
Lecture Hierarchical Planning

Chapter:
Introduction to HTN Planning

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 19, 2019)

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview:

1 Introduction
Hierarchical vs. Non-Hierarchical Planning
Motivation for Hierarchical Planning
Background, Vocabularies, and Conventions in Hierarchical
Planning

2 Problem Definition
Introduction
Formal Problem Definition

3 Decomposition Trees
Motivation
Basic Definitions

4 Formalization Choices in HTN Planning

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 2 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Planning?

Concerning the problem class, so far, we considered only
classical planning (and, as related work, also various extensions
thereof).

Thus: What is the primary goal of planning?

To find a sequence of actions that reaches some state in which
the desired properties hold.

→ That’s only the case for non-hierarchical planning and different
from hierarchical planning!

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Planning?

Concerning the problem class, so far, we considered only
classical planning (and, as related work, also various extensions
thereof).

Thus: What is the primary1 goal of planning?

To find a sequence of actions that reaches some state in which
the desired properties hold.

→ That’s only the case for non-hierarchical planning and different
from hierarchical planning!

1Please don’t forget to check out the first lecture for an overview of some of the
other interesting goals and research topics.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Planning?

Concerning the problem class, so far, we considered only
classical planning (and, as related work, also various extensions
thereof).

Thus: What is the primary1 goal of planning?

To find a sequence of actions that reaches some state in which
the desired properties hold.

→ That’s only the case for non-hierarchical planning and different
from hierarchical planning!

1Please don’t forget to check out the first lecture for an overview of some of the
other interesting goals and research topics.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Planning?

Concerning the problem class, so far, we considered only
classical planning (and, as related work, also various extensions
thereof).

Thus: What is the primary1 goal of planning?

To find a sequence of actions that reaches some state in which
the desired properties hold.

→ That’s only the case for non-hierarchical planning and different
from hierarchical planning!

1Please don’t forget to check out the first lecture for an overview of some of the
other interesting goals and research topics.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 3 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Hierarchical Planning?

“[Hierarchical] planners differ from classical planners in what they plan
for and how they plan for it. In [a hierarchical] planner, the objective is
not to achieve a set of goals but instead to perform some set of tasks.”

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Ed. by Denise E. M. Penrose. Morgan Kaufmann, 2004

Main differences to classical planning problems:

It’s not about generating some goal state! The goal is find a
refinement of the initial task(s), not to satisfy some goal
description.

There is no arbitrary task insertion: to alter task networks, we
need to decompose compound tasks using their pre-defined
methods (see next slide).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Hierarchical Planning?

“[Hierarchical] planners differ from classical planners in what they plan
for and how they plan for it. In [a hierarchical] planner, the objective is
not to achieve a set of goals but instead to perform some set of tasks.”

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Ed. by Denise E. M. Penrose. Morgan Kaufmann, 2004

Main differences to classical planning problems:

It’s not about generating some goal state! The goal is find a
refinement of the initial task(s), not to satisfy some goal
description.

There is no arbitrary task insertion: to alter task networks, we
need to decompose compound tasks using their pre-defined
methods (see next slide).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Hierarchical Planning?

“[Hierarchical] planners differ from classical planners in what they plan
for and how they plan for it. In [a hierarchical] planner, the objective is
not to achieve a set of goals but instead to perform some set of tasks.”

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Ed. by Denise E. M. Penrose. Morgan Kaufmann, 2004

Main differences to classical planning problems:

It’s not about generating some goal state! The goal is find a
refinement of the initial task(s), not to satisfy some goal
description.

There is no arbitrary task insertion: to alter task networks, we
need to decompose compound tasks using their pre-defined
methods (see next slide).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 4 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Hierarchical Planning? . . . More Precisely? Example?

The model specifies a task hierarchy : compound (or complex,
abstract, high-level) tasks need to be decomposed into primitive tasks.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj,?from,?to)

move(?obj,?from,?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Goal: Find a (primitive) executable refinement of an initial
hierarchical task network (HTN) or partial plan.

Top: A compound task.

Bottom: A task network.

Together: A (decomposition) method.

 shown above

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

What is Hierarchical Planning? . . . More Precisely? Example?

The model specifies a task hierarchy : compound (or complex,
abstract, high-level) tasks need to be decomposed into primitive tasks.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)

move(?obj,?from,?to)move(?obj,?from,?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Goal: Find a (primitive) executable refinement of an initial
hierarchical task network (HTN) or partial plan.

Top: A compound task (with precs/effs).

Bottom: A partial (POCL) plan.

Together: A (decomposition) method.

 shown above

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 5 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

Differences to Non-Hierarchical Planning

Hierarchical Planning is often – wrongly – mistaken for a planning
technique. This is not true. Its a different problem class with
different properties.

But of course we also need new/adapted planning techniques...

It’s not about generating some goal state! The goal is find a
refinement of the initial compound task(s), not to satisfy some
goal description.

There is (normally) no arbitrary task insertion: To alter task
networks/partial plans, we need to decompose compound tasks
using their pre-defined methods. (“Task insertion” is an additional
feature (actually: solution criteria!) that has to be
provided/allowed in addition.)

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

Differences to Non-Hierarchical Planning

Hierarchical Planning is often – wrongly – mistaken for a planning
technique. This is not true. Its a different problem class with
different properties.

But of course we also need new/adapted planning techniques...

It’s not about generating some goal state! The goal is find a
refinement of the initial compound task(s), not to satisfy some
goal description.

There is (normally) no arbitrary task insertion: To alter task
networks/partial plans, we need to decompose compound tasks
using their pre-defined methods. (“Task insertion” is an additional
feature (actually: solution criteria!) that has to be
provided/allowed in addition.)

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

Differences to Non-Hierarchical Planning

Hierarchical Planning is often – wrongly – mistaken for a planning
technique. This is not true. Its a different problem class with
different properties.

But of course we also need new/adapted planning techniques...

It’s not about generating some goal state! The goal is find a
refinement of the initial compound task(s), not to satisfy some
goal description.

There is (normally) no arbitrary task insertion: To alter task
networks/partial plans, we need to decompose compound tasks
using their pre-defined methods. (“Task insertion” is an additional
feature (actually: solution criteria!) that has to be
provided/allowed in addition.)

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Hierarchical vs. Non-Hierarchical Planning

Differences to Non-Hierarchical Planning

Hierarchical Planning is often – wrongly – mistaken for a planning
technique. This is not true. Its a different problem class with
different properties.

But of course we also need new/adapted planning techniques...

It’s not about generating some goal state! The goal is find a
refinement of the initial compound task(s), not to satisfy some
goal description.

There is (normally) no arbitrary task insertion: To alter task
networks/partial plans, we need to decompose compound tasks
using their pre-defined methods. (“Task insertion” is an additional
feature (actually: solution criteria!) that has to be
provided/allowed in addition.)

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 6 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search).

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions).

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP).

Use hierarchy as plan libraries (describing possible user intent)
for plan recognition.

Communicate plans on different levels of abstraction.

Incorporate task abstraction in plan explanations.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search).

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions).

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP).

Use hierarchy as plan libraries (describing possible user intent)
for plan recognition.

Communicate plans on different levels of abstraction.

Incorporate task abstraction in plan explanations.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search).

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions).

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP).

Use hierarchy as plan libraries (describing possible user intent)
for plan recognition.

Communicate plans on different levels of abstraction.

Incorporate task abstraction in plan explanations.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search).

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions).

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP).

Use hierarchy as plan libraries (describing possible user intent)
for plan recognition.

Communicate plans on different levels of abstraction.

Incorporate task abstraction in plan explanations.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search).

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions).

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP).

Use hierarchy as plan libraries (describing possible user intent)
for plan recognition.

Communicate plans on different levels of abstraction.

Incorporate task abstraction in plan explanations.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search).

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions).

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP).

Use hierarchy as plan libraries (describing possible user intent)
for plan recognition.

Communicate plans on different levels of abstraction.

Incorporate task abstraction in plan explanations.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 7 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation, Example: Do-It-Yourself (DIY) Assistant

The material:

Boards (need to be cut first)

Electrical devices like drills
and saws

Attachments like drill bits
and materials like nails

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 8 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation for Hierarchical Planning

Motivation, Example: Do-It-Yourself (DIY) Assistant, cond’t

Presentation of instructions on different levels of abstraction:

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 9 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

Which Formalism?

Hierarchical planning describes a range of hierarchical problem
classes or planning approaches (solving techniques) that share the
idea of problem decomposition.

One of the best-known formalizations is called hierarchical task
network (HTN) planning, so it is often used as a synonym to
hierarchical planning although the latter can be regarded as the more
general expression/field.

Since the HTN formalism can be regarded a standard and the most
simplistic one, we will start with that. Later, we extend it in several
directions.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

Which Formalism?

Hierarchical planning describes a range of hierarchical problem
classes or planning approaches (solving techniques) that share the
idea of problem decomposition.

One of the best-known formalizations is called hierarchical task
network (HTN) planning, so it is often used as a synonym to
hierarchical planning although the latter can be regarded as the more
general expression/field.

Since the HTN formalism can be regarded a standard and the most
simplistic one, we will start with that. Later, we extend it in several
directions.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

Which Formalism?

Hierarchical planning describes a range of hierarchical problem
classes or planning approaches (solving techniques) that share the
idea of problem decomposition.

One of the best-known formalizations is called hierarchical task
network (HTN) planning, so it is often used as a synonym to
hierarchical planning although the latter can be regarded as the more
general expression/field.

Since the HTN formalism can be regarded a standard and the most
simplistic one, we will start with that. Later, we extend it in several
directions.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 10 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

HTNs vs. HTN Problems vs. HTN Planning

HTN is short for (hierarchical) task network.
Thus, it is a data structure, not a formalism or an approach.

→ Never write/say something like: “In HTNs, we have to/aim at . . . ”.
Correct would be: “In HTN planning, we . . . ”.

The term “HTN planning” can still refer to either the problem class or
an (HTN) planning approach (similar to classical planning).

In the context of the HTN planning framework, we use HTNs as basic
data structure, i.e., partially ordered tasks.

If we also use causal links there, we refer to these data structures as
partial plans instead.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 11 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

HTNs vs. HTN Problems vs. HTN Planning

HTN is short for (hierarchical) task network.
Thus, it is a data structure, not a formalism or an approach.

→ Never write/say something like: “In HTNs, we have to/aim at . . . ”.
Correct would be: “In HTN planning, we . . . ”.

The term “HTN planning” can still refer to either the problem class or
an (HTN) planning approach (similar to classical planning).

In the context of the HTN planning framework, we use HTNs as basic
data structure, i.e., partially ordered tasks.

If we also use causal links there, we refer to these data structures as
partial plans instead.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 11 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

HTNs vs. HTN Problems vs. HTN Planning

HTN is short for (hierarchical) task network.
Thus, it is a data structure, not a formalism or an approach.

→ Never write/say something like: “In HTNs, we have to/aim at . . . ”.
Correct would be: “In HTN planning, we . . . ”.

The term “HTN planning” can still refer to either the problem class or
an (HTN) planning approach (similar to classical planning).

In the context of the HTN planning framework, we use HTNs as basic
data structure, i.e., partially ordered tasks.

If we also use causal links there, we refer to these data structures as
partial plans instead.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 11 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

Actions vs. Tasks

We will use the terms abstract, compound, complex, and high-level
tasks synonymously.

Actions known from classical planning are the same as primitive
tasks in hierarchical planning.

In hierarchical planning, the term task is used to refer to either
actions (i.e., primitive tasks) or abstract tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

Actions vs. Tasks

We will use the terms abstract, compound, complex, and high-level
tasks synonymously.

Actions known from classical planning are the same as primitive
tasks in hierarchical planning.

In hierarchical planning, the term task is used to refer to either
actions (i.e., primitive tasks) or abstract tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Background, Vocabularies, and Conventions in Hierarchical Planning

Actions vs. Tasks

We will use the terms abstract, compound, complex, and high-level
tasks synonymously.

Actions known from classical planning are the same as primitive
tasks in hierarchical planning.

In hierarchical planning, the term task is used to refer to either
actions (i.e., primitive tasks) or abstract tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 12 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Introduction

In HTN planning (and all of its extensions that we will discuss in later
lectures) we rely on the same basic assumptions as in classical
planning (cf. first lecture).

Just like in classical planning, problems are – in practice – not
defined in a propositional way, but lifted.

The basic formalism, is again defined in a propositional fashion.
Note: While hierarchical planning, in principle, only extends
non-hierarchical planning via a task hierarchy, we now also have
some syntactical changes:

Rather than defining an action as 4-tuple a = (pre, add , del, c) (and
use a as its name, although not formally being defined), we have a
designated set of primitive task names P, and a mapping δ to obtain
their tuples (see next slide).
Rather than plan steps being 2-tuples l:a, we have another mapping α
to map l to a (see later).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Introduction

In HTN planning (and all of its extensions that we will discuss in later
lectures) we rely on the same basic assumptions as in classical
planning (cf. first lecture).

Just like in classical planning, problems are – in practice – not
defined in a propositional way, but lifted.

The basic formalism, is again defined in a propositional fashion.
Note: While hierarchical planning, in principle, only extends
non-hierarchical planning via a task hierarchy, we now also have
some syntactical changes:

Rather than defining an action as 4-tuple a = (pre, add , del, c) (and
use a as its name, although not formally being defined), we have a
designated set of primitive task names P, and a mapping δ to obtain
their tuples (see next slide).
Rather than plan steps being 2-tuples l:a, we have another mapping α
to map l to a (see later).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Introduction

In HTN planning (and all of its extensions that we will discuss in later
lectures) we rely on the same basic assumptions as in classical
planning (cf. first lecture).

Just like in classical planning, problems are – in practice – not
defined in a propositional way, but lifted.

The basic formalism, is again defined in a propositional fashion.

Note: While hierarchical planning, in principle, only extends
non-hierarchical planning via a task hierarchy, we now also have
some syntactical changes:

Rather than defining an action as 4-tuple a = (pre, add , del, c) (and
use a as its name, although not formally being defined), we have a
designated set of primitive task names P, and a mapping δ to obtain
their tuples (see next slide).
Rather than plan steps being 2-tuples l:a, we have another mapping α
to map l to a (see later).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Introduction

In HTN planning (and all of its extensions that we will discuss in later
lectures) we rely on the same basic assumptions as in classical
planning (cf. first lecture).

Just like in classical planning, problems are – in practice – not
defined in a propositional way, but lifted.

The basic formalism, is again defined in a propositional fashion.
Note: While hierarchical planning, in principle, only extends
non-hierarchical planning via a task hierarchy, we now also have
some syntactical changes:

Rather than defining an action as 4-tuple a = (pre, add , del, c) (and
use a as its name, although not formally being defined), we have a
designated set of primitive task names P, and a mapping δ to obtain
their tuples (see next slide).
Rather than plan steps being 2-tuples l:a, we have another mapping α
to map l to a (see later).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Introduction

In HTN planning (and all of its extensions that we will discuss in later
lectures) we rely on the same basic assumptions as in classical
planning (cf. first lecture).

Just like in classical planning, problems are – in practice – not
defined in a propositional way, but lifted.

The basic formalism, is again defined in a propositional fashion.
Note: While hierarchical planning, in principle, only extends
non-hierarchical planning via a task hierarchy, we now also have
some syntactical changes:

Rather than defining an action as 4-tuple a = (pre, add , del, c) (and
use a as its name, although not formally being defined), we have a
designated set of primitive task names P, and a mapping δ to obtain
their tuples (see next slide).

Rather than plan steps being 2-tuples l:a, we have another mapping α
to map l to a (see later).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Introduction

In HTN planning (and all of its extensions that we will discuss in later
lectures) we rely on the same basic assumptions as in classical
planning (cf. first lecture).

Just like in classical planning, problems are – in practice – not
defined in a propositional way, but lifted.

The basic formalism, is again defined in a propositional fashion.
Note: While hierarchical planning, in principle, only extends
non-hierarchical planning via a task hierarchy, we now also have
some syntactical changes:

Rather than defining an action as 4-tuple a = (pre, add , del, c) (and
use a as its name, although not formally being defined), we have a
designated set of primitive task names P, and a mapping δ to obtain
their tuples (see next slide).
Rather than plan steps being 2-tuples l:a, we have another mapping α
to map l to a (see later).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 13 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Introduction

Literature

Most definitions (in particular: the ground HTN and TIHTN formalisms,
and the decomposition tree) are taken from:

Thomas Geier and Pascal Bercher. “On the Decidability of HTN
Planning with Task Insertion”. In: Proc. of the 22nd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2011). AAAI Press, 2011, pp. 1955–1961

Definitions of the lifted HTN and TIHTN formalisms can be found in:

HTN Ron Alford, Pascal Bercher, and David Aha. “Tight Bounds for HTN
Planning”. In: Proc. of the 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS 2015). AAAI Press, 2015, pp. 7–15

TIHTN Ron Alford, Pascal Bercher, and David Aha. “Tight Bounds for HTN
planning with Task Insertion”. In: Proc. of the 25th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2015). AAAI Press, 2015, pp. 1502–1508

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 14 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.

P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.
sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and
have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

primitive
tasks

compound
tasks

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.

cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.
sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and
have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.

M ⊆ C × TNP∪C ,
the (decomposition) methods.
sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,

only contain primitive tasks, and
have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.

sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

sI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.
sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Problem Definition, Example Search Process

cI

sI

P = (V ,P, δ,C,M, sI , cI) with:
V , a set of state variables.
P, a set of primitive task names.
δ : P → (2V)3 × R ∪ {∞},
the task name mapping.
C, a set of compound task names.
cI ∈ C, the initial task.
M ⊆ C × TNP∪C ,
the (decomposition) methods.
sI ∈ 2V the initial state.

A solution task network tn must:
be a refinement of cI ,
only contain primitive tasks, and
have an executable linearization.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 15 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.

≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.

α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.

Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).

For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

(Hierarchical) Task Networks

A task network tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols.
≺, a strict partial order on the tasks.
α : T → P∪̇C, the task mapping function.

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3 × R ∪ {∞}.
Two task networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are called
isomorphic (written tn ∼= tn′) if they differ solely in their task identifier
symbols, i.e. there is a bijection σ : T → T ′ so that:

For all task identifiers t ∈ T holds α(t) = α′(σ(t)).
For all task identifiers t1, t2 ∈ T holds that
(t1, t2) ∈ ≺ if and only if (σ(t1), σ(t2)) ∈ ≺′.

A task network is called executable if it is primitive and there exists an
executable linearization of its tasks (actions). Executability of action
sequences is defined as usual.

TNX refers to the set of all task networks using only task names in X .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 16 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Decomposition Methods

A (decomposition) method m ∈ M is a tuple m = (c, tnm) with a
compound task c and task network tnm = (Tm,≺m, αm).

Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and
α(t) = c a compound task to be decomposed by m = (c, tnm).
We assume T ∩ Tm = ∅.

Then, the application of m to tn results in the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t ′, t ′′) | (t ′, t) ∈ ≺, t ′′ ∈ Tm} ∪
{(t ′′, t ′) | (t, t ′) ∈ ≺, t ′′ ∈ Tm}

where (X1, . . . , xn)|Y restricts the sets Xi to elements in Y .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 17 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Decomposition Methods

A (decomposition) method m ∈ M is a tuple m = (c, tnm) with a
compound task c and task network tnm = (Tm,≺m, αm).

Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and
α(t) = c a compound task to be decomposed by m = (c, tnm).
We assume T ∩ Tm = ∅.

Then, the application of m to tn results in the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t ′, t ′′) | (t ′, t) ∈ ≺, t ′′ ∈ Tm} ∪
{(t ′′, t ′) | (t, t ′) ∈ ≺, t ′′ ∈ Tm}

where (X1, . . . , xn)|Y restricts the sets Xi to elements in Y .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 17 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Decomposition Methods

A (decomposition) method m ∈ M is a tuple m = (c, tnm) with a
compound task c and task network tnm = (Tm,≺m, αm).

Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and
α(t) = c a compound task to be decomposed by m = (c, tnm).
We assume T ∩ Tm = ∅.
Then, the application of m to tn results in the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t ′, t ′′) | (t ′, t) ∈ ≺, t ′′ ∈ Tm} ∪
{(t ′′, t ′) | (t, t ′) ∈ ≺, t ′′ ∈ Tm}

where (X1, . . . , xn)|Y restricts the sets Xi to elements in Y .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 17 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Solution Criteria

A task network tn is a solution if and only if:

There is a sequence of decomposition methods m that transforms
cI into tn (written tnI →∗TD tn, where tnI denotes the initial task
network consisting only of cI) and
tn is executable, i.e.,

it contains only primitive tasks, and
the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

cI

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Solution Criteria

A task network tn is a solution if and only if:
There is a sequence of decomposition methods m that transforms
cI into tn (written tnI →∗TD tn, where tnI denotes the initial task
network consisting only of cI) and

tn is executable, i.e.,

it contains only primitive tasks, and
the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

cI

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Formal Problem Definition

Solution Criteria

A task network tn is a solution if and only if:
There is a sequence of decomposition methods m that transforms
cI into tn (written tnI →∗TD tn, where tnI denotes the initial task
network consisting only of cI) and
tn is executable, i.e.,

it contains only primitive tasks, and
the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

cI

sI

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 18 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation

How to Represent Decomposition?

Consider the following decomposition methods:

H a Q b

Q a Q

Q b Q

Q a

Q b

cI H H′

H′ a′ Q′ H′

H′ a′ b′

Q′ a′

Q′ b′

(Preconditions and effects don’t matter for now.)

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 19 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Motivation

Decomposition Tree: Example

Representation as a tree:

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 20 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition

Definition (Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is a five-tuple with the
following properties:

(T ,E) is a tree with task identifier symbols T (the nodes of the
tree) and directed edges E ⊆ T × T pointing towards the leafs,

≺ ⊆ T × T is a strict partial order,
α : T → C ∪ P is a task instance mapping that maps inner nodes
to compound task names C and non-inner nodes to compound or
primitive task names C ∪ P, and
β : T ′ → M × Iso, with T ′ ⊆ T , is a function mapping each node
out of a (possibly strict) superset of the inner nodes to a tuple
consisting of a method m ∈ M and an isomorphism σ ∈ Iso, Iso
denoting the set of all isomorphisms over the task instances in T .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition

Definition (Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is a five-tuple with the
following properties:

(T ,E) is a tree with task identifier symbols T (the nodes of the
tree) and directed edges E ⊆ T × T pointing towards the leafs,
≺ ⊆ T × T is a strict partial order,

α : T → C ∪ P is a task instance mapping that maps inner nodes
to compound task names C and non-inner nodes to compound or
primitive task names C ∪ P, and
β : T ′ → M × Iso, with T ′ ⊆ T , is a function mapping each node
out of a (possibly strict) superset of the inner nodes to a tuple
consisting of a method m ∈ M and an isomorphism σ ∈ Iso, Iso
denoting the set of all isomorphisms over the task instances in T .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition

Definition (Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is a five-tuple with the
following properties:

(T ,E) is a tree with task identifier symbols T (the nodes of the
tree) and directed edges E ⊆ T × T pointing towards the leafs,
≺ ⊆ T × T is a strict partial order,
α : T → C ∪ P is a task instance mapping that maps inner nodes
to compound task names C and non-inner nodes to compound or
primitive task names C ∪ P, and

β : T ′ → M × Iso, with T ′ ⊆ T , is a function mapping each node
out of a (possibly strict) superset of the inner nodes to a tuple
consisting of a method m ∈ M and an isomorphism σ ∈ Iso, Iso
denoting the set of all isomorphisms over the task instances in T .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition

Definition (Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is a five-tuple with the
following properties:

(T ,E) is a tree with task identifier symbols T (the nodes of the
tree) and directed edges E ⊆ T × T pointing towards the leafs,
≺ ⊆ T × T is a strict partial order,
α : T → C ∪ P is a task instance mapping that maps inner nodes
to compound task names C and non-inner nodes to compound or
primitive task names C ∪ P, and
β : T ′ → M × Iso, with T ′ ⊆ T , is a function mapping each node
out of a (possibly strict) superset of the inner nodes to a tuple
consisting of a method m ∈ M and an isomorphism σ ∈ Iso, Iso
denoting the set of all isomorphisms over the task instances in T .

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 21 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition, cont’d

We refer to the task instances T of dt by T (dt) and

to the direct children of t ∈ T (dt) by ch(dt, t).

By dt[t] we refer to the subtree of dt that is rooted in t .

A task instance t ′ ∈ T is called an ancestor of t if t ∈ T (dt[t ′]).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition, cont’d

We refer to the task instances T of dt by T (dt) and

to the direct children of t ∈ T (dt) by ch(dt, t).

By dt[t] we refer to the subtree of dt that is rooted in t .

A task instance t ′ ∈ T is called an ancestor of t if t ∈ T (dt[t ′]).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition, cont’d

We refer to the task instances T of dt by T (dt) and

to the direct children of t ∈ T (dt) by ch(dt, t).

By dt[t] we refer to the subtree of dt that is rooted in t .

A task instance t ′ ∈ T is called an ancestor of t if t ∈ T (dt[t ′]).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Definition, cont’d

We refer to the task instances T of dt by T (dt) and

to the direct children of t ∈ T (dt) by ch(dt, t).

By dt[t] we refer to the subtree of dt that is rooted in t .

A task instance t ′ ∈ T is called an ancestor of t if t ∈ T (dt[t ′]).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 22 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Decomposition Tree: Example – Are We There Yet?

Representation as a tree:

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 23 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .

2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method
(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E

(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺

if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺
3 There are no other ordering constraints than those demanded by

Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Valid Decomposition Tree: Definition

Definition (Valid Decomposition Tree)

A decomposition tree dt = (T ,E ,≺, α, β) is valid with respect to a planning
problem P = (V ,P, δ,C,M, sI , cI) if and only if:

1 The root node of dt is labeled with the initial task name cI .
2 If t ∈ T , α(t) = c, and β is defined for t , then β maps t to a method

(c, tnm) ∈ M and to an isomorphism σ that decomposes c, i.e.,
β(t) = ((c, tnm), σ), such that

a σ is an isomorphism for the children of t in dt and the tasks in tnm.
That is, let (T ′,≺′, α′) ∼=σ tnm, then

T ′ ⊆ T and {(t, t ′) | t ′ ∈ T ′} ⊆ E
(T ′,≺′, α′) = (ch(dt, t),≺|ch(dt,t), α|ch(dt,t))

b The ordering constraints imposed on t are correctly inherited.
That is, for all t ′ ∈ T and t ′′ ∈ ch(dt, t) it holds that

if (t, t ′) ∈ ≺, then (t ′′, t ′) ∈ ≺
if (t ′, t) ∈ ≺, then (t ′, t ′′) ∈ ≺

3 There are no other ordering constraints than those demanded by
Criterion 2 or those required by the definition of decomposition trees.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 24 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Yield of a Decomposition Tree

Definition (Yield of a Decomposition Tree)

The yield of a decomposition tree dt , yield(dt), is the following task
network.

Let dt = (T ,E ,≺, α, β) and T ′ ⊆ T be the set of all leaf nodes
of dt for which β is not defined.

Then, yield(dt) := (T ′, α|T ′ ,≺|T ′).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Yield of a Decomposition Tree

Definition (Yield of a Decomposition Tree)

The yield of a decomposition tree dt , yield(dt), is the following task
network.

Let dt = (T ,E ,≺, α, β) and T ′ ⊆ T be the set of all leaf nodes
of dt for which β is not defined.

Then, yield(dt) := (T ′, α|T ′ ,≺|T ′).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Yield of a Decomposition Tree

Definition (Yield of a Decomposition Tree)

The yield of a decomposition tree dt , yield(dt), is the following task
network.

Let dt = (T ,E ,≺, α, β) and T ′ ⊆ T be the set of all leaf nodes
of dt for which β is not defined.

Then, yield(dt) := (T ′, α|T ′ ,≺|T ′).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 25 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Basic Definitions

Properties of Decomposition Trees

Theorem

Given a planning problem P , then for any task network tn ∈ TNC∪P

there exists a valid decomposition tree dt with yield(dt) = tn if and
only if tnI →∗TD tn.

Proof:
Straight-forward.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 26 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Overview

Overview

Which formalization choices and extension to standard HTN planning
do exist? Which impact do they have?

Separation into problem and domain.

Initial task network vs. a single initial task.

Adding a goal description.

Alternative definition of executability.

Allowing to insert tasks.

Adding state constraints.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 27 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Separating Between Domain and Problem

Separating Between Domain and Problem

So far, the problem was given as one single tuple
P = (V ,P, δ,C,M, sI , cI).

Similar to the planning domain description language (PDDL – see
chapter on problem compilations), here we can also separate the
problem into its domain and problem (instance).

Then, D = (V ,P, δ,C,M) is the domain and P = (D, sI , cI)
(or P = (D, sI , tnI)) is the problem (instance).

Then, the domain D describes the world’s “physics”, whereas the
problem P describes the current task to solve.

That way, we can also define several problems for the same
domain.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Separating Between Domain and Problem

Separating Between Domain and Problem

So far, the problem was given as one single tuple
P = (V ,P, δ,C,M, sI , cI).

Similar to the planning domain description language (PDDL – see
chapter on problem compilations), here we can also separate the
problem into its domain and problem (instance).

Then, D = (V ,P, δ,C,M) is the domain and P = (D, sI , cI)
(or P = (D, sI , tnI)) is the problem (instance).

Then, the domain D describes the world’s “physics”, whereas the
problem P describes the current task to solve.

That way, we can also define several problems for the same
domain.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Separating Between Domain and Problem

Separating Between Domain and Problem

So far, the problem was given as one single tuple
P = (V ,P, δ,C,M, sI , cI).

Similar to the planning domain description language (PDDL – see
chapter on problem compilations), here we can also separate the
problem into its domain and problem (instance).

Then, D = (V ,P, δ,C,M) is the domain and P = (D, sI , cI)
(or P = (D, sI , tnI)) is the problem (instance).

Then, the domain D describes the world’s “physics”, whereas the
problem P describes the current task to solve.

That way, we can also define several problems for the same
domain.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Separating Between Domain and Problem

Separating Between Domain and Problem

So far, the problem was given as one single tuple
P = (V ,P, δ,C,M, sI , cI).

Similar to the planning domain description language (PDDL – see
chapter on problem compilations), here we can also separate the
problem into its domain and problem (instance).

Then, D = (V ,P, δ,C,M) is the domain and P = (D, sI , cI)
(or P = (D, sI , tnI)) is the problem (instance).

Then, the domain D describes the world’s “physics”, whereas the
problem P describes the current task to solve.

That way, we can also define several problems for the same
domain.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Separating Between Domain and Problem

Separating Between Domain and Problem

So far, the problem was given as one single tuple
P = (V ,P, δ,C,M, sI , cI).

Similar to the planning domain description language (PDDL – see
chapter on problem compilations), here we can also separate the
problem into its domain and problem (instance).

Then, D = (V ,P, δ,C,M) is the domain and P = (D, sI , cI)
(or P = (D, sI , tnI)) is the problem (instance).

Then, the domain D describes the world’s “physics”, whereas the
problem P describes the current task to solve.

That way, we can also define several problems for the same
domain.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 28 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Initial Compound Task vs. Initial Task Network

Impact of Initial Task Network

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms tnI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 29 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Initial Compound Task vs. Initial Task Network

Impact of Initial Task Network

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms tnI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 29 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Initial Compound Task vs. Initial Task Network

Impact of Initial Task Network, cont’d

Theorem: Initial task networks can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, there is an HTN planning problem P ′ = (V ,P, δ,C′,M′, sI , cI)
with the same set of solutions:

Let C′ := C ∪̇ {cI} and M ′ := M ∪ {(cI , tnI)}.

Identical solution set is obvious.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 30 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Initial Compound Task vs. Initial Task Network

Impact of Initial Task Network, cont’d

Theorem: Initial task networks can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, there is an HTN planning problem P ′ = (V ,P, δ,C′,M′, sI , cI)
with the same set of solutions:

Let C′ := C ∪̇ {cI} and M ′ := M ∪ {(cI , tnI)}.

Identical solution set is obvious.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 30 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Allowing for a Goal Description

Impact of Goal Description

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description g ⊆ V .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn,

tn contains only primitive tasks,

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks, and

the task sequence t̄ generates a goal state s ⊇ g.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 31 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Allowing for a Goal Description

Impact of Goal Description

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description g ⊆ V .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn,

tn contains only primitive tasks,

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks, and

the task sequence t̄ generates a goal state s ⊇ g.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 31 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Allowing for a Goal Description

Impact of Goal Description, cont’d

Theorem: Goal descriptions can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description.

Then, there is an HTN planning problem P ′ = (V ,P′, δ′,C,M, sI , tnI)
with the same set of solutions:

Here, tnI contains two tasks: cI followed by a new primitive task p with
no effects and g as precondition, δ(p) = (g, ∅, ∅).

Then, the initial task network in P ′ can be compiled away as before.

Identical solution set is obvious.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Allowing for a Goal Description

Impact of Goal Description, cont’d

Theorem: Goal descriptions can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description.

Then, there is an HTN planning problem P ′ = (V ,P′, δ′,C,M, sI , tnI)
with the same set of solutions:

Here, tnI contains two tasks: cI followed by a new primitive task p with
no effects and g as precondition, δ(p) = (g, ∅, ∅).

Then, the initial task network in P ′ can be compiled away as before.

Identical solution set is obvious.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Allowing for a Goal Description

Impact of Goal Description, cont’d

Theorem: Goal descriptions can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description.

Then, there is an HTN planning problem P ′ = (V ,P′, δ′,C,M, sI , tnI)
with the same set of solutions:

Here, tnI contains two tasks: cI followed by a new primitive task p with
no effects and g as precondition, δ(p) = (g, ∅, ∅).

Then, the initial task network in P ′ can be compiled away as before.

Identical solution set is obvious.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 32 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Alternative Definitions of Executability

Definition of Executability in HTN Planning

So far, executability is defined as:
There must exist an executabile linearization.

What (happens and do we have to change) if we demand that all
linearizations must be executable?

→ The altered (but non-standard) criterion is more practical, since
it’s the executable action sequence is, what we are usually
interested in. “Finding” one from a solution is now trivial,
otherwise hard (see later chapter).

→ Plan verification becomes easier (see later chapter).

→ For this criterion, we must allow ordering insertion, as otherwise
solutions with the demanded properties might not exist.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Alternative Definitions of Executability

Definition of Executability in HTN Planning

So far, executability is defined as:
There must exist an executabile linearization.

What (happens and do we have to change) if we demand that all
linearizations must be executable?

→ The altered (but non-standard) criterion is more practical, since
it’s the executable action sequence is, what we are usually
interested in. “Finding” one from a solution is now trivial,
otherwise hard (see later chapter).

→ Plan verification becomes easier (see later chapter).

→ For this criterion, we must allow ordering insertion, as otherwise
solutions with the demanded properties might not exist.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Alternative Definitions of Executability

Definition of Executability in HTN Planning

So far, executability is defined as:
There must exist an executabile linearization.

What (happens and do we have to change) if we demand that all
linearizations must be executable?

→ The altered (but non-standard) criterion is more practical, since
it’s the executable action sequence is, what we are usually
interested in. “Finding” one from a solution is now trivial,
otherwise hard (see later chapter).

→ Plan verification becomes easier (see later chapter).

→ For this criterion, we must allow ordering insertion, as otherwise
solutions with the demanded properties might not exist.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Alternative Definitions of Executability

Definition of Executability in HTN Planning

So far, executability is defined as:
There must exist an executabile linearization.

What (happens and do we have to change) if we demand that all
linearizations must be executable?

→ The altered (but non-standard) criterion is more practical, since
it’s the executable action sequence is, what we are usually
interested in. “Finding” one from a solution is now trivial,
otherwise hard (see later chapter).

→ Plan verification becomes easier (see later chapter).

→ For this criterion, we must allow ordering insertion, as otherwise
solutions with the demanded properties might not exist.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Alternative Definitions of Executability

Definition of Executability in HTN Planning

So far, executability is defined as:
There must exist an executabile linearization.

What (happens and do we have to change) if we demand that all
linearizations must be executable?

→ The altered (but non-standard) criterion is more practical, since
it’s the executable action sequence is, what we are usually
interested in. “Finding” one from a solution is now trivial,
otherwise hard (see later chapter).

→ Plan verification becomes easier (see later chapter).

→ For this criterion, we must allow ordering insertion, as otherwise
solutions with the demanded properties might not exist.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 33 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well).

Task insertion makes the modeling process easier: certain parts
can be left to the planner.

Task insertion makes the problem computationally easier (can be
exploited for heuristics).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 34 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well).

Task insertion makes the modeling process easier: certain parts
can be left to the planner.

Task insertion makes the problem computationally easier (can be
exploited for heuristics).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 34 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well).

Task insertion makes the modeling process easier: certain parts
can be left to the planner.

Task insertion makes the problem computationally easier (can be
exploited for heuristics).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 34 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well).

Task insertion makes the modeling process easier: certain parts
can be left to the planner.

Task insertion makes the problem computationally easier (can be
exploited for heuristics).

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 34 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m and task
insertions that transforms cI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

HTN Planning with Task Insertion (TIHTN Planning)

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn′,

tn ⊇ tn′ contains all tasks and orderings of tn′,
(Note: allowing ≺⊇≺′ would imply that we allow ordering
insertion, which would, similar to HTN planning, be required
if we demand all linearizations to be executable.)

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 35 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

State Constraints in HTN Planning

Problem Formalization

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t .

(t, l), the literal l holds immediately after task t .

(t, l, t ′), the literal l holds in all states between t and t ′.

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

State Constraints in HTN Planning

Problem Formalization

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t .

(t, l), the literal l holds immediately after task t .

(t, l, t ′), the literal l holds in all states between t and t ′.

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

State Constraints in HTN Planning

Problem Formalization

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t .

(t, l), the literal l holds immediately after task t .

(t, l, t ′), the literal l holds in all states between t and t ′.

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

State Constraints in HTN Planning

Problem Formalization

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t .

(t, l), the literal l holds immediately after task t .

(t, l, t ′), the literal l holds in all states between t and t ′.

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 36 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Summary

Hierarchical planning is not about generating a goal state (i.e.,
about finding a plan that generates a goal state) but about
achieving a set of tasks.

There are various different hierarchical planning formalisms
(some of them covered later) with different theoretical properties.

HTN planning is the standard hierarchical planning formalism.

Also for HTN planning there are various formalization choices
with differing impact on theoretical properties.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 37 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Summary

Hierarchical planning is not about generating a goal state (i.e.,
about finding a plan that generates a goal state) but about
achieving a set of tasks.

There are various different hierarchical planning formalisms
(some of them covered later) with different theoretical properties.

HTN planning is the standard hierarchical planning formalism.

Also for HTN planning there are various formalization choices
with differing impact on theoretical properties.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 37 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Summary

Hierarchical planning is not about generating a goal state (i.e.,
about finding a plan that generates a goal state) but about
achieving a set of tasks.

There are various different hierarchical planning formalisms
(some of them covered later) with different theoretical properties.

HTN planning is the standard hierarchical planning formalism.

Also for HTN planning there are various formalization choices
with differing impact on theoretical properties.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 37 / 37

Introduction Problem Definition Decomposition Trees Formalization Choices in HTN Planning Summary

Summary

Hierarchical planning is not about generating a goal state (i.e.,
about finding a plan that generates a goal state) but about
achieving a set of tasks.

There are various different hierarchical planning formalisms
(some of them covered later) with different theoretical properties.

HTN planning is the standard hierarchical planning formalism.

Also for HTN planning there are various formalization choices
with differing impact on theoretical properties.

Chapter: Introduction to HTN Planning by Dr. Pascal Bercher Winter Term 2018/2019 37 / 37

	Introduction
	Hierarchical vs. Non-Hierarchical Planning
	Motivation for Hierarchical Planning
	Background, Vocabularies, and Conventions in Hierarchical Planning

	Problem Definition
	Introduction
	Formal Problem Definition

	Decomposition Trees
	Motivation
	Basic Definitions

	Formalization Choices in HTN Planning
	Overview
	Separating Between Domain and Problem
	Initial Compound Task vs. Initial Task Network
	Allowing for a Goal Description
	Alternative Definitions of Executability
	HTN Planning with Task Insertion (TIHTN Planning)
	State Constraints in HTN Planning

	Summary

