning algorithms and to define
certain properties.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

POCL planning is often referred to as refinement planning.

Informally, refinement in the context of POCL planning means
that a partially developed plan gets more specialized via adding
constraints (such as causal links, actions, ordering constraints).

More generally, refinement search is a theoretical concept, where
each search node is interpreted as the set of solution candidates
that it induces, i.e., that can be reached from it.
Example In POCL planning that’s the set of totally ordered action

sequences that can be derived from the current partial plan.

Refinement operators (the modifications) restrict these sets.

It allows to compare different planning algorithms and to define
certain properties.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Introduction

Introduction

POCL planning is often referred to as refinement planning.

Informally, refinement in the context of POCL planning means
that a partially developed plan gets more specialized via adding
constraints (such as causal links, actions, ordering constraints).

More generally, refinement search is a theoretical concept, where
each search node is interpreted as the set of solution candidates
that it induces, i.e., that can be reached from it.
Example In POCL planning that’s the set of totally ordered action

sequences that can be derived from the current partial plan.

Refinement operators (the modifications) restrict these sets.

It allows to compare different planning algorithms and to define
certain properties.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Formal Definitions

Let n be search node. Then 〈〈n〉〉, the candidates set is the set of
action sequences that can be derived from n via the available
refinement operators.

A refinement operator R generates, for a search node n, a set of
successor nodes n1, . . . , nm, such that all resulting candidate sets
are proper subsets of the parent search node.
That is: for all 1 ≤ i ≤ m holds 〈〈ni〉〉 ⊆ 〈〈n〉〉

Example In POCL planning “Resolve causal threat t” would be a
refinement operator with n1 being the search node resulting from
promotion and n2 the one resulting from demotion.

A refinement operator R is called complete if every solution in 〈〈n〉〉
is contained in at least one of its children candidate sets 〈〈ni〉〉.
A refinement operator R is called systematic if for all i 6= j holds
〈〈ni〉〉 ∩ 〈〈nj〉〉 = ∅.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Formal Definitions

Let n be search node. Then 〈〈n〉〉, the candidates set is the set of
action sequences that can be derived from n via the available
refinement operators.

A refinement operator R generates, for a search node n, a set of
successor nodes n1, . . . , nm, such that all resulting candidate sets
are proper subsets of the parent search node.
That is: for all 1 ≤ i ≤ m holds 〈〈ni〉〉 ⊆ 〈〈n〉〉

Example In POCL planning “Resolve causal threat t” would be a
refinement operator with n1 being the search node resulting from
promotion and n2 the one resulting from demotion.

A refinement operator R is called complete if every solution in 〈〈n〉〉
is contained in at least one of its children candidate sets 〈〈ni〉〉.
A refinement operator R is called systematic if for all i 6= j holds
〈〈ni〉〉 ∩ 〈〈nj〉〉 = ∅.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Formal Definitions

Let n be search node. Then 〈〈n〉〉, the candidates set is the set of
action sequences that can be derived from n via the available
refinement operators.

A refinement operator R generates, for a search node n, a set of
successor nodes n1, . . . , nm, such that all resulting candidate sets
are proper subsets of the parent search node.
That is: for all 1 ≤ i ≤ m holds 〈〈ni〉〉 ⊆ 〈〈n〉〉
Example In POCL planning “Resolve causal threat t” would be a

refinement operator with n1 being the search node resulting from
promotion and n2 the one resulting from demotion.

A refinement operator R is called complete if every solution in 〈〈n〉〉
is contained in at least one of its children candidate sets 〈〈ni〉〉.
A refinement operator R is called systematic if for all i 6= j holds
〈〈ni〉〉 ∩ 〈〈nj〉〉 = ∅.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Formal Definitions

Let n be search node. Then 〈〈n〉〉, the candidates set is the set of
action sequences that can be derived from n via the available
refinement operators.

A refinement operator R generates, for a search node n, a set of
successor nodes n1, . . . , nm, such that all resulting candidate sets
are proper subsets of the parent search node.
That is: for all 1 ≤ i ≤ m holds 〈〈ni〉〉 ⊆ 〈〈n〉〉
Example In POCL planning “Resolve causal threat t” would be a

refinement operator with n1 being the search node resulting from
promotion and n2 the one resulting from demotion.

A refinement operator R is called complete if every solution in 〈〈n〉〉
is contained in at least one of its children candidate sets 〈〈ni〉〉.

A refinement operator R is called systematic if for all i 6= j holds
〈〈ni〉〉 ∩ 〈〈nj〉〉 = ∅.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Formal Definitions

Let n be search node. Then 〈〈n〉〉, the candidates set is the set of
action sequences that can be derived from n via the available
refinement operators.

A refinement operator R generates, for a search node n, a set of
successor nodes n1, . . . , nm, such that all resulting candidate sets
are proper subsets of the parent search node.
That is: for all 1 ≤ i ≤ m holds 〈〈ni〉〉 ⊆ 〈〈n〉〉
Example In POCL planning “Resolve causal threat t” would be a

refinement operator with n1 being the search node resulting from
promotion and n2 the one resulting from demotion.

A refinement operator R is called complete if every solution in 〈〈n〉〉
is contained in at least one of its children candidate sets 〈〈ni〉〉.
A refinement operator R is called systematic if for all i 6= j holds
〈〈ni〉〉 ∩ 〈〈nj〉〉 = ∅.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Formal Definitions, cont’d

The concept of planning as refinement search was formally introduced by:

Subbarao Kambhampati et al. “Planning as Refinement Search: A
Unified Framework for Evaluating Design Tradeoffs in Partial-Order
Planning”. In: Artificial Intelligence 76.1-2 (1995), pp. 167–238

Subbarao Kambhampati. “Refinement Planning as a Unifying
Framework for Plan Synthesis”. In: AI Magazine 18.2 (1997),
pp. 67–98

(The definitions provided here base upon the ’95 article.)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Systematicity in Refinement Planning

Systematicity:

Informally, systematic search means that each plan is found at
most once (no redundancy).

Formally, a search algorithm is called systematic if all refinement
operators are systematic.

Alternative definition: A search algorithm is called systematic if
for all search nodes n and n′ in different branches of the search
tree 〈〈n〉〉 ∩ 〈〈n′〉〉 = ∅ holds.

Further reading: Subbarao Kambhampati. “On the Utility of
Systematicity: Understanding Tradeoffs between Redundancy
and Commitment in Partial-Order Planning”. In: Proc. of the 13th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1993). Morgan
Kaufmann, 1993, pp. 1380–1385

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Systematicity in Refinement Planning

Systematicity:

Informally, systematic search means that each plan is found at
most once (no redundancy).

Formally, a search algorithm is called systematic if all refinement
operators are systematic.

Alternative definition: A search algorithm is called systematic if
for all search nodes n and n′ in different branches of the search
tree 〈〈n〉〉 ∩ 〈〈n′〉〉 = ∅ holds.

Further reading: Subbarao Kambhampati. “On the Utility of
Systematicity: Understanding Tradeoffs between Redundancy
and Commitment in Partial-Order Planning”. In: Proc. of the 13th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1993). Morgan
Kaufmann, 1993, pp. 1380–1385

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Systematicity in Refinement Planning

Systematicity:

Informally, systematic search means that each plan is found at
most once (no redundancy).

Formally, a search algorithm is called systematic if all refinement
operators are systematic.

Alternative definition: A search algorithm is called systematic if
for all search nodes n and n′ in different branches of the search
tree 〈〈n〉〉 ∩ 〈〈n′〉〉 = ∅ holds.

Further reading: Subbarao Kambhampati. “On the Utility of
Systematicity: Understanding Tradeoffs between Redundancy
and Commitment in Partial-Order Planning”. In: Proc. of the 13th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1993). Morgan
Kaufmann, 1993, pp. 1380–1385

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Systematicity in Refinement Planning

Systematicity:

Informally, systematic search means that each plan is found at
most once (no redundancy).

Formally, a search algorithm is called systematic if all refinement
operators are systematic.

Alternative definition: A search algorithm is called systematic if
for all search nodes n and n′ in different branches of the search
tree 〈〈n〉〉 ∩ 〈〈n′〉〉 = ∅ holds.

Further reading: Subbarao Kambhampati. “On the Utility of
Systematicity: Understanding Tradeoffs between Redundancy
and Commitment in Partial-Order Planning”. In: Proc. of the 13th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1993). Morgan
Kaufmann, 1993, pp. 1380–1385

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Refinement Planning

Systematicity in Refinement Planning

Systematicity:

Informally, systematic search means that each plan is found at
most once (no redundancy).

Formally, a search algorithm is called systematic if all refinement
operators are systematic.

Alternative definition: A search algorithm is called systematic if
for all search nodes n and n′ in different branches of the search
tree 〈〈n〉〉 ∩ 〈〈n′〉〉 = ∅ holds.

Further reading: Subbarao Kambhampati. “On the Utility of
Systematicity: Understanding Tradeoffs between Redundancy
and Commitment in Partial-Order Planning”. In: Proc. of the 13th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1993). Morgan
Kaufmann, 1993, pp. 1380–1385

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Example

Is POCL planning systematic?

No!

Consider a planning problem with g = {a, b} and two actions:

A = (∅, {a}, ∅) B = (∅, {b}, ∅)

The following search space proves that it’s not systematic:

a

b

a

b

a
a

b

a

b

a

b
b

a

b

a

b

... right? No! The above tree is not a (single) POCL search tree:
The flaw selection is missing.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 29 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Example

Is POCL planning systematic? No!

Consider a planning problem with g = {a, b} and two actions:

A = (∅, {a}, ∅) B = (∅, {b}, ∅)

The following search space proves that it’s not systematic:

a

b

a

b

a
a

b

a

b

a

b
b

a

b

a

b

... right?

No! The above tree is not a (single) POCL search tree:
The flaw selection is missing.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 29 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Example

Is POCL planning systematic? No!

Consider a planning problem with g = {a, b} and two actions:

A = (∅, {a}, ∅) B = (∅, {b}, ∅)

The following search space proves that it’s not systematic:

a

b

a

b

a
a

b

a

b

a

b
b

a

b

a

b

... right? No! The above tree is not a (single) POCL search tree:
The flaw selection is missing.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 29 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

A Correct Example

POCL planning ist not systematic.

Consider a planning problem with g = {a, b} and three actions:

A = ({c, d}, {a}, ∅)
CB = (∅, {c, b}, ∅)
DB = (∅, {d , b}, ∅)

With first resolving the goal precondition b, the same set of action
sequences (DB,CB,A and CB,DB,A) can be derived in two separate
branches.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 30 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

A Correct Example, cont’d

POCL planning is not systematic.
Search space:

a

b

〈〈n〉〉 = {ā | ā makes {a, b} true}
a

b

C
c

b

〈〈n〉〉 ⊇ {(C)}

a

b

D
d

b

〈〈n〉〉 ⊇ {(D)}

a

b

C
c

b A a
c

d

〈〈n〉〉 ⊇ {(C,A)}

a

b

D
d

b

A a
c

d

〈〈n〉〉 ⊇ {(D,A)}

a

b

C
c

b A a
c

d

D
d

b

〈〈n〉〉 ⊇ {(C,D,A), (D,C,A)}

a

b

D
d

b

A a
c

dC
c

b

〈〈n〉〉 ⊇ {(C,D,A), (D,C,A)}

(due to positive causal threats)

(due to positive causal threats)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 31 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Positive Causal Threats

We now extend the set of flaws by a positive causal threat.

Definition (Positive Causal Threat)

Let (PS,≺,CL) be a partial plan. A positive causal threat consists of
the plan steps ps, ps′ ∈ PS, a causal link ps

v→ ps′, and the
threatening plan step ps′′ ∈ PS if and only if

v ∈ add(ps′′) (in contrast to v ∈ del(ps′′) for standard threats)

The ordering constraints allow ps′′ to be ordered between ps and
ps′, i.e., (≺ ∪ {(ps, ps′′), (ps′, ps′′)})∗ is a strict partial order.
(∗ denotes the transitive closure.)

The modifications to resolve this flaw are analogous to standard
causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Positive Causal Threats

We now extend the set of flaws by a positive causal threat.

Definition (Positive Causal Threat)

Let (PS,≺,CL) be a partial plan. A positive causal threat consists of
the plan steps ps, ps′ ∈ PS, a causal link ps

v→ ps′, and the
threatening plan step ps′′ ∈ PS if and only if

v ∈ add(ps′′) (in contrast to v ∈ del(ps′′) for standard threats)

The ordering constraints allow ps′′ to be ordered between ps and
ps′, i.e., (≺ ∪ {(ps, ps′′), (ps′, ps′′)})∗ is a strict partial order.
(∗ denotes the transitive closure.)

The modifications to resolve this flaw are analogous to standard
causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Positive Causal Threats

We now extend the set of flaws by a positive causal threat.

Definition (Positive Causal Threat)

Let (PS,≺,CL) be a partial plan. A positive causal threat consists of
the plan steps ps, ps′ ∈ PS, a causal link ps

v→ ps′, and the
threatening plan step ps′′ ∈ PS if and only if

v ∈ add(ps′′) (in contrast to v ∈ del(ps′′) for standard threats)

The ordering constraints allow ps′′ to be ordered between ps and
ps′, i.e., (≺ ∪ {(ps, ps′′), (ps′, ps′′)})∗ is a strict partial order.
(∗ denotes the transitive closure.)

The modifications to resolve this flaw are analogous to standard
causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Positive Causal Threats

We now extend the set of flaws by a positive causal threat.

Definition (Positive Causal Threat)

Let (PS,≺,CL) be a partial plan. A positive causal threat consists of
the plan steps ps, ps′ ∈ PS, a causal link ps

v→ ps′, and the
threatening plan step ps′′ ∈ PS if and only if

v ∈ add(ps′′) (in contrast to v ∈ del(ps′′) for standard threats)

The ordering constraints allow ps′′ to be ordered between ps and
ps′, i.e., (≺ ∪ {(ps, ps′′), (ps′, ps′′)})∗ is a strict partial order.
(∗ denotes the transitive closure.)

The modifications to resolve this flaw are analogous to standard
causal threats.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Positive Causal Threats, cont’d

Theorem

POCL Planning with positive causal threats is systematic.

Proof:
See David McAllester and David Rosenblitt. “Systematic Nonlinear
Planning”. In: Proc. of the 9th National Conf. on Artificial Intelligence
(AAAI 1991). AAAI Press, 1991, pp. 634–639

Note that POCL planning is ordinarily done without positive causal
threats, because it is then usually more efficient (despite being
non-systematic).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Positive Causal Threats, cont’d

Theorem

POCL Planning with positive causal threats is systematic.

Proof:
See David McAllester and David Rosenblitt. “Systematic Nonlinear
Planning”. In: Proc. of the 9th National Conf. on Artificial Intelligence
(AAAI 1991). AAAI Press, 1991, pp. 634–639

Note that POCL planning is ordinarily done without positive causal
threats, because it is then usually more efficient (despite being
non-systematic).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Influence of Positive Causal Threats, Example

POCL planning is not systematic.
Search space:

a

b

〈〈n〉〉 = {ā | ā makes {a, b} true}
a

b

C
c

b

〈〈n〉〉 ⊇ {(C)}

a

b

D
d

b

〈〈n〉〉 ⊇ {(D)}

a

b

C
c

b A a
c

d

〈〈n〉〉 ⊇ {(C,A)}

a

b

D
d

b

A a
c

d

〈〈n〉〉 ⊇ {(D,A)}

a

b

C
c

b A a
c

d

D
d

b

〈〈n〉〉 ⊇ {(C,D,A), (D,C,A)}

a

b

D
d

b

A a
c

dC
c

b

〈〈n〉〉 ⊇ {(C,D,A), (D,C,A)}

(due to positive causal threats)

(due to positive causal threats)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 34 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Systematicity in POCL Planning

Influence of Positive Causal Threats, Example

POCL planning is not systematic.
Search space:

a

b

〈〈n〉〉 = {ā | ā makes {a, b} true}
a

b

C
c

b

〈〈n〉〉 ⊇ {(C)}

a

b

D
d

b

〈〈n〉〉 ⊇ {(D)}

a

b

C
c

b A a
c

d

〈〈n〉〉 ⊇ {(C,A)}

a

b

D
d

b

A a
c

d

〈〈n〉〉 ⊇ {(D,A)}

a

b

C
c

b A a
c

d

D
d

b

〈〈n〉〉 ⊇ {(C,D,A), (D,C,A)}

a

b

D
d

b

A a
c

dC
c

b

〈〈n〉〉 ⊇ {(C,D,A), (D,C,A)}

(due to positive causal threats)

(due to positive causal threats)

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 34 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Summary

Progression (forward) search in the space of states is also often
referred to as classical planning (note the difference to classical
planning problems!).

In addition to many heuristics there exist various techniques to
improve its performance (pruning, action selection, symmetry
elimination, etc.) – they are not part of this lecture.

Partial-Order Causal-Link (POCL) planning is an alternative approach
for solving classical (or POCL) problems.

POCL planning searches in the space of partial plans – in a
regression-like fashion.

In contrast to classical planning, search is a two-stage process: In
addition to the search node selection, we also select a flaw to work on.

Refinement search is an algorithm-independent concept to be able to
compare different algorithms (e.g., their systematicity).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Summary

Progression (forward) search in the space of states is also often
referred to as classical planning (note the difference to classical
planning problems!).

In addition to many heuristics there exist various techniques to
improve its performance (pruning, action selection, symmetry
elimination, etc.) – they are not part of this lecture.

Partial-Order Causal-Link (POCL) planning is an alternative approach
for solving classical (or POCL) problems.

POCL planning searches in the space of partial plans – in a
regression-like fashion.

In contrast to classical planning, search is a two-stage process: In
addition to the search node selection, we also select a flaw to work on.

Refinement search is an algorithm-independent concept to be able to
compare different algorithms (e.g., their systematicity).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Summary

Progression (forward) search in the space of states is also often
referred to as classical planning (note the difference to classical
planning problems!).

In addition to many heuristics there exist various techniques to
improve its performance (pruning, action selection, symmetry
elimination, etc.) – they are not part of this lecture.

Partial-Order Causal-Link (POCL) planning is an alternative approach
for solving classical (or POCL) problems.

POCL planning searches in the space of partial plans – in a
regression-like fashion.

In contrast to classical planning, search is a two-stage process: In
addition to the search node selection, we also select a flaw to work on.

Refinement search is an algorithm-independent concept to be able to
compare different algorithms (e.g., their systematicity).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Summary

Progression (forward) search in the space of states is also often
referred to as classical planning (note the difference to classical
planning problems!).

In addition to many heuristics there exist various techniques to
improve its performance (pruning, action selection, symmetry
elimination, etc.) – they are not part of this lecture.

Partial-Order Causal-Link (POCL) planning is an alternative approach
for solving classical (or POCL) problems.

POCL planning searches in the space of partial plans – in a
regression-like fashion.

In contrast to classical planning, search is a two-stage process: In
addition to the search node selection, we also select a flaw to work on.

Refinement search is an algorithm-independent concept to be able to
compare different algorithms (e.g., their systematicity).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Summary

Progression (forward) search in the space of states is also often
referred to as classical planning (note the difference to classical
planning problems!).

In addition to many heuristics there exist various techniques to
improve its performance (pruning, action selection, symmetry
elimination, etc.) – they are not part of this lecture.

Partial-Order Causal-Link (POCL) planning is an alternative approach
for solving classical (or POCL) problems.

POCL planning searches in the space of partial plans – in a
regression-like fashion.

In contrast to classical planning, search is a two-stage process: In
addition to the search node selection, we also select a flaw to work on.

Refinement search is an algorithm-independent concept to be able to
compare different algorithms (e.g., their systematicity).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Summary

Progression (forward) search in the space of states is also often
referred to as classical planning (note the difference to classical
planning problems!).

In addition to many heuristics there exist various techniques to
improve its performance (pruning, action selection, symmetry
elimination, etc.) – they are not part of this lecture.

Partial-Order Causal-Link (POCL) planning is an alternative approach
for solving classical (or POCL) problems.

POCL planning searches in the space of partial plans – in a
regression-like fashion.

In contrast to classical planning, search is a two-stage process: In
addition to the search node selection, we also select a flaw to work on.

Refinement search is an algorithm-independent concept to be able to
compare different algorithms (e.g., their systematicity).

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.

pro Duplicate check is trivial.
pro The required search algorithm and data structures are conceptionally very simple.
pro Can be implemented to act extremely fast, making it superior if there are not too

many totally ordered solutions.
con The branching factor is usually high, because, normally, many actions are

applicable to the current state.

POCL Planning:
con Development of heuristic tricky.

pro Search is (nearly) systematic – no duplicate check required.
con Implementation of the algorithm and data structures is quite complicated (with

many reasoning routines and special cases).
con The reasoning process per node is slower
pro The branching factor is usually very small due to flaw selection.
con The flaw-based procedure might also increase the search space: For each

precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.
pro Duplicate check is trivial.

pro The required search algorithm and data structures are conceptionally very simple.
pro Can be implemented to act extremely fast, making it superior if there are not too

many totally ordered solutions.
con The branching factor is usually high, because, normally, many actions are

applicable to the current state.

POCL Planning:
con Development of heuristic tricky.
pro Search is (nearly) systematic – no duplicate check required.

con Implementation of the algorithm and data structures is quite complicated (with
many reasoning routines and special cases).

con The reasoning process per node is slower
pro The branching factor is usually very small due to flaw selection.
con The flaw-based procedure might also increase the search space: For each

precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.
pro Duplicate check is trivial.
pro The required search algorithm and data structures are conceptionally very simple.

pro Can be implemented to act extremely fast, making it superior if there are not too
many totally ordered solutions.

con The branching factor is usually high, because, normally, many actions are
applicable to the current state.

POCL Planning:
con Development of heuristic tricky.
pro Search is (nearly) systematic – no duplicate check required.
con Implementation of the algorithm and data structures is quite complicated (with

many reasoning routines and special cases).

con The reasoning process per node is slower
pro The branching factor is usually very small due to flaw selection.
con The flaw-based procedure might also increase the search space: For each

precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.
pro Duplicate check is trivial.
pro The required search algorithm and data structures are conceptionally very simple.
pro Can be implemented to act extremely fast, making it superior if there are not too

many totally ordered solutions.

con The branching factor is usually high, because, normally, many actions are
applicable to the current state.

POCL Planning:
con Development of heuristic tricky.
pro Search is (nearly) systematic – no duplicate check required.
con Implementation of the algorithm and data structures is quite complicated (with

many reasoning routines and special cases).
con The reasoning process per node is slower

pro The branching factor is usually very small due to flaw selection.
con The flaw-based procedure might also increase the search space: For each

precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.
pro Duplicate check is trivial.
pro The required search algorithm and data structures are conceptionally very simple.
pro Can be implemented to act extremely fast, making it superior if there are not too

many totally ordered solutions.
con The branching factor is usually high, because, normally, many actions are

applicable to the current state.

POCL Planning:
con Development of heuristic tricky.
pro Search is (nearly) systematic – no duplicate check required.
con Implementation of the algorithm and data structures is quite complicated (with

many reasoning routines and special cases).
con The reasoning process per node is slower
pro The branching factor is usually very small due to flaw selection.

con The flaw-based procedure might also increase the search space: For each
precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.
pro Duplicate check is trivial.
pro The required search algorithm and data structures are conceptionally very simple.
pro Can be implemented to act extremely fast, making it superior if there are not too

many totally ordered solutions.
con The branching factor is usually high, because, normally, many actions are

applicable to the current state.

POCL Planning:
con Development of heuristic tricky.
pro Search is (nearly) systematic – no duplicate check required.
con Implementation of the algorithm and data structures is quite complicated (with

many reasoning routines and special cases).
con The reasoning process per node is slower
pro The branching factor is usually very small due to flaw selection.
con The flaw-based procedure might also increase the search space: For each

precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Remarks on the Pros and Cons of Classical vs. POCL Planning

Classical Planning:
pro State-based search makes development of heuristics relatively “easy”.
pro Duplicate check is trivial.
pro The required search algorithm and data structures are conceptionally very simple.
pro Can be implemented to act extremely fast, making it superior if there are not too

many totally ordered solutions.
con The branching factor is usually high, because, normally, many actions are

applicable to the current state.

POCL Planning:
con Development of heuristic tricky.
pro Search is (nearly) systematic – no duplicate check required.
con Implementation of the algorithm and data structures is quite complicated (with

many reasoning routines and special cases).
con The reasoning process per node is slower
pro The branching factor is usually very small due to flaw selection.
con The flaw-based procedure might also increase the search space: For each

precondition (i.e., link insertion), a new search node is created. In classical
planning, this is just one action application.

pro Search nodes can represent an exponential number of classical plans (in one
node), making the required search space potentially much smaller.

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37



Introduction Classical Planning POCL Planning Planning as Refinement Search Summary

Copyright Notes and Licenses

Copyright Notes and Licenses

[1] Title: Lecture Slides for Automated Planning
Source: http://www.cs.umd.edu/~nau/planning/slides/

chapter01.pdf

License: Attribution-NonCommercial-ShareAlike 2.0 Generic
(https: // creativecommons. org/ licenses/ by-nc-sa/
2. 0/ legalcode )

Copyright |Author: Dana S. Nau

Chapter: Solving (Non-Hierarchical) Planning Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 37 / 37

http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf
http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf
https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

	Introduction
	Classical Planning
	Introduction
	Algorithm
	Properties

	POCL Planning
	Introduction
	Algorithm
	Properties

	Planning as Refinement Search
	Introduction
	Refinement Planning
	Systematicity in POCL Planning

	Summary
	
	Copyright Notes and Licenses


