
Lecture Hierarchical Planning

Chapter:
Heuristics for (Non-Hierarchical) Planning Problems

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: November 28, 2023)

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Overview:

1 Introduction

2 Delete Relaxation and the rPG
Delete Relaxation
Relaxed Planning Graph

3 hmax

4 hadd

5 hFF

6 Classical vs. POCL Heuristics

7 hadd
POCL

8 hFF
POCL

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 2 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Overview

What’s a heuristic in planning?

The same as in search! (See respective lecture.)

So, what’s covered here?

We discuss planning-specific problem relaxations.

We investigate some of the easiest/most fundamental heuristics
for classical and POCL planning.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 3 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?

Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
Perform a problem relaxation.

Solve the relaxed problem.

Use the relaxation’s solution cost as approximation (i.e., heuristic)
of the actual (original, non-relaxed) problem.

What is a problem relaxation?

Sometimes special cases of planning problems (e.g., ignore all
delete lists).

Sometimes specialized calculations (that might, however, still be
interpreted as special cases of standard planning problems).

They should be easier than the original problem: either in terms
of computational complexity or in the problem size.

Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 4 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Problem Relaxations for Planning

How to relax a STRIPS planning problem?

Ignore the delete effects. → Delete-relaxation heuristics.

Ignore an entire set of state variables. → Abstraction heuristics.

Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
→ Landmark-based heuristics.

Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. → Critical path heuristics.

And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162–169

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 5 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Problem Relaxations for Planning

How to relax a STRIPS planning problem?

Ignore the delete effects. → Delete-relaxation heuristics.

Ignore an entire set of state variables. → Abstraction heuristics.

Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
→ Landmark-based heuristics.

Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. → Critical path heuristics.

And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162–169

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 5 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Problem Relaxations for Planning

How to relax a STRIPS planning problem?

Ignore the delete effects. → Delete-relaxation heuristics.

Ignore an entire set of state variables. → Abstraction heuristics.

Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
→ Landmark-based heuristics.

Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. → Critical path heuristics.

And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162–169

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 5 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Problem Relaxations for Planning

How to relax a STRIPS planning problem?

Ignore the delete effects. → Delete-relaxation heuristics.

Ignore an entire set of state variables. → Abstraction heuristics.

Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
→ Landmark-based heuristics.

Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. → Critical path heuristics.

And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162–169

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 5 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Problem Relaxations for Planning

How to relax a STRIPS planning problem?

Ignore the delete effects. → Delete-relaxation heuristics.

Ignore an entire set of state variables. → Abstraction heuristics.

Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
→ Landmark-based heuristics.

Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. → Critical path heuristics.

And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162–169

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 5 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Problem Relaxations for Planning

How to relax a STRIPS planning problem?

Ignore the delete effects. → Delete-relaxation heuristics.

Ignore an entire set of state variables. → Abstraction heuristics.

Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
→ Landmark-based heuristics.

Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. → Critical path heuristics.

And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162–169

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 5 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.
Its main purpose today:

Use it to ground a domain (covered later).
Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.
Its main purpose today:

Use it to ground a domain (covered later).
Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.

Its main purpose today:

Use it to ground a domain (covered later).
Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.
Its main purpose today:

Use it to ground a domain (covered later).
Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.
Its main purpose today:

Use it to ground a domain (covered later).

Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.
Its main purpose today:

Use it to ground a domain (covered later).
Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)

Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Motivation

The planning graph is a relaxed representation of the state and
action space.

It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

Here, we only cover the most relaxed form, which can be
computed in polynomial time.
Its main purpose today:

Use it to ground a domain (covered later).
Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
Basis for heuristics. → Both for classical and POCL planning!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 6 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Historical Remarks

The planning graph is a data structure that was invented for a planning
system called GraphPlan.

That planning system is not relevant for this course.

Note:
Do not think of a pink elephant right now!
Rephrased: Please do not confuse GraphPlan with the planning graph!
The first is a planning system – the latter a data structure.

Further reading: Avrim L. Blum and Merrick L. Furst. “Fast Planning Through
Planning Graph Analysis”. In: Artificial Intelligence 90 (1997), pp. 281–300.
DOI: 10.1016/S0004-3702(96)00047-1

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 7 / 35

https://doi.org/10.1016/S0004-3702(96)00047-1

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Historical Remarks

The planning graph is a data structure that was invented for a planning
system called GraphPlan.

That planning system is not relevant for this course.

Note:
Do not think of a pink elephant right now!
Rephrased: Please do not confuse GraphPlan with the planning graph!
The first is a planning system – the latter a data structure.

Further reading: Avrim L. Blum and Merrick L. Furst. “Fast Planning Through
Planning Graph Analysis”. In: Artificial Intelligence 90 (1997), pp. 281–300.
DOI: 10.1016/S0004-3702(96)00047-1

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 7 / 35

https://doi.org/10.1016/S0004-3702(96)00047-1

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Historical Remarks

The planning graph is a data structure that was invented for a planning
system called GraphPlan.

That planning system is not relevant for this course.

Note:
Do not think of a pink elephant right now!

Rephrased: Please do not confuse GraphPlan with the planning graph!
The first is a planning system – the latter a data structure.

Further reading: Avrim L. Blum and Merrick L. Furst. “Fast Planning Through
Planning Graph Analysis”. In: Artificial Intelligence 90 (1997), pp. 281–300.
DOI: 10.1016/S0004-3702(96)00047-1

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 7 / 35

https://doi.org/10.1016/S0004-3702(96)00047-1

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Historical Remarks

The planning graph is a data structure that was invented for a planning
system called GraphPlan.

That planning system is not relevant for this course.

Note:
Do not think of a pink elephant right now!
Rephrased: Please do not confuse GraphPlan with the planning graph!
The first is a planning system – the latter a data structure.

Further reading: Avrim L. Blum and Merrick L. Furst. “Fast Planning Through
Planning Graph Analysis”. In: Artificial Intelligence 90 (1997), pp. 281–300.
DOI: 10.1016/S0004-3702(96)00047-1

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 7 / 35

https://doi.org/10.1016/S0004-3702(96)00047-1

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Introduction

Historical Remarks

The planning graph is a data structure that was invented for a planning
system called GraphPlan.

That planning system is not relevant for this course.

Note:
Do not think of a pink elephant right now!
Rephrased: Please do not confuse GraphPlan with the planning graph!
The first is a planning system – the latter a data structure.

Further reading: Avrim L. Blum and Merrick L. Furst. “Fast Planning Through
Planning Graph Analysis”. In: Artificial Intelligence 90 (1997), pp. 281–300.
DOI: 10.1016/S0004-3702(96)00047-1

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 7 / 35

https://doi.org/10.1016/S0004-3702(96)00047-1

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

Definition (Delete-free and -relaxed Planning Problems)

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

It is called delete-free if for all a ∈ A, del(a) = ∅.

Its delete-relaxation is the (delete-free) problem ⟨V ,A′, sI , g⟩,
where A′ = {(pre, add , ∅, c) | (pre, add , del, c) ∈ A}.

→ P+ refers to the delete-relaxation of P and

→ h+ refers to the perfect heuristic (h∗) for P+.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 8 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

Definition (Delete-free and -relaxed Planning Problems)

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

It is called delete-free if for all a ∈ A, del(a) = ∅.

Its delete-relaxation is the (delete-free) problem ⟨V ,A′, sI , g⟩,
where A′ = {(pre, add , ∅, c) | (pre, add , del, c) ∈ A}.

→ P+ refers to the delete-relaxation of P and

→ h+ refers to the perfect heuristic (h∗) for P+.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 8 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

Definition (Delete-free and -relaxed Planning Problems)

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

It is called delete-free if for all a ∈ A, del(a) = ∅.

Its delete-relaxation is the (delete-free) problem ⟨V ,A′, sI , g⟩,
where A′ = {(pre, add , ∅, c) | (pre, add , del, c) ∈ A}.

→ P+ refers to the delete-relaxation of P and

→ h+ refers to the perfect heuristic (h∗) for P+.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 8 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

Definition (Delete-free and -relaxed Planning Problems)

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

It is called delete-free if for all a ∈ A, del(a) = ∅.

Its delete-relaxation is the (delete-free) problem ⟨V ,A′, sI , g⟩,
where A′ = {(pre, add , ∅, c) | (pre, add , del, c) ∈ A}.

→ P+ refers to the delete-relaxation of P and

→ h+ refers to the perfect heuristic (h∗) for P+.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 8 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?

→ What’s true once stays true!

Consider Sokoban:

...after moving left, down, right...

.
. $

$
@

.
. $

@ @$ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 9 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→ What’s true once stays true!

Consider Sokoban:

...after moving left, down, right...

.
. $

$
@

.
. $

@ @$ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 9 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→ What’s true once stays true!

Consider Sokoban:

...after moving left, down, right...

.
. $

$
@

.
. $

@ @$ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 9 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→ What’s true once stays true!

Consider Sokoban: ...after moving left, down, right...

.
. $

$
@

.
. $

@ @$ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 9 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→ What’s true once stays true!

Consider Sokoban: ...after moving left, down, right...

.
. $

$
@

.
. $

@ @$ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 9 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let ⟨V ,A, sI , g⟩ be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph ⟨V̄ , Ā⟩ consisting of:
V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

V 0 = sI .

Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

Choose n = i , such that V i−1 = V i holds.

Questions:
Why is “delete-free” in the problem description put in parentheses?
Why is n chosen as is? Is there a bound on n?
What happens if we choose n = i , such that V i = V i+1 holds?

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 10 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph, cont’d

We can extend this definition of rPGs to add information about
reachability, i.e.,

Which variable(s) enable which action precondition?

Which variable(s) get added by which action(s)?

How variables “remain valid” (due to the absence of deletions).
(That is, all variables v in V i and V i+1 share an edge)

Formal definition thereof:
Exercise!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 11 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph, cont’d

We can extend this definition of rPGs to add information about
reachability, i.e.,

Which variable(s) enable which action precondition?

Which variable(s) get added by which action(s)?

How variables “remain valid” (due to the absence of deletions).
(That is, all variables v in V i and V i+1 share an edge)

Formal definition thereof:
Exercise!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 11 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph, cont’d

We can extend this definition of rPGs to add information about
reachability, i.e.,

Which variable(s) enable which action precondition?

Which variable(s) get added by which action(s)?

How variables “remain valid” (due to the absence of deletions).
(That is, all variables v in V i and V i+1 share an edge)

Formal definition thereof:
Exercise!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 11 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph, cont’d

We can extend this definition of rPGs to add information about
reachability, i.e.,

Which variable(s) enable which action precondition?

Which variable(s) get added by which action(s)?

How variables “remain valid” (due to the absence of deletions).
(That is, all variables v in V i and V i+1 share an edge)

Formal definition thereof:
Exercise!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 11 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Definitions, Relaxed Planning Graph, cont’d

We can extend this definition of rPGs to add information about
reachability, i.e.,

Which variable(s) enable which action precondition?

Which variable(s) get added by which action(s)?

How variables “remain valid” (due to the absence of deletions).
(That is, all variables v in V i and V i+1 share an edge)

Formal definition thereof:
Exercise!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 11 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Example – Exercise!

Draw the rPG with edges for the Cranes in the Harbor domain.

sI : {CrateAtLoc1, TruckAtLoc2} g: {CrateInTruck , TruckAtLoc2}
take

pre: {CrateAtLoc1}
add: {HoldCrate}
del: {CrateAtLoc1}

put
pre: {HoldCrate}
add: {CrateAtLoc1}
del: {HoldCrate}

moveLeft
pre: {TruckAtLoc2}
add: {TruckAtLoc1}
del: {TruckAtLoc2}

moveRight
pre: {TruckAtLoc1}
add: {TruckAtLoc2}
del: {TruckAtLoc1}

load
pre: {HoldCrate, TruckAtLoc1}
add: {CrateInTruck}
del: {HoldCrate}

unload
pre: {CrateInTruck, TruckAtLoc1}
add: {HoldCrate}
del: {CrateInTruck}

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 12 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relaxed Planning Graph

Example – Exercise! cont’d

Solution:

V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 13 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).

Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.

For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hmax for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hmax(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Example – Exercise!

Calculate hmax for the Cranes in the Harbor domain.

V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

0

0

0

0

1

1

0

0

1

1

2

0

0

1

1

2

1

1

1

1

2

2

2

1

1

2

2

2

3

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}

hmax(sI) = 2 h∗(sI) = 4 h∗makespan(sI) = 3

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 15 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Example – Exercise!

Calculate hmax for the Cranes in the Harbor domain.
V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

0

0

0

0

1

1

0

0

1

1

2

0

0

1

1

2

1

1

1

1

2

2

2

1

1

2

2

2

3

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}
hmax(sI) = 2 h∗(sI) = 4 h∗makespan(sI) = 3

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 15 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hmax admissible?

Yes. (trivial)

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 16 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hmax admissible?

Yes. (trivial)

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 16 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.

Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.
Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.
Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.
Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.

For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.
Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.
Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hadd for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hadd(s) calculates the cost reaching g from s ∈ S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.
Formally, hadd can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is c(a) plus the sum of the
predecessor vertex costs.

variable vertex The cost of a variable vertex v is 0 if v ∈ V 0.
For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the sum of
costs of the variables in v̄ .

heuristic For a state s ∈ S, hadd(s) equals the cost of g.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 17 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Example – Exercise!

Calculate hadd for the Cranes in the Harbor domain.

V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

0

0

0

0

1

1

0

0

1

1

3

0

0

1

1

3

1

1

1

1

2

2

3

1

1

2

2

3

5

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}

hadd(sI) = 3 h∗(sI) = 4

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 18 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Example – Exercise!

Calculate hadd for the Cranes in the Harbor domain.
V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

0

0

0

0

1

1

0

0

1

1

3

0

0

1

1

3

1

1

1

1

2

2

3

1

1

2

2

3

5

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}
hadd(sI) = 3 h∗(sI) = 4

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 18 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hadd admissible?

No.

Heuristic assumes subgoal independence, which is normally not given:

V0 A1 V1 A2 V2

sI X1

X2

X3

a

b

c

A1

A2

a

b

c

d

e

1

1

1

1

1

1

3

4

sI = ∅ g = {d , e} hadd(sI) = 7 h∗(sI) = 5

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 19 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hadd admissible? No.

Heuristic assumes subgoal independence, which is normally not given:

V0 A1 V1 A2 V2

sI X1

X2

X3

a

b

c

A1

A2

a

b

c

d

e

1

1

1

1

1

1

3

4

sI = ∅ g = {d , e} hadd(sI) = 7 h∗(sI) = 5

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 19 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.

Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.

For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.

For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking

Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

hFF for Classical Planning

Let P = ⟨V ,A, sI , g⟩ be a STRIPS planning problem and G = ⟨V̄ , Ā⟩
its rPG.

hFF calculates some (delete-relaxed) plan for P+.
Formally, hFF is defined as follows:

Compute rPG until the goals are reached.
For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
For each selected action, repeat the process for their
preconditions.

Tie-Breaking Always select an “easy” action first – easy meaning small∑
v∈pre(a) min{i | v is in fact layer i} value.

heuristic For a state s ∈ S, hFF (s) equals the cost of the extracted plan
(selected actions).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 20 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Example – Exercise!

Calculate hFF for the Cranes in the Harbor domain.

V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

1

1

1

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}

hFF (sI) = 3 h∗(sI) = 4

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 21 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Example – Exercise!

Calculate hFF for the Cranes in the Harbor domain.
V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

1

1

1

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}
hFF (sI) = 3 h∗(sI) = 4

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 21 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hFF admissible?

No (except for the practice).

If the original planning problem P happens to be delete-free already, it
might (easily) happen that a suboptimal set of actions is selected.

Theorem

Computing h+ is NP-complete.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 22 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hFF admissible? No (except for the practice).

If the original planning problem P happens to be delete-free already, it
might (easily) happen that a suboptimal set of actions is selected.

Theorem

Computing h+ is NP-complete.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 22 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hFF admissible? No (except for the practice).

If the original planning problem P happens to be delete-free already, it
might (easily) happen that a suboptimal set of actions is selected.

Theorem

Computing h+ is NP-complete.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 22 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Admissibility

Is hFF admissible? No (except for the practice).

If the original planning problem P happens to be delete-free already, it
might (easily) happen that a suboptimal set of actions is selected.

Theorem

Computing h+ is NP-complete.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 22 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.

Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}

φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Hardness of Solving P+ Optimally

Theorem

Computing h+ is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji −⊤ or
“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji −⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n + m exists.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 23 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Classical Heuristics, Literature

Heuristics hadd and planner HSP:
Blai Bonet and Héctor Geffner. “Planning as Heuristic Search: New Results”. In:
Proc. of the 5th Europ. Conf. on Planning: Recent Advances in AI Planning
(ECP 1999). Springer, 1999, pp. 360–372
Patrik Haslum and Héctor Geffner. “Admissible Heuristics for Optimal Planning”.
In: Proc. of the 5th Int. Conf. on Artificial Intelligence Planning Systems (AIPS
2000). AAAI Press, 2000, pp. 140–149

Heuristics hmax , hm (not shown here), hadd (recap)
Patrik Haslum and Héctor Geffner. “Admissible Heuristics for Optimal Planning”.
In: Proc. of the 5th Int. Conf. on Artificial Intelligence Planning Systems (AIPS
2000). AAAI Press, 2000, pp. 140–149

Heuristic hFF , planner FF, and relaxed planning graph:
Jörg Hoffmann and Berhard Nebel. “The FF Planning System: Fast Plan
Generation Through Heuristic Search”. In: Journal of Artificial Intelligence
Research (JAIR) 14 (2001), pp. 253–302

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 24 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Classical vs. POCL Heuristics

Reminder Classical Planning:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description (it might be
satisfied already). Instead, what do we have?

→ Flaws!

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 25 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Classical vs. POCL Heuristics

Reminder Classical Planning:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description (it might be
satisfied already). Instead, what do we have? → Flaws!

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 25 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Classical vs. POCL Heuristics

Reminder Classical Planning:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description (it might be
satisfied already). Instead, what do we have? → Flaws!

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 25 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws

, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).

Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws

, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).

Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).

Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:

FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:
FF heuristic → Relax heuristic (see Nguyen and Kambhampati).

Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

Count all flaws.

Count a subset of all flaws, e.g. the open preconditions – called
the OC heuristic (see Nguyen and Kambhampati).
Via compilation:

Translate each search node into a linear program (see Bylander).
Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

Directly adapt heuristics for classical planning:
FF heuristic → Relax heuristic (see Nguyen and Kambhampati).
Add heuristic → Add heuristic for POCL planning (see Younes
and Simmons).

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 26 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

POCL Heuristics, Literature

Nguyen and Kambhampati XuanLong Nguyen and Subbarao Kambhampati. “Reviving Partial
Order Planning”. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001). Morgan Kaufmann, 2001, pp. 459–466

Bercher et al. Pascal Bercher et al. “Using State-Based Planning Heuristics for
Partial-Order Causal-Link Planning”. In: Advances in Artificial
Intelligence, Proc. of the 36th German Conf. on Artificial Intelligence
(KI 2013). Springer, 2013, pp. 1–12

Bylander Tom Bylander. “A Linear Programming Heuristic for Optimal Planning”.
In: Proc. of the 14th National Conf. on Artificial Intelligence (AAAI
1997). AAAI Press, 1997, pp. 694–699

Younes and Simmons Håkan L. S. Younes and Reid G. Simmons. “VHPOP: Versatile
heuristic partial order planner”. In: Journal of Artificial Intelligence
Research (JAIR) 20 (2003), pp. 405–430

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 27 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning

Again:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description – but a
partial plan with flaws.

Now what?

What do we do? How to bring both worlds together?

→ Use the partial plan’s initial state as initial state of heuristic.

→ Use the the open (i.e., unprotected) preconditions as goal state.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 28 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning

Again:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description – but a
partial plan with flaws.

Now what?

What do we do? How to bring both worlds together?

→ Use the partial plan’s initial state as initial state of heuristic.

→ Use the the open (i.e., unprotected) preconditions as goal state.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 28 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning

Again:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description – but a
partial plan with flaws.

Now what?

What do we do? How to bring both worlds together?

→ Use the partial plan’s initial state as initial state of heuristic.

→ Use the the open (i.e., unprotected) preconditions as goal state.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 28 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning, cont’d

Using classical heuristics in POCL planning:

Use the partial plan’s initial state as initial state of heuristic.

Use the the open (i.e., unprotected) preconditions as goal state.

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

What problems could arise from doing this?

This ignores negative effects and the causal links’ pruning power.

We get unreachable goals: {TruckAtLoc1, TruckAtLoc2}
Why – or more precisely: when – does this work?

We only use heuristics that rely on (full) delete relaxation!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 29 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning, cont’d

Using classical heuristics in POCL planning:

Use the partial plan’s initial state as initial state of heuristic.

Use the the open (i.e., unprotected) preconditions as goal state.

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

What problems could arise from doing this?

This ignores negative effects and the causal links’ pruning power.

We get unreachable goals: {TruckAtLoc1, TruckAtLoc2}
Why – or more precisely: when – does this work?

We only use heuristics that rely on (full) delete relaxation!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 29 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning, cont’d

Using classical heuristics in POCL planning:

Use the partial plan’s initial state as initial state of heuristic.

Use the the open (i.e., unprotected) preconditions as goal state.

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

What problems could arise from doing this?

This ignores negative effects and the causal links’ pruning power.

We get unreachable goals: {TruckAtLoc1, TruckAtLoc2}

Why – or more precisely: when – does this work?

We only use heuristics that rely on (full) delete relaxation!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 29 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning, cont’d

Using classical heuristics in POCL planning:

Use the partial plan’s initial state as initial state of heuristic.

Use the the open (i.e., unprotected) preconditions as goal state.

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

What problems could arise from doing this?

This ignores negative effects and the causal links’ pruning power.

We get unreachable goals: {TruckAtLoc1, TruckAtLoc2}
Why – or more precisely: when – does this work?

We only use heuristics that rely on (full) delete relaxation!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 29 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Literature so Far

Adapting Classical Heuristics for POCL Planning, cont’d

Using classical heuristics in POCL planning:

Use the partial plan’s initial state as initial state of heuristic.

Use the the open (i.e., unprotected) preconditions as goal state.

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

What problems could arise from doing this?

This ignores negative effects and the causal links’ pruning power.

We get unreachable goals: {TruckAtLoc1, TruckAtLoc2}
Why – or more precisely: when – does this work?

We only use heuristics that rely on (full) delete relaxation!

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 29 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Add Heuristic for POCL Planning

Let ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

Then, let hadd
g (s) be the classical Add heuristic estimating the

goal distance from some state s ∈ S to the goals g.
(In contrast to the last section, we now made the goals g explicit
in the sub script.)

Then, with hadd
POCL(P) we refer to the Add Heuristic for POCL

Planning that estimates the goal distance from some current
partial plan P to some solution plan. It is defined as hadd

G (sI),
where G is the set of open preconditions of P.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 30 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Add Heuristic for POCL Planning

Let ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

Then, let hadd
g (s) be the classical Add heuristic estimating the

goal distance from some state s ∈ S to the goals g.
(In contrast to the last section, we now made the goals g explicit
in the sub script.)

Then, with hadd
POCL(P) we refer to the Add Heuristic for POCL

Planning that estimates the goal distance from some current
partial plan P to some solution plan. It is defined as hadd

G (sI),
where G is the set of open preconditions of P.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 30 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Add Heuristic for POCL Planning, Example

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

For hadd
POCL(P), we use:

sI = {CrateAtLoc1, TruckAtLoc2}
G = {TruckAtLoc1, TruckAtLoc2,HoldCrate}

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 31 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Accounting for Positive Interactions

Estimating the goal distance to all open preconditions might be too
pessimistic:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Here, the precondition TrackAtLoc2 might be accomplished by using
the effect of moveRight.

Another example: Consider a (large) ”solution” plan in which (almost)
all causal links are missing. hadd

POCL(P) would be highly inaccurate.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 32 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Accounting for Positive Interactions

Estimating the goal distance to all open preconditions might be too
pessimistic:

CrateAtLoc1

TruckAtLoc2

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2 load

CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

CrateInTruck

TruckAtLoc2

Here, the precondition TrackAtLoc2 might be accomplished by using
the effect of moveRight.

Another example: Consider a (large) ”solution” plan in which (almost)
all causal links are missing. hadd

POCL(P) would be highly inaccurate.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 32 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Add Heuristic for POCL Planning Reusing Actions

Let ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

Then, let hadd
g (s) be the classical Add heuristic estimating the

goal distance from some state s ∈ S to the goals g.
(In contrast to the last section, we now made the goals g explicit
in the sub script.)

Then, with hadd−r
POCL (P), P = (PS,≺,CL), we refer to the Add

Heuristic for POCL Planning Reusing Actions that estimates the
goal distance from some current partial plan P to some solution
plan. It is defined as hadd

G (sI), where G is a subset of open
preconditions of P, i.e.,

G = {v | (v , ps) is an open precondition
of P and there is no plan step ps′ ∈ PS with v ∈ add(ps′) such
that ≺ ∪{(ps′, ps)} is a strict partial order}

.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 33 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Add Heuristic for POCL Planning Reusing Actions

Let ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

Then, let hadd
g (s) be the classical Add heuristic estimating the

goal distance from some state s ∈ S to the goals g.
(In contrast to the last section, we now made the goals g explicit
in the sub script.)

Then, with hadd−r
POCL (P), P = (PS,≺,CL), we refer to the Add

Heuristic for POCL Planning Reusing Actions that estimates the
goal distance from some current partial plan P to some solution
plan. It is defined as hadd

G (sI), where G is a subset of open
preconditions of P, i.e.,

G = {v | (v , ps) is an open precondition
of P and there is no plan step ps′ ∈ PS with v ∈ add(ps′) such
that ≺ ∪{(ps′, ps)} is a strict partial order}

.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 33 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Add Heuristic for POCL Planning Reusing Actions

Let ⟨V ,A, sI , g⟩ be a STRIPS planning problem.

Then, let hadd
g (s) be the classical Add heuristic estimating the

goal distance from some state s ∈ S to the goals g.
(In contrast to the last section, we now made the goals g explicit
in the sub script.)

Then, with hadd−r
POCL (P), P = (PS,≺,CL), we refer to the Add

Heuristic for POCL Planning Reusing Actions that estimates the
goal distance from some current partial plan P to some solution
plan. It is defined as hadd

G (sI), where G is a subset of open
preconditions of P, i.e., G = {v | (v , ps) is an open precondition
of P and there is no plan step ps′ ∈ PS with v ∈ add(ps′) such
that ≺ ∪{(ps′, ps)} is a strict partial order}.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 33 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relax Heuristic

The FF heuristic for POCL planning – called Relax heuristic or hFF
POCL –

transfers the ideas of hadd
POCL to the FF heuristic:

It relies on a rPG. (This is not perfectly true, but for the sake of
simplicity we assume this here.)

As goal state we consider the set of open preconditions
– just as hadd

POCL does.

We than extract a plan from the rPG in the same way the FF
heuristic does. However, the cost of an action a, c(a) in that
relaxed solution plan is only accounted for if a does not occur in
the input plan P.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 34 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relax Heuristic

The FF heuristic for POCL planning – called Relax heuristic or hFF
POCL –

transfers the ideas of hadd
POCL to the FF heuristic:

It relies on a rPG. (This is not perfectly true, but for the sake of
simplicity we assume this here.)

As goal state we consider the set of open preconditions
– just as hadd

POCL does.

We than extract a plan from the rPG in the same way the FF
heuristic does. However, the cost of an action a, c(a) in that
relaxed solution plan is only accounted for if a does not occur in
the input plan P.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 34 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relax Heuristic

The FF heuristic for POCL planning – called Relax heuristic or hFF
POCL –

transfers the ideas of hadd
POCL to the FF heuristic:

It relies on a rPG. (This is not perfectly true, but for the sake of
simplicity we assume this here.)

As goal state we consider the set of open preconditions
– just as hadd

POCL does.

We than extract a plan from the rPG in the same way the FF
heuristic does. However, the cost of an action a, c(a) in that
relaxed solution plan is only accounted for if a does not occur in
the input plan P.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 34 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Relax Heuristic

The FF heuristic for POCL planning – called Relax heuristic or hFF
POCL –

transfers the ideas of hadd
POCL to the FF heuristic:

It relies on a rPG. (This is not perfectly true, but for the sake of
simplicity we assume this here.)

As goal state we consider the set of open preconditions
– just as hadd

POCL does.

We than extract a plan from the rPG in the same way the FF
heuristic does. However, the cost of an action a, c(a) in that
relaxed solution plan is only accounted for if a does not occur in
the input plan P.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 34 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

Introduction Delete Relaxation and the rPG hmax hadd hFF Classical vs. POCL Heuristics hadd
POCL hFF

POCL Summary

Summary

Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

hmax is admissible and can be computed in P.

hadd is inadmissible and can be computed in P.

hFF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

h+ is admissible and NP-complete to compute.

All these heuristics take the current state as input and estimate
the goal distance to some goal state.

But since they are delete-relaxed, they can be used for POCL
planning as well.

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 35 / 35

	Introduction
	Delete Relaxation and the rPG
	Introduction
	Delete Relaxation
	Relaxed Planning Graph

	hmax
	hadd
	hFF
	Classical vs. POCL Heuristics
	Literature so Far

	haddPOCL
	hFFPOCL
	Summary

