
Lecture Hierarchical Planning

Chapter:
Problem Compilations for (Non-Hierarchical) Planning

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 20, 2019)

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Overview:

1 Introduction

2 Lifted Models

3 Negative Preconditions

4 Conditional Effects

5 Disjunctive Preconditions

6 Quantifiers

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 2 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Which Problem Representation is the Best?

Even when being interested in solving classical problems, there are
still various choices regarding the representation.

Lifted model vs. ground/propositional model.
Language features:

Negative preconditions.
Derived Predicates (based on axioms).
Quantifiers in preconditions or effects.
Conditional effects.

→ They can all be “compiled away”!

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Which Problem Representation is the Best?

Even when being interested in solving classical problems, there are
still various choices regarding the representation.

Lifted model vs. ground/propositional model.

Language features:

Negative preconditions.
Derived Predicates (based on axioms).
Quantifiers in preconditions or effects.
Conditional effects.

→ They can all be “compiled away”!

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Which Problem Representation is the Best?

Even when being interested in solving classical problems, there are
still various choices regarding the representation.

Lifted model vs. ground/propositional model.
Language features:

Negative preconditions.
Derived Predicates (based on axioms).
Quantifiers in preconditions or effects.
Conditional effects.

→ They can all be “compiled away”!

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Which Problem Representation is the Best?

Even when being interested in solving classical problems, there are
still various choices regarding the representation.

Lifted model vs. ground/propositional model.
Language features:

Negative preconditions.
Derived Predicates (based on axioms).
Quantifiers in preconditions or effects.
Conditional effects.

→ They can all be “compiled away”!

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:

|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).

Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:

|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).

Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:

|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).

Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:
|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)

Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).

Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:
|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).

Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:
|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).

Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:
|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).
Used to obtain the original solutions from the compiled problem.

Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:
|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).
Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.

Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – What’s That?

“Compiling away” some language feature means:

Given a planning problem P with some “high-level” language feature,
let Sol(P) its set of solutions.

We then (automatically) translate P to a new problem P ′ which does
not use (or “know”) this language feature. Let Sol(P ′) be its set of
solutions.

→ The translation (ordinarily) has the following properties:
|Sol(P)| ≤ |Sol(P ′)| (this is not necessarily the case, but the norm)
Very often the compilation function (mapping P to P ′) does not run in P.

We have a function f : Sol(P ′)→ Sol(P).
Used to obtain the original solutions from the compiled problem.
Surjectiveness ensures that none of the original solutions got lost.
Ordinarily, the runtime of f is in P (but in the size of its input, which is
neither P nor P ′).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended.

E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended.

E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier.

Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended. E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended.

E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier.

Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended. E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended.

E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier.

Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended. E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended. E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier.

Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended. E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended. E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier.

Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended. E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended. E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier. Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Compilations – Why??

“Compiling away” some language feature brings many benefits:

Algorithms do not need to be extended. E.g., POCL planning with
negative preconditions? With variables?

Heuristics do not need to be extended. E.g., rPG with negative
preconditions? What does delete relaxation even mean, then?

Many definitions are much easier. Just consider the examples
from above...

However, natively dealing with some language feature might be more
efficient (in particular if the compilation increases the problem size
significantly) but may be (much) more complicated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Consider Blocksworld:

n blocks, 1 gripper.

A single action either takes a block with the gripper or puts a
block we are holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

→ Exercise: Model the problem for 18 blocks with standard STRIPS. ;)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Consider Blocksworld:

n blocks, 1 gripper.

A single action either takes a block with the gripper or puts a
block we are holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

→ Exercise: Model the problem for 18 blocks with standard STRIPS.

;)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Consider Blocksworld:

n blocks, 1 gripper.

A single action either takes a block with the gripper or puts a
block we are holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

→ Exercise: Model the problem for 18 blocks with standard STRIPS. ;)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation, cont’d

Predicates:

on(x , y) – x lies directly on y .

free(x) – x has no block above it.

Actions:

pickup(x) – pick up x , if it is free.

putdown(x , y) – put x on y , if y is
free (the table is always free).

→ Modeling in a lifted representation is much easier:

Just 2 actions!

Just 18+1 constants.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .
There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.
Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.
Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.
For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .

There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.
Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.
Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.
For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .
There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.

Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.
Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.
For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .
There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.
Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.

Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.
For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .
There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.
Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.
Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.
For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .
There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.
Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.
Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.

For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Definition of Lifted Models

Lifted models are based upon a first-order predicate logic. We assume that
you are familiar with predicate logics and only briefly recap.

Instead of using state variables (which are equivalent to propositional
variables), a set of sorted predicates is given, i.e., each predicate takes a
sequence of parameters of a certain sort. E.g, onBlock,Block(b1, b2) is a
predicate with two variables b1, b2 both being of sort Block .
There is a set of sorted constants. Predicates can be instantiated by
constants of respective sorts.
Actions take sorted parameters as well, which are all the variables used by
all preconditions’ and effects’ variables.
Such lifted actions are compact representations of an up to exponential set
of instantiations or groundings that are obtained via grounding.

The standard description language for planning problems (PDDL: planning
domain description language) relies upon such a lifted formalism.
For example, consider the Blocksworld domain from the IPC 2000:
https://github.com/potassco/pddl-instances/tree/master/ipc-
2000/domains/blocks-strips-typed (see live demo)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

While models get written in a lifted fashion, many (in fact, most)
planning systems rely on a standard STRIPS model.

For translation, the model gets grounded via instantiating all
variables by all constants of the correct sort resulting into an
exponentially larger model.
Rather than computing all possible groundings a more
reasonable approach (resulting into much smaller models) is to
exploit the (relaxed) planning graph:

Start with the initial state and create all groundings necessary to
build the first fact layer following the initial state.
Then continue until a fixed point is reached. The actions in the
final fact layer are all groundings required.

→ Using the PG instead of the rPG results into less actions, but may
be too expensive empirically.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

While models get written in a lifted fashion, many (in fact, most)
planning systems rely on a standard STRIPS model.

For translation, the model gets grounded via instantiating all
variables by all constants of the correct sort resulting into an
exponentially larger model.

Rather than computing all possible groundings a more
reasonable approach (resulting into much smaller models) is to
exploit the (relaxed) planning graph:

Start with the initial state and create all groundings necessary to
build the first fact layer following the initial state.
Then continue until a fixed point is reached. The actions in the
final fact layer are all groundings required.

→ Using the PG instead of the rPG results into less actions, but may
be too expensive empirically.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

While models get written in a lifted fashion, many (in fact, most)
planning systems rely on a standard STRIPS model.

For translation, the model gets grounded via instantiating all
variables by all constants of the correct sort resulting into an
exponentially larger model.
Rather than computing all possible groundings a more
reasonable approach (resulting into much smaller models) is to
exploit the (relaxed) planning graph:

Start with the initial state and create all groundings necessary to
build the first fact layer following the initial state.
Then continue until a fixed point is reached. The actions in the
final fact layer are all groundings required.

→ Using the PG instead of the rPG results into less actions, but may
be too expensive empirically.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

While models get written in a lifted fashion, many (in fact, most)
planning systems rely on a standard STRIPS model.

For translation, the model gets grounded via instantiating all
variables by all constants of the correct sort resulting into an
exponentially larger model.
Rather than computing all possible groundings a more
reasonable approach (resulting into much smaller models) is to
exploit the (relaxed) planning graph:

Start with the initial state and create all groundings necessary to
build the first fact layer following the initial state.

Then continue until a fixed point is reached. The actions in the
final fact layer are all groundings required.

→ Using the PG instead of the rPG results into less actions, but may
be too expensive empirically.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

While models get written in a lifted fashion, many (in fact, most)
planning systems rely on a standard STRIPS model.

For translation, the model gets grounded via instantiating all
variables by all constants of the correct sort resulting into an
exponentially larger model.
Rather than computing all possible groundings a more
reasonable approach (resulting into much smaller models) is to
exploit the (relaxed) planning graph:

Start with the initial state and create all groundings necessary to
build the first fact layer following the initial state.
Then continue until a fixed point is reached. The actions in the
final fact layer are all groundings required.

→ Using the PG instead of the rPG results into less actions, but may
be too expensive empirically.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

While models get written in a lifted fashion, many (in fact, most)
planning systems rely on a standard STRIPS model.

For translation, the model gets grounded via instantiating all
variables by all constants of the correct sort resulting into an
exponentially larger model.
Rather than computing all possible groundings a more
reasonable approach (resulting into much smaller models) is to
exploit the (relaxed) planning graph:

Start with the initial state and create all groundings necessary to
build the first fact layer following the initial state.
Then continue until a fixed point is reached. The actions in the
final fact layer are all groundings required.

→ Using the PG instead of the rPG results into less actions, but may
be too expensive empirically.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

The standard STRIPS representation relies on positive
preconditions.

This makes everything easier!

Algorithms, heuristics.
Complexity Analysis, proofs.

Most heuristics rely on positive preconditions. What means
delete relaxation if we have positive preconditions?

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

The standard STRIPS representation relies on positive
preconditions.
This makes everything easier!

Algorithms, heuristics.
Complexity Analysis, proofs.

Most heuristics rely on positive preconditions. What means
delete relaxation if we have positive preconditions?

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

The standard STRIPS representation relies on positive
preconditions.
This makes everything easier!

Algorithms, heuristics.

Complexity Analysis, proofs.

Most heuristics rely on positive preconditions. What means
delete relaxation if we have positive preconditions?

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

The standard STRIPS representation relies on positive
preconditions.
This makes everything easier!

Algorithms, heuristics.
Complexity Analysis, proofs.

Most heuristics rely on positive preconditions. What means
delete relaxation if we have positive preconditions?

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

The standard STRIPS representation relies on positive
preconditions.
This makes everything easier!

Algorithms, heuristics.
Complexity Analysis, proofs.

Most heuristics rely on positive preconditions. What means
delete relaxation if we have positive preconditions?

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition (given Negative Effects)

Blackboard/Whiteboard.
(See also exercise sheet.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 11 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem in the standard STRIPS formalism, i.e.,
with only positive preconditions. Then, deciding whether P+ has a
solution can be decided in P.

Proof:

Execute the following algorithm exploiting that no action needs to
applied more than once:

(1) Try to apply actions to the initial state that were not yet applied.

(2) As long as at least one action was applied, repeat. Also stop if
the goal is generated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem in the standard STRIPS formalism, i.e.,
with only positive preconditions. Then, deciding whether P+ has a
solution can be decided in P.

Proof:

Execute the following algorithm exploiting that no action needs to
applied more than once:

(1) Try to apply actions to the initial state that were not yet applied.

(2) As long as at least one action was applied, repeat. Also stop if
the goal is generated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem in the standard STRIPS formalism, i.e.,
with only positive preconditions. Then, deciding whether P+ has a
solution can be decided in P.

Proof:

Execute the following algorithm exploiting that no action needs to
applied more than once:

(1) Try to apply actions to the initial state that were not yet applied.

(2) As long as at least one action was applied, repeat. Also stop if
the goal is generated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem in the standard STRIPS formalism, i.e.,
with only positive preconditions. Then, deciding whether P+ has a
solution can be decided in P.

Proof:

Execute the following algorithm exploiting that no action needs to
applied more than once:

(1) Try to apply actions to the initial state that were not yet applied.

(2) As long as at least one action was applied, repeat. Also stop if
the goal is generated.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state and the guessed plan is executable).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state and the guessed plan is executable).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.

Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state and the guessed plan is executable).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state and the guessed plan is executable).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Membership Proof:

Each action needs to be applied at most once.

Thus, the maximum required plan length (to achieve any goal
description) is bounded by b ≤ |A|.
Now, guess a sequence of b actions and verify in linear time whether
it’s applicable.

Return true or false (depending on whether all goals hold in the final
state and the guessed plan is executable).

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}.

ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}.

ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}.

ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}.

ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}.

ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}.

ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities

Theorem

Let P be a planning problem with negative preconditions (in addition to the
positive ones). Then, deciding whether P+ has a solution is NP-complete.

Hardness Proof: Reduction from CNF-SAT:

Let ϕ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {ϕj1 , . . . , ϕjk}︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ > xi−>¬xi−⊥ and xi 7→ ⊥ xi−⊥¬xi−>

For each positive ϕji = xji or negative ϕji = ¬xji add

“xji = >”
Cj 7→ >

Cj−>xji−> or
“xji = ⊥”
Cj 7→ >

Cj−>xji−⊥

g = {Cj−> | 1 ≤ j ≤ m}. ϕ is satisfiable if and only if a plan exists.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities, cont’d

Recap:

Deciding whether P (with or without negative preconditions) has
a solution is PSPACE-complete (shown later).

Deciding whether P+ (without negative preconditions) has a
solution is in P.

Deciding whether P+ (with negative preconditions) has a solution
is NP-complete.

Question:
Since NP ⊆ PSPACE (and presumably NP (PSPACE), using P+

with negative preconditions as basis for heuristics is a (n expensive,
but) useful relaxation heuristic, right?

No! Although deciding it is easier, it’s not a relaxation. Why?

Blackboard/Whiteboard.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 14 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities, cont’d

Recap:

Deciding whether P (with or without negative preconditions) has
a solution is PSPACE-complete (shown later).

Deciding whether P+ (without negative preconditions) has a
solution is in P.

Deciding whether P+ (with negative preconditions) has a solution
is NP-complete.

Question:
Since NP ⊆ PSPACE (and presumably NP (PSPACE), using P+

with negative preconditions as basis for heuristics is a (n expensive,
but) useful relaxation heuristic, right?

No! Although deciding it is easier, it’s not a relaxation. Why?

Blackboard/Whiteboard.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 14 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities, cont’d

Recap:

Deciding whether P (with or without negative preconditions) has
a solution is PSPACE-complete (shown later).

Deciding whether P+ (without negative preconditions) has a
solution is in P.

Deciding whether P+ (with negative preconditions) has a solution
is NP-complete.

Question:
Since NP ⊆ PSPACE (and presumably NP (PSPACE), using P+

with negative preconditions as basis for heuristics is a (n expensive,
but) useful relaxation heuristic, right?

No! Although deciding it is easier, it’s not a relaxation. Why?

Blackboard/Whiteboard.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 14 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities, cont’d

Recap:

Deciding whether P (with or without negative preconditions) has
a solution is PSPACE-complete (shown later).

Deciding whether P+ (without negative preconditions) has a
solution is in P.

Deciding whether P+ (with negative preconditions) has a solution
is NP-complete.

Question:
Since NP ⊆ PSPACE (and presumably NP (PSPACE), using P+

with negative preconditions as basis for heuristics is a (n expensive,
but) useful relaxation heuristic, right?

No! Although deciding it is easier, it’s not a relaxation. Why?

Blackboard/Whiteboard.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 14 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Delete-free Planning Problems, Complexities, cont’d

Recap:

Deciding whether P (with or without negative preconditions) has
a solution is PSPACE-complete (shown later).

Deciding whether P+ (without negative preconditions) has a
solution is in P.

Deciding whether P+ (with negative preconditions) has a solution
is NP-complete.

Question:
Since NP ⊆ PSPACE (and presumably NP (PSPACE), using P+

with negative preconditions as basis for heuristics is a (n expensive,
but) useful relaxation heuristic, right?

No! Although deciding it is easier, it’s not a relaxation. Why?

Blackboard/Whiteboard.
Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 14 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

How to Combine Negative Preconditions and Delete-Relaxation?

If we can’t use delete-relaxation for heuristics in case we have
negative preconditions, what should we do?

→ Compile them away!

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

How to Combine Negative Preconditions and Delete-Relaxation?

If we can’t use delete-relaxation for heuristics in case we have
negative preconditions, what should we do?

→ Compile them away!

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

Blackboard/Whiteboard (see also exercise sheet).

Easy to understand and to implement.

Number of additional variables is often unnecessarily high.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (fancy)

Blackboard/Whiteboard (see also exercise sheet).

Much more complicated to understand and to implement.

Number of additional variables is minimal.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 17 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions can be modeled more canonically if their effects
depend on the current state→ their effects are conditional –
given the current state.

We already know one example from the lecture:

the move action
from the Cranes in the Harbor domain. We had to model it with
two distinct actions: moveLeft and moveRight.

There are many such examples:

Use a light switch (rather than turn on/turn off).
. . . (You can also check the IPC.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions can be modeled more canonically if their effects
depend on the current state→ their effects are conditional –
given the current state.

We already know one example from the lecture:

the move action
from the Cranes in the Harbor domain. We had to model it with
two distinct actions: moveLeft and moveRight.
There are many such examples:

Use a light switch (rather than turn on/turn off).
. . . (You can also check the IPC.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions can be modeled more canonically if their effects
depend on the current state→ their effects are conditional –
given the current state.

We already know one example from the lecture: the move action
from the Cranes in the Harbor domain. We had to model it with
two distinct actions: moveLeft and moveRight.

There are many such examples:

Use a light switch (rather than turn on/turn off).
. . . (You can also check the IPC.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions can be modeled more canonically if their effects
depend on the current state→ their effects are conditional –
given the current state.

We already know one example from the lecture: the move action
from the Cranes in the Harbor domain. We had to model it with
two distinct actions: moveLeft and moveRight.
There are many such examples:

Use a light switch (rather than turn on/turn off).
. . . (You can also check the IPC.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions can be modeled more canonically if their effects
depend on the current state→ their effects are conditional –
given the current state.

We already know one example from the lecture: the move action
from the Cranes in the Harbor domain. We had to model it with
two distinct actions: moveLeft and moveRight.
There are many such examples:

Use a light switch (rather than turn on/turn off).

. . . (You can also check the IPC.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions can be modeled more canonically if their effects
depend on the current state→ their effects are conditional –
given the current state.

We already know one example from the lecture: the move action
from the Cranes in the Harbor domain. We had to model it with
two distinct actions: moveLeft and moveRight.
There are many such examples:

Use a light switch (rather than turn on/turn off).
. . . (You can also check the IPC.)

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.

Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .

Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).

a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.

If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Problem Definition

When actions have conditional effects, they have a set of
two-tuples rather than an add and delete list. Each head of the
tuple is a precondition set (analogous to STRIPS with negative
preconditions, we can use negative preconditions here as well)
and the body consists of an add and delete list.
Formally, an action a ∈ A with conditional effects is given by:

a = (pre, effs, c) with pre ⊆ V , c ∈ R0 and each eff ∈ effs is a
tuple (prec, add , del) ∈ 2V × 2V × 2V .
Note: We also display conditional effects as prec → (add , del).
a is applicable in s ∈ S, τ(a, s) = >, if and only if pre ⊆ s.
If τ(a, s) = >, then the application of a in s results into the
following successor state γ(a, s) = s′:

Let add ′ =
⋃

(prec,add,del)∈effs,prec⊆s
add .

Let del ′ =
⋃

(prec,add,del)∈effs,prec⊆s
del .

Then, s′ = (s \ del ′) ∪ add ′.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b

c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b

c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b

c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b

c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b

c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b

c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b

c ∧ ¬a ∧ ¬¬a ∧ ¬b
→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,

i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (easy)

We can simply compute all possible combinations of the conditional
effects’ preconditions and create a new action for each of them.

In the following example, we also use negative preconditions:
Let a = ({c}, {a→ b,¬a→ c, b → ¬c}). New preconditions:

c ∧ a ∧ ¬a ∧ b
c ∧ a ∧ ¬a ∧ ¬b
c ∧ a ∧ ¬¬a ∧ b
c ∧ a ∧ ¬¬a ∧ ¬b
c ∧ ¬a ∧ ¬a ∧ b
c ∧ ¬a ∧ ¬a ∧ ¬b
c ∧ ¬a ∧ ¬¬a ∧ b
c ∧ ¬a ∧ ¬¬a ∧ ¬b

→ Note that ¬¬ϕ = ϕ and that mutex relations can be exploited,
i.e., actions with a precondition ¬a ∧ a can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (fancy)

The previous compilation induces an exponential blowup of the
model.

Instead, we can include additional state variables that prevent
“standard actions” to be executed. Then, “synchonization actions”
become applicable that produce the correct successor state and
make standard actions applicable again.

This technique only requires a linear space increase of the
model, but required more effort for the planner.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (fancy)

The previous compilation induces an exponential blowup of the
model.

Instead, we can include additional state variables that prevent
“standard actions” to be executed. Then, “synchonization actions”
become applicable that produce the correct successor state and
make standard actions applicable again.

This technique only requires a linear space increase of the
model, but required more effort for the planner.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation Technique (fancy)

The previous compilation induces an exponential blowup of the
model.

Instead, we can include additional state variables that prevent
“standard actions” to be executed. Then, “synchonization actions”
become applicable that produce the correct successor state and
make standard actions applicable again.

This technique only requires a linear space increase of the
model, but required more effort for the planner.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Formal Definition

Preconditions can involve disjunctions. You can assume that
preconditions are given in conjunctive normal form.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 22 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.

Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a
A2 a ∧ c ∧ ¬d
A3 b ∧ c ∧ ¬a
A4 b ∧ c ∧ ¬d
→ Actions with preconditions that are mutex to each other (such as

A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.
Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a
A2 a ∧ c ∧ ¬d
A3 b ∧ c ∧ ¬a
A4 b ∧ c ∧ ¬d
→ Actions with preconditions that are mutex to each other (such as

A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.
Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a

A2 a ∧ c ∧ ¬d
A3 b ∧ c ∧ ¬a
A4 b ∧ c ∧ ¬d
→ Actions with preconditions that are mutex to each other (such as

A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.
Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a
A2 a ∧ c ∧ ¬d

A3 b ∧ c ∧ ¬a
A4 b ∧ c ∧ ¬d
→ Actions with preconditions that are mutex to each other (such as

A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.
Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a
A2 a ∧ c ∧ ¬d
A3 b ∧ c ∧ ¬a

A4 b ∧ c ∧ ¬d
→ Actions with preconditions that are mutex to each other (such as

A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.
Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a
A2 a ∧ c ∧ ¬d
A3 b ∧ c ∧ ¬a
A4 b ∧ c ∧ ¬d

→ Actions with preconditions that are mutex to each other (such as
A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

Create one single action instance for every evaluation of the
action’s precondition evaluating to true.
Example: The precondition (a ∨ b) ∧ c ∧ (¬a ∨ d) of an action A
gets translated into the following actions:

A1 a ∧ c ∧ ¬a
A2 a ∧ c ∧ ¬d
A3 b ∧ c ∧ ¬a
A4 b ∧ c ∧ ¬d
→ Actions with preconditions that are mutex to each other (such as

A1: a ∧ ¬a) can be ignored.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions depend on specific (some/all) objects, e.g.

Paint all blocks (all quantifier in effects).

Do something if all blocks lie on the table (all quantifier in
precondition).

Take a block that has no block above it (negative existence
quantified precondition)

Paint all blocks that don’t have another block above them
(all-quantified conditional effect).

More realistic example:
If a truck moves from one location to another, all objects it has
loaded change their location as well.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions depend on specific (some/all) objects, e.g.

Paint all blocks (all quantifier in effects).

Do something if all blocks lie on the table (all quantifier in
precondition).

Take a block that has no block above it (negative existence
quantified precondition)

Paint all blocks that don’t have another block above them
(all-quantified conditional effect).

More realistic example:
If a truck moves from one location to another, all objects it has
loaded change their location as well.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions depend on specific (some/all) objects, e.g.

Paint all blocks (all quantifier in effects).

Do something if all blocks lie on the table (all quantifier in
precondition).

Take a block that has no block above it (negative existence
quantified precondition)

Paint all blocks that don’t have another block above them
(all-quantified conditional effect).

More realistic example:
If a truck moves from one location to another, all objects it has
loaded change their location as well.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions depend on specific (some/all) objects, e.g.

Paint all blocks (all quantifier in effects).

Do something if all blocks lie on the table (all quantifier in
precondition).

Take a block that has no block above it (negative existence
quantified precondition)

Paint all blocks that don’t have another block above them
(all-quantified conditional effect).

More realistic example:
If a truck moves from one location to another, all objects it has
loaded change their location as well.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Motivation

Some actions depend on specific (some/all) objects, e.g.

Paint all blocks (all quantifier in effects).

Do something if all blocks lie on the table (all quantifier in
precondition).

Take a block that has no block above it (negative existence
quantified precondition)

Paint all blocks that don’t have another block above them
(all-quantified conditional effect).
More realistic example:
If a truck moves from one location to another, all objects it has
loaded change their location as well.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Formal Definition

Simple: Preconditions can be arbitrary first-order formulae.

Please note that a universal quantifier (∀) refers to all existing
objects (of the respective sort), whereas exists quantifiers (∃) are
redundant, since free variables are implicitly existence quantified
(both propositions only hold if there is no negation in front of the
quantifier).

In principle, also effects can make use of quantifiers, but they
cannot be applied in arbitrary formulae, since disjunctions violate
the standard action semantics. (Disjunctions correspond to
non-deterministic effects.)

For more standardized restrictions on how to use quantifiers, you
can investigate PDDL.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Formal Definition

Simple: Preconditions can be arbitrary first-order formulae.

Please note that a universal quantifier (∀) refers to all existing
objects (of the respective sort), whereas exists quantifiers (∃) are
redundant, since free variables are implicitly existence quantified
(both propositions only hold if there is no negation in front of the
quantifier).

In principle, also effects can make use of quantifiers, but they
cannot be applied in arbitrary formulae, since disjunctions violate
the standard action semantics. (Disjunctions correspond to
non-deterministic effects.)

For more standardized restrictions on how to use quantifiers, you
can investigate PDDL.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Formal Definition

Simple: Preconditions can be arbitrary first-order formulae.

Please note that a universal quantifier (∀) refers to all existing
objects (of the respective sort), whereas exists quantifiers (∃) are
redundant, since free variables are implicitly existence quantified
(both propositions only hold if there is no negation in front of the
quantifier).

In principle, also effects can make use of quantifiers, but they
cannot be applied in arbitrary formulae, since disjunctions violate
the standard action semantics. (Disjunctions correspond to
non-deterministic effects.)

For more standardized restrictions on how to use quantifiers, you
can investigate PDDL.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Formal Definition

Simple: Preconditions can be arbitrary first-order formulae.

Please note that a universal quantifier (∀) refers to all existing
objects (of the respective sort), whereas exists quantifiers (∃) are
redundant, since free variables are implicitly existence quantified
(both propositions only hold if there is no negation in front of the
quantifier).

In principle, also effects can make use of quantifiers, but they
cannot be applied in arbitrary formulae, since disjunctions violate
the standard action semantics. (Disjunctions correspond to
non-deterministic effects.)

For more standardized restrictions on how to use quantifiers, you
can investigate PDDL.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

First, bring the formulae in prenex normal form (quantifiers are in
front of the formula, negations are only in front of literals).

All quantifiers can be eliminated by duplicating the respective
literal and substituting the quantified variable by the respective
objects. For example, given there are three blocks in a
blocksworld problem instance, A, B, C, then ∀b ¬on(b1, b2)
(encoding that block b2 is the top-most block of its stack) gets
replaced by ¬on(A, b2) ∧ ¬on(B, b2) ∧ ¬on(C, b2).

Existence quantifiers can simply be ignored, but the variable
might have to be renamed if it’s already occurring as a free
variable or as another existence quantified variable.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 26 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

First, bring the formulae in prenex normal form (quantifiers are in
front of the formula, negations are only in front of literals).

All quantifiers can be eliminated by duplicating the respective
literal and substituting the quantified variable by the respective
objects. For example, given there are three blocks in a
blocksworld problem instance, A, B, C, then ∀b ¬on(b1, b2)
(encoding that block b2 is the top-most block of its stack) gets
replaced by ¬on(A, b2) ∧ ¬on(B, b2) ∧ ¬on(C, b2).

Existence quantifiers can simply be ignored, but the variable
might have to be renamed if it’s already occurring as a free
variable or as another existence quantified variable.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 26 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Compilation

First, bring the formulae in prenex normal form (quantifiers are in
front of the formula, negations are only in front of literals).

All quantifiers can be eliminated by duplicating the respective
literal and substituting the quantified variable by the respective
objects. For example, given there are three blocks in a
blocksworld problem instance, A, B, C, then ∀b ¬on(b1, b2)
(encoding that block b2 is the top-most block of its stack) gets
replaced by ¬on(A, b2) ∧ ¬on(B, b2) ∧ ¬on(C, b2).

Existence quantifiers can simply be ignored, but the variable
might have to be renamed if it’s already occurring as a free
variable or as another existence quantified variable.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 26 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.

Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:

A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.

Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:

A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:

A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:

A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:
A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.

One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:
A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).

Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:
A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:
A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.

Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

Introduction Lifted Models Negative Preconditions Conditional Effects Disjunctive Preconditions Quantifiers Summary

Summary

The STRIPS formalism is primarily used for theoretical purposes.
Theoretical studies, like the hardness for the plan existence problem.
Description of algorithms, heuristics, and other techniques (cf. first lecture).

For practical purposes, STRIPS is never used. Instead, we have:
A lifted model, which is based on a first-order predicate logic rather than on
propositional logic.
One such standard is PDDL (the planning domain description language). It
differentiates between a planning domain and a planning problem (or
planning instance).
Many extensions to the most basic language level exist, such as negative
preconditions, disjunctive preconditions, quantifiers, and conditional effects.

→ One way of dealing with additional features is compilation.

→ One can also deal with them natively. This has the potential to be much
more efficient for the respective algorithms, but all techniques (algorithm,
heuristic, pruning techniques, reachability analysis, etc.) may have to be
adapted by hand.
Chapter: Problem Compilations for (Non-Hierarchical) Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 27

	Introduction
	Lifted Models
	Negative Preconditions
	Conditional Effects
	Disjunctive Preconditions
	Quantifiers
	Summary

