
Lecture Hierarchical Planning

Chapter:
Expressivity Analysis of Planning Formalisms

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 19, 2019)

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Overview:

1 Introduction

2 Formal Grammars and Languages
A Quick Recap from Complexity Theory
Formal Grammars/Languages and the Relation to Planning

3 Expressivity Analysis of Planning Formalisms
Prerequisites
Executable Action Sequences
STRIPS and STRIPS with Conditional Effects
Totally Ordered HTN Planning Problems
TIHTN and Acyclic HTN Problems
Noop HTN Planning Problems
(Unrestricted) HTN Planning Problems

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 2 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Motivation

Given a planning problem with a certain set of constraints,

how to decide which planning formalism to choose?

We need to know the influence of formalization choices and
solution criteria on the possible solutions.

→ Expressivity Analysis: Which structural properties may solutions
have?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 3 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Motivation

Given a planning problem with a certain set of constraints,
how to decide which planning formalism to choose?

We need to know the influence of formalization choices and
solution criteria on the possible solutions.

→ Expressivity Analysis: Which structural properties may solutions
have?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 3 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Motivation

Given a planning problem with a certain set of constraints,
how to decide which planning formalism to choose?

We need to know the influence of formalization choices and
solution criteria on the possible solutions.

→ Expressivity Analysis: Which structural properties may solutions
have?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 3 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Motivation

Given a planning problem with a certain set of constraints,
how to decide which planning formalism to choose?

We need to know the influence of formalization choices and
solution criteria on the possible solutions.

→ Expressivity Analysis: Which structural properties may solutions
have?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 3 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?

Hierarchical planning?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning? Under which restrictions?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning? Under which restrictions?

With or without task insertion?

With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning? Under which restrictions?

With or without task insertion?
With or without conditional effects?

With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning? Under which restrictions?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 4 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:

Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:
Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:
Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:
Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:
Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:
Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars

Definition (Formal Grammars)

A formal grammar is a tuple G = (Γ,Σ,R,S) consisting of:
Γ, a finite set of non-terminal symbols.

Σ, a finite set of terminal symbols.

R ⊆ (Σ ∪ Γ)∗Γ(Σ ∪ Γ)∗ × (Σ ∪ Γ)∗, a finite set of production rules.

S ∈ Γ, the start symbol.

A word is a sequence of terminal-symbols ω ∈ Σ∗.

The language of a grammar, L(G), is the set of words that can be obtained
from G’s start symbol by applying a sequence of G’s production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 5 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars, Example

Let G = (Γ,Σ,R,S) with Γ = {S,A,B}, Σ = {a, b}, and R given by:

S → aA
A→ aA

A→ bB

B → bB

B → ε

Question: What is the language of the grammar?

L(G) = {anbm | n,m ≥ 1}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 6 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars, Example

Let G = (Γ,Σ,R,S) with Γ = {S,A,B}, Σ = {a, b}, and R given by:

S → aA
A→ aA

A→ bB

B → bB

B → ε

Question: What is the language of the grammar?

L(G) = {anbm | n,m ≥ 1}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 6 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Formal Grammars, Example

Let G = (Γ,Σ,R,S) with Γ = {S,A,B}, Σ = {a, b}, and R given by:

S → aA
A→ aA

A→ bB

B → bB

B → ε

Question: What is the language of the grammar?

L(G) = {anbm | n,m ≥ 1}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 6 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Chomsky Hierarchy

Chomsky Hierarchy, ordered from most to least expressive:

Type 0 Unrestricted grammars.

Type 1 Context-sensitive grammars.

Type 2 Context-free grammars.

Type 3 Regular grammars.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 7 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Chomsky Hierarchy

Chomsky Hierarchy, ordered from most to least expressive:

Type 0 Unrestricted grammars.

Type 1 Context-sensitive grammars.

Type 2 Context-free grammars.

Type 3 Regular grammars.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 7 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Chomsky Hierarchy

Chomsky Hierarchy, ordered from most to least expressive:

Type 0 Unrestricted grammars.

Type 1 Context-sensitive grammars.

Type 2 Context-free grammars.

Type 3 Regular grammars.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 7 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Chomsky Hierarchy

Chomsky Hierarchy, ordered from most to least expressive:

Type 0 Unrestricted grammars.

Type 1 Context-sensitive grammars.

Type 2 Context-free grammars.

Type 3 Regular grammars.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 7 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 8 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.

Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.

The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).

a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Regular Grammars

Definition:

Regular grammars may only have a single non-terminal symbol
as head in the production rules.
Production rules’ right-hand side may only be one of the following
three forms:

A single terminal symbol.
The empty string (ε).
a terminal symbol followed by a non-terminal or the other way
round. These can not be mixed! The one is called right regular,
the other one is called left regular.

Properties:

All finite languages are regular. (But not the other way round.)

There is an equivalent definition based on DFAs.

Do you know “regular expressions”?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 9 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-free Grammars

Definition:

The head of each production rule consists of exactly one
non-terminal symbol.

Properties:

Closed under intersection against any regular language.

The language intersection problem for two context-free grammars
is undecidable. (Cf. p.202, thm. 8.10. John E. Hopcroft and
Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979)

Given a context-free grammar, deciding whether it describes a
regular language is undecidable. (Cf. p.281 of John E. Hopcroft
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979)

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 10 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-free Grammars

Definition:

The head of each production rule consists of exactly one
non-terminal symbol.

Properties:

Closed under intersection against any regular language.

The language intersection problem for two context-free grammars
is undecidable. (Cf. p.202, thm. 8.10. John E. Hopcroft and
Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979)

Given a context-free grammar, deciding whether it describes a
regular language is undecidable. (Cf. p.281 of John E. Hopcroft
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979)

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 10 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-free Grammars

Definition:

The head of each production rule consists of exactly one
non-terminal symbol.

Properties:

Closed under intersection against any regular language.

The language intersection problem for two context-free grammars
is undecidable. (Cf. p.202, thm. 8.10. John E. Hopcroft and
Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979)

Given a context-free grammar, deciding whether it describes a
regular language is undecidable. (Cf. p.281 of John E. Hopcroft
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979)

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 10 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-free Grammars

Definition:

The head of each production rule consists of exactly one
non-terminal symbol.

Properties:

Closed under intersection against any regular language.

The language intersection problem for two context-free grammars
is undecidable. (Cf. p.202, thm. 8.10. John E. Hopcroft and
Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979)

Given a context-free grammar, deciding whether it describes a
regular language is undecidable. (Cf. p.281 of John E. Hopcroft
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979)

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 10 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-free Grammars

Definition:

The head of each production rule consists of exactly one
non-terminal symbol.

Properties:

Closed under intersection against any regular language.

The language intersection problem for two context-free grammars
is undecidable. (Cf. p.202, thm. 8.10. John E. Hopcroft and
Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979)

Given a context-free grammar, deciding whether it describes a
regular language is undecidable. (Cf. p.281 of John E. Hopcroft
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979)

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 10 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-sensitive Grammars

Definition:

Each production rule has the form αXβ → αγβ or S → γ,
where:

X is a non-terminal symbol.
α, β ∈ (Γ ∪ Σ)∗.
γ ∈ (Γ ∪ Σ)+.
S is not mentioned in any right-hand side.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 11 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-sensitive Grammars

Definition:
Each production rule has the form αXβ → αγβ or S → γ,
where:

X is a non-terminal symbol.
α, β ∈ (Γ ∪ Σ)∗.
γ ∈ (Γ ∪ Σ)+.
S is not mentioned in any right-hand side.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 11 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-sensitive Grammars

Definition:
Each production rule has the form αXβ → αγβ or S → γ,
where:

X is a non-terminal symbol.

α, β ∈ (Γ ∪ Σ)∗.
γ ∈ (Γ ∪ Σ)+.
S is not mentioned in any right-hand side.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 11 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-sensitive Grammars

Definition:
Each production rule has the form αXβ → αγβ or S → γ,
where:

X is a non-terminal symbol.
α, β ∈ (Γ ∪ Σ)∗.

γ ∈ (Γ ∪ Σ)+.
S is not mentioned in any right-hand side.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 11 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-sensitive Grammars

Definition:
Each production rule has the form αXβ → αγβ or S → γ,
where:

X is a non-terminal symbol.
α, β ∈ (Γ ∪ Σ)∗.
γ ∈ (Γ ∪ Σ)+.

S is not mentioned in any right-hand side.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 11 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Context-sensitive Grammars

Definition:
Each production rule has the form αXβ → αγβ or S → γ,
where:

X is a non-terminal symbol.
α, β ∈ (Γ ∪ Σ)∗.
γ ∈ (Γ ∪ Σ)+.
S is not mentioned in any right-hand side.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 11 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Unrestricted Grammars

Definition:

No restrictions on the production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 12 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Unrestricted Grammars

Definition:

No restrictions on the production rules.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 12 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Expressivity: Example

Consider the (standard example) language L(G) = {anbn | n ≥ 0}.

It is context-free! What is its (context-free) grammar?

Is is also regular?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 13 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Expressivity: Example

Consider the (standard example) language L(G) = {anbn | n ≥ 0}.

It is context-free! What is its (context-free) grammar?

Is is also regular?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 13 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Expressivity: Example

Consider the (standard example) language L(G) = {anbn | n ≥ 0}.

It is context-free! What is its (context-free) grammar?

Is is also regular?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 13 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Recap: Standard Decision Problems for Formal Languages

We only provide informal definitions here – as they are sufficient for
the purpose of this lecture. For formal definitions, please consider any
lecture/text book on Formal Grammars/Languages or Complexity Theory.

The emptiness problem: Does a grammar G contain any word at all?
That is, holds L(G) = ∅?
The word problem: Given a grammar G and a word ω, can ω be
generated by G, i.e., holds ω ∈ L(G)?

The prefix problem: Given a grammar G and a sequence of terminal
symbols ω, is there a word produced by G, ω′ ∈ L(G), such that ω is
the prefix of ω′.

The language intersection problem: Given two grammars G and G′, do
they produce a common word? That is, holds L(G) ∩ L(G′) 6= ∅?
The language classification problem: Given a set of words (i.e., a
language), is there a grammar with certain properties that produces it?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 14 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Recap: Standard Decision Problems for Formal Languages

We only provide informal definitions here – as they are sufficient for
the purpose of this lecture. For formal definitions, please consider any
lecture/text book on Formal Grammars/Languages or Complexity Theory.

The emptiness problem: Does a grammar G contain any word at all?
That is, holds L(G) = ∅?

The word problem: Given a grammar G and a word ω, can ω be
generated by G, i.e., holds ω ∈ L(G)?

The prefix problem: Given a grammar G and a sequence of terminal
symbols ω, is there a word produced by G, ω′ ∈ L(G), such that ω is
the prefix of ω′.

The language intersection problem: Given two grammars G and G′, do
they produce a common word? That is, holds L(G) ∩ L(G′) 6= ∅?
The language classification problem: Given a set of words (i.e., a
language), is there a grammar with certain properties that produces it?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 14 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Recap: Standard Decision Problems for Formal Languages

We only provide informal definitions here – as they are sufficient for
the purpose of this lecture. For formal definitions, please consider any
lecture/text book on Formal Grammars/Languages or Complexity Theory.

The emptiness problem: Does a grammar G contain any word at all?
That is, holds L(G) = ∅?
The word problem: Given a grammar G and a word ω, can ω be
generated by G, i.e., holds ω ∈ L(G)?

The prefix problem: Given a grammar G and a sequence of terminal
symbols ω, is there a word produced by G, ω′ ∈ L(G), such that ω is
the prefix of ω′.

The language intersection problem: Given two grammars G and G′, do
they produce a common word? That is, holds L(G) ∩ L(G′) 6= ∅?
The language classification problem: Given a set of words (i.e., a
language), is there a grammar with certain properties that produces it?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 14 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Recap: Standard Decision Problems for Formal Languages

We only provide informal definitions here – as they are sufficient for
the purpose of this lecture. For formal definitions, please consider any
lecture/text book on Formal Grammars/Languages or Complexity Theory.

The emptiness problem: Does a grammar G contain any word at all?
That is, holds L(G) = ∅?
The word problem: Given a grammar G and a word ω, can ω be
generated by G, i.e., holds ω ∈ L(G)?

The prefix problem: Given a grammar G and a sequence of terminal
symbols ω, is there a word produced by G, ω′ ∈ L(G), such that ω is
the prefix of ω′.

The language intersection problem: Given two grammars G and G′, do
they produce a common word? That is, holds L(G) ∩ L(G′) 6= ∅?
The language classification problem: Given a set of words (i.e., a
language), is there a grammar with certain properties that produces it?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 14 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Recap: Standard Decision Problems for Formal Languages

We only provide informal definitions here – as they are sufficient for
the purpose of this lecture. For formal definitions, please consider any
lecture/text book on Formal Grammars/Languages or Complexity Theory.

The emptiness problem: Does a grammar G contain any word at all?
That is, holds L(G) = ∅?
The word problem: Given a grammar G and a word ω, can ω be
generated by G, i.e., holds ω ∈ L(G)?

The prefix problem: Given a grammar G and a sequence of terminal
symbols ω, is there a word produced by G, ω′ ∈ L(G), such that ω is
the prefix of ω′.

The language intersection problem: Given two grammars G and G′, do
they produce a common word? That is, holds L(G) ∩ L(G′) 6= ∅?

The language classification problem: Given a set of words (i.e., a
language), is there a grammar with certain properties that produces it?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 14 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

A Quick Recap from Complexity Theory

Recap: Standard Decision Problems for Formal Languages

We only provide informal definitions here – as they are sufficient for
the purpose of this lecture. For formal definitions, please consider any
lecture/text book on Formal Grammars/Languages or Complexity Theory.

The emptiness problem: Does a grammar G contain any word at all?
That is, holds L(G) = ∅?
The word problem: Given a grammar G and a word ω, can ω be
generated by G, i.e., holds ω ∈ L(G)?

The prefix problem: Given a grammar G and a sequence of terminal
symbols ω, is there a word produced by G, ω′ ∈ L(G), such that ω is
the prefix of ω′.

The language intersection problem: Given two grammars G and G′, do
they produce a common word? That is, holds L(G) ∩ L(G′) 6= ∅?
The language classification problem: Given a set of words (i.e., a
language), is there a grammar with certain properties that produces it?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 14 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Expressivity in Planning: Example

The agent (e.g., a robot) acts in an office environment. Constraint:
Every door that he opens must be closed afterwards.

By which planning approach can this be expressed?

Classical planning?

Non-hierarchical, but also non-classical planning?
Hierarchical planning? Under which restrictions?

With or without task insertion?
With or without conditional effects?
With limited recursion?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 15 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Semantical Correspondence:

Each planning problem can be interpreted as a compact
representation of its solutions.

Similarly, each formal grammar is a compact representation of its
set of words, i.e., its language.

So, what is the relationship?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Semantical Correspondence:

Each planning problem can be interpreted as a compact
representation of its solutions.

Similarly, each formal grammar is a compact representation of its
set of words, i.e., its language.

So, what is the relationship?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Syntactic Correspondence:

Primitive tasks form the terminal symbols of a grammar.

Abstract Tasks form the non-terminal symbols.

Decomposition methods correspond to production rules.

Set of HTN solutions forms the language of the problem.

Analysis also works for TIHTN planning or non-hierarchical
planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Syntactic Correspondence:

Primitive tasks form the terminal symbols of a grammar.

Abstract Tasks form the non-terminal symbols.

Decomposition methods correspond to production rules.

Set of HTN solutions forms the language of the problem.

Analysis also works for TIHTN planning or non-hierarchical
planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Syntactic Correspondence:

Primitive tasks form the terminal symbols of a grammar.

Abstract Tasks form the non-terminal symbols.

Decomposition methods correspond to production rules.

Set of HTN solutions forms the language of the problem.

Analysis also works for TIHTN planning or non-hierarchical
planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Syntactic Correspondence:

Primitive tasks form the terminal symbols of a grammar.

Abstract Tasks form the non-terminal symbols.

Decomposition methods correspond to production rules.

Set of HTN solutions forms the language of the problem.

Analysis also works for TIHTN planning or non-hierarchical
planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Syntactic Correspondence:

Primitive tasks form the terminal symbols of a grammar.

Abstract Tasks form the non-terminal symbols.

Decomposition methods correspond to production rules.

Set of HTN solutions forms the language of the problem.

Analysis also works for TIHTN planning or non-hierarchical
planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Syntactic Correspondence:

Primitive tasks form the terminal symbols of a grammar.

Abstract Tasks form the non-terminal symbols.

Decomposition methods correspond to production rules.

Set of HTN solutions forms the language of the problem.

Analysis also works for TIHTN planning or non-hierarchical
planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

Planning: Relationship to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Further reading, including all of the next results:

Daniel Höller et al. “Language Classification of Hierarchical
Planning Problems”. In: Proc. of the 21st Europ. Conf. on
Artificial Intelligence (ECAI 2014). IOS Press, 2014, pp. 447–452.
DOI: 10.3233/978-1-61499-419-0-447

Daniel Höller et al. “Assessing the Expressivity of Planning
Formalisms through the Comparison to Formal Languages”. In:
Proc. of the 26th Int. Conf. on Automated Planning and
Scheduling (ICAPS 2016). AAAI Press, 2016, pp. 158–165

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 16 / 40

https://doi.org/10.3233/978-1-61499-419-0-447

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

A Closer Look to the Relationship of Planning to Formal Grammars

Emptiness problem→ Plan existence problem, i.e., is the given
problem solvable?

Word Problem→ Plan verification, i.e., is a given “plan” actually a
solution to the given planning problem?

Prefix problem→ Plan recognition, i.e., which plans could the
agent currently be executing given the observed executed
actions?

The language intersection problem and the language classification
problem are interesting (and useful) from a theoretical point of view,
but there is no immediate correspondence to standard “planning
questions”.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 17 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

A Closer Look to the Relationship of Planning to Formal Grammars

Emptiness problem→ Plan existence problem, i.e., is the given
problem solvable?

Word Problem→ Plan verification, i.e., is a given “plan” actually a
solution to the given planning problem?

Prefix problem→ Plan recognition, i.e., which plans could the
agent currently be executing given the observed executed
actions?

The language intersection problem and the language classification
problem are interesting (and useful) from a theoretical point of view,
but there is no immediate correspondence to standard “planning
questions”.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 17 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

A Closer Look to the Relationship of Planning to Formal Grammars

Emptiness problem→ Plan existence problem, i.e., is the given
problem solvable?

Word Problem→ Plan verification, i.e., is a given “plan” actually a
solution to the given planning problem?

Prefix problem→ Plan recognition, i.e., which plans could the
agent currently be executing given the observed executed
actions?

The language intersection problem and the language classification
problem are interesting (and useful) from a theoretical point of view,
but there is no immediate correspondence to standard “planning
questions”.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 17 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Formal Grammars/Languages and the Relation to Planning

A Closer Look to the Relationship of Planning to Formal Grammars

Emptiness problem→ Plan existence problem, i.e., is the given
problem solvable?

Word Problem→ Plan verification, i.e., is a given “plan” actually a
solution to the given planning problem?

Prefix problem→ Plan recognition, i.e., which plans could the
agent currently be executing given the observed executed
actions?

The language intersection problem and the language classification
problem are interesting (and useful) from a theoretical point of view,
but there is no immediate correspondence to standard “planning
questions”.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 17 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem

Let P be a planning problem. Then, L(P) =
{ω | ω is an executable linearization of some solution of P}.

Note that this definition abstracts from various problem classes
and algorithms:

STRIPS problems: correspondence is trivial (1-to-1).
POCL problems: for each POCL solution, every action
linearization is in the language.
For standard HTN planning, every executability witness of any
solution is in the language.
For HTN planning with all executability semantics, every
linearization of any solution is in the language.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 18 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem

Let P be a planning problem. Then, L(P) =
{ω | ω is an executable linearization of some solution of P}.
Note that this definition abstracts from various problem classes
and algorithms:

STRIPS problems: correspondence is trivial (1-to-1).
POCL problems: for each POCL solution, every action
linearization is in the language.
For standard HTN planning, every executability witness of any
solution is in the language.
For HTN planning with all executability semantics, every
linearization of any solution is in the language.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 18 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem

Let P be a planning problem. Then, L(P) =
{ω | ω is an executable linearization of some solution of P}.
Note that this definition abstracts from various problem classes
and algorithms:

STRIPS problems: correspondence is trivial (1-to-1).

POCL problems: for each POCL solution, every action
linearization is in the language.
For standard HTN planning, every executability witness of any
solution is in the language.
For HTN planning with all executability semantics, every
linearization of any solution is in the language.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 18 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem

Let P be a planning problem. Then, L(P) =
{ω | ω is an executable linearization of some solution of P}.
Note that this definition abstracts from various problem classes
and algorithms:

STRIPS problems: correspondence is trivial (1-to-1).
POCL problems: for each POCL solution, every action
linearization is in the language.

For standard HTN planning, every executability witness of any
solution is in the language.
For HTN planning with all executability semantics, every
linearization of any solution is in the language.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 18 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem

Let P be a planning problem. Then, L(P) =
{ω | ω is an executable linearization of some solution of P}.
Note that this definition abstracts from various problem classes
and algorithms:

STRIPS problems: correspondence is trivial (1-to-1).
POCL problems: for each POCL solution, every action
linearization is in the language.
For standard HTN planning, every executability witness of any
solution is in the language.

For HTN planning with all executability semantics, every
linearization of any solution is in the language.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 18 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem

Let P be a planning problem. Then, L(P) =
{ω | ω is an executable linearization of some solution of P}.
Note that this definition abstracts from various problem classes
and algorithms:

STRIPS problems: correspondence is trivial (1-to-1).
POCL problems: for each POCL solution, every action
linearization is in the language.
For standard HTN planning, every executability witness of any
solution is in the language.
For HTN planning with all executability semantics, every
linearization of any solution is in the language.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 18 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem, cont’d

With X we denote the set of all languages of all planning problems
of type X. For instance, ST RIPS andHT N represent all STRIPS
and HTN languages, respectively.

Formally: X := {L(P) | P is a planning problem of type X}
Example: ST RIPS = {L(P) | P is a STRIPS planning problem}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 19 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem, cont’d

With X we denote the set of all languages of all planning problems
of type X. For instance, ST RIPS andHT N represent all STRIPS
and HTN languages, respectively.

Formally: X := {L(P) | P is a planning problem of type X}

Example: ST RIPS = {L(P) | P is a STRIPS planning problem}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 19 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Prerequisites

The Language of a Planning Problem, cont’d

With X we denote the set of all languages of all planning problems
of type X. For instance, ST RIPS andHT N represent all STRIPS
and HTN languages, respectively.

Formally: X := {L(P) | P is a planning problem of type X}
Example: ST RIPS = {L(P) | P is a STRIPS planning problem}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 19 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”

Let P be a STRIPS planning planning problem with empty goal
description.

The set of solutions of this EXE (executablity) problem is exactly the
set of executable action sequences.

With EXE we refer to the language of the respective problem class.

Because of the missing goal description, EXE problems are less
expressive than the regular languages.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 20 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”

Let P be a STRIPS planning planning problem with empty goal
description.

The set of solutions of this EXE (executablity) problem is exactly the
set of executable action sequences.

With EXE we refer to the language of the respective problem class.

Because of the missing goal description, EXE problems are less
expressive than the regular languages.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 20 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”

Let P be a STRIPS planning planning problem with empty goal
description.

The set of solutions of this EXE (executablity) problem is exactly the
set of executable action sequences.

With EXE we refer to the language of the respective problem class.

Because of the missing goal description, EXE problems are less
expressive than the regular languages.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 20 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”

Let P be a STRIPS planning planning problem with empty goal
description.

The set of solutions of this EXE (executablity) problem is exactly the
set of executable action sequences.

With EXE we refer to the language of the respective problem class.

Because of the missing goal description, EXE problems are less
expressive than the regular languages.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 20 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”, cont’d

Theorem

EXE (REG

Proof:

1 Show for all L ∈ EXE that L ∈ REG. How?

Construct an
automaton.

2 Provide a language L ∈ REG with L /∈ EXE . How?

Exploit an
important property: If some plan is executable, than every prefix
is as well (due to the missing goal description).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 21 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”, cont’d

Theorem

EXE (REG

Proof:

1 Show for all L ∈ EXE that L ∈ REG. How?

Construct an
automaton.

2 Provide a language L ∈ REG with L /∈ EXE . How?

Exploit an
important property: If some plan is executable, than every prefix
is as well (due to the missing goal description).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 21 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”, cont’d

Theorem

EXE (REG

Proof:

1 Show for all L ∈ EXE that L ∈ REG. How? Construct an
automaton.

2 Provide a language L ∈ REG with L /∈ EXE . How?

Exploit an
important property: If some plan is executable, than every prefix
is as well (due to the missing goal description).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 21 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”, cont’d

Theorem

EXE (REG

Proof:

1 Show for all L ∈ EXE that L ∈ REG. How? Construct an
automaton.

2 Provide a language L ∈ REG with L /∈ EXE . How?

Exploit an
important property: If some plan is executable, than every prefix
is as well (due to the missing goal description).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 21 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Executable Action Sequences

The EXE “Planning Problem”, cont’d

Theorem

EXE (REG

Proof:

1 Show for all L ∈ EXE that L ∈ REG. How? Construct an
automaton.

2 Provide a language L ∈ REG with L /∈ EXE . How? Exploit an
important property: If some plan is executable, than every prefix
is as well (due to the missing goal description).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 21 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS

Theorem

ST RIPS (REG.

Proof:

1 Show for all L ∈ ST RIPS that L ∈ REG. How?

As before.

2 Provide a language L ∈ REG with L /∈ ST RIPS. How?

Again,
provide a finite language that cannot be expressed as a STRIPS
planning problem.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 22 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS

Theorem

ST RIPS (REG.

Proof:

1 Show for all L ∈ ST RIPS that L ∈ REG. How?

As before.

2 Provide a language L ∈ REG with L /∈ ST RIPS. How?

Again,
provide a finite language that cannot be expressed as a STRIPS
planning problem.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 22 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS

Theorem

ST RIPS (REG.

Proof:

1 Show for all L ∈ ST RIPS that L ∈ REG. How? As before.

2 Provide a language L ∈ REG with L /∈ ST RIPS. How?

Again,
provide a finite language that cannot be expressed as a STRIPS
planning problem.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 22 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS

Theorem

ST RIPS (REG.

Proof:

1 Show for all L ∈ ST RIPS that L ∈ REG. How? As before.

2 Provide a language L ∈ REG with L /∈ ST RIPS. How?

Again,
provide a finite language that cannot be expressed as a STRIPS
planning problem.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 22 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS

Theorem

ST RIPS (REG.

Proof:

1 Show for all L ∈ ST RIPS that L ∈ REG. How? As before.

2 Provide a language L ∈ REG with L /∈ ST RIPS. How? Again,
provide a finite language that cannot be expressed as a STRIPS
planning problem.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 22 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS, cont’d

For the second step in the previous proof, exploit:

Theorem

Let s ∈ S be a state and a ∈ A an action. If a is applicable in s′ (resulting
from applying a in s), then a is applicable arbitrarily often.

Proof:
Exercise (just show it directly via playing with preconditions and effects).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 23 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS, cont’d

For the second step in the previous proof, exploit:

Theorem

Let s ∈ S be a state and a ∈ A an action. If a is applicable in s′ (resulting
from applying a in s), then a is applicable arbitrarily often.

Proof:
Exercise (just show it directly via playing with preconditions and effects).

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 23 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects

Theorem

The language of STRIPS problems with conditional effects,
ST RIPS−CE , is equivalent to the regular languages,REG.

Proof:

1 For every SCE planning problem, there is an equivalent regular
language.

2 For every regular language, there is a SCE problem generating it.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 24 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects

Theorem

The language of STRIPS problems with conditional effects,
ST RIPS−CE , is equivalent to the regular languages,REG.

Proof:

1 For every SCE planning problem, there is an equivalent regular
language.

2 For every regular language, there is a SCE problem generating it.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 24 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects

Theorem

The language of STRIPS problems with conditional effects,
ST RIPS−CE , is equivalent to the regular languages,REG.

Proof:

1 For every SCE planning problem, there is an equivalent regular
language.

2 For every regular language, there is a SCE problem generating it.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 24 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.

We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.

S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.

d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.

i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.

F ⊆ S its set of final states.
We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:

Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:
Σ = A.

S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:
Σ = A.
S = 2V (in planning, the set of states is also defined as S).

d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:
Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:
Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .

Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

STRIPS with Conditional Effects, cont’d

Let P = (V ,A, sI , g) be a planning problem.
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its finite input alphabet.
S its finite set of states.
d : S × Σ→ S its state-transition function.
i its initial state.
F ⊆ S its set of final states.

We define:
Σ = A.
S = 2V (in planning, the set of states is also defined as S).
d is given by:

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

i = sI .
Every goal state s ⊇ g is included in F .

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 25 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.

We define a planning problem P = (V ,A, sI , g) with:
V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.

sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i},

g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .

A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a) = ∅
add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′} ∪ G′) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′} ∪ G′) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton.
We define a planning problem P = (V ,A, sI , g) with:

V = S ∪ {g} and g 6∈ S.
sI = {i}, g ∈ sI iff i ∈ F .
A equals the alphabet Σ and

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′} ∪ G′) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a) = {(∅ → V)}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 26 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 27 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

STRIPS and STRIPS with Conditional Effects

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE
CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 27 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Totally Ordered HTN Planning Problems

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is
similar to rule application in context-free grammars.

A

B Dc A→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward.
HT N−ORD ⊇ CFL is trivial, since no states are required.
Constraints introduced by preconditions and effects can be
treated via intersection with a regular language:

Remember that the intersection of any context-free language with
any regular language is still context-free. Thus, we can intersect
the language representing the hierarchy (which is context-free)
with one of the regular languages EXE or ST RIPS (do we
feature a goal description?) to showHT N−ORD ⊆ CFL.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 28 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Totally Ordered HTN Planning Problems

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is
similar to rule application in context-free grammars.

A

B Dc A→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward.

HT N−ORD ⊇ CFL is trivial, since no states are required.
Constraints introduced by preconditions and effects can be
treated via intersection with a regular language:

Remember that the intersection of any context-free language with
any regular language is still context-free. Thus, we can intersect
the language representing the hierarchy (which is context-free)
with one of the regular languages EXE or ST RIPS (do we
feature a goal description?) to showHT N−ORD ⊆ CFL.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 28 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Totally Ordered HTN Planning Problems

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is
similar to rule application in context-free grammars.

A

B Dc A→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward.
HT N−ORD ⊇ CFL is trivial, since no states are required.

Constraints introduced by preconditions and effects can be
treated via intersection with a regular language:

Remember that the intersection of any context-free language with
any regular language is still context-free. Thus, we can intersect
the language representing the hierarchy (which is context-free)
with one of the regular languages EXE or ST RIPS (do we
feature a goal description?) to showHT N−ORD ⊆ CFL.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 28 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Totally Ordered HTN Planning Problems

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is
similar to rule application in context-free grammars.

A

B Dc A→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward.
HT N−ORD ⊇ CFL is trivial, since no states are required.
Constraints introduced by preconditions and effects can be
treated via intersection with a regular language:

Remember that the intersection of any context-free language with
any regular language is still context-free. Thus, we can intersect
the language representing the hierarchy (which is context-free)
with one of the regular languages EXE or ST RIPS (do we
feature a goal description?) to showHT N−ORD ⊆ CFL.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 28 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Totally Ordered HTN Planning Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE
CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 29 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Totally Ordered HTN Planning Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 29 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

Acyclic HTN Problems

Informally/intuitively, acyclic HTN/TIHTN problems are problems
where no recursion is possible.

There are many equivalent formal definitions, some of them will
be covered later. For instance: For every task network that is
reachable via decomposition from the initial task network holds:
Let dt be its decomposition tree. Then, no path from its root node
to any of its leafs contains the same task more than once.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 30 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG

HT N−AC (REG
There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC
L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS
L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS

These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG
HT N−AC (REG

There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC
L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS
L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS

These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG
HT N−AC (REG
There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC
L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS
L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS

These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG
HT N−AC (REG
There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC

L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS
L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS

These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG
HT N−AC (REG
There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC
L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS

L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS
These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG
HT N−AC (REG
There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC
L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS
L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS

These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

TIHTN and Acyclic HTN Problems

The following results can easily be shown:

ST RIPS (T IHT N (REG
HT N−AC (REG
There exist the following languages L:

L ∈ ST RIPS ∩HT N−AC
L ∈ T IHT N and L ∈ ∩HT N−AC and L /∈ ∩ST RIPS
L ∈ T IHT N and L /∈ ∩HT N−AC and L /∈ ∩ST RIPS

These results rely on the presence of goal descriptions! More details
in the exercises.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 31 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 32 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−AC

T IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 32 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

Expressivity via Comparison to Formal Languages

ST RIPS

HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 32 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

TIHTN and Acyclic HTN Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 32 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered.

First class we look at:

HT N−NOOP – actions have no preconditions and effects.

Can a partially ordered method be transformed into a set of
totally ordered methods?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 33 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered.

First class we look at:

HT N−NOOP – actions have no preconditions and effects.

Can a partially ordered method be transformed into a set of
totally ordered methods?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 33 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered.

First class we look at:

HT N−NOOP – actions have no preconditions and effects.

Can a partially ordered method be transformed into a set of
totally ordered methods?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 33 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered.

First class we look at:

HT N−NOOP – actions have no preconditions and effects.

Can a partially ordered method be transformed into a set of
totally ordered methods?

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 33 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d I

HTN Grammar
E

F G

a b c d

E → FG

E → GF

F → ab

G→ cd

Word 1 cdab X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 34 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d I

HTN Grammar
E

F G

a b c d

E → FG

E → GF

F → ab

G→ cd

Word 1 cdab

X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 34 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d I

HTN Grammar
E

F G

a b c d

E → FG

E → GF

F → ab

G→ cd

Word 1 cdab X

Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 34 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d I

HTN Grammar
E

F G

a b c d

E → FG

E → GF

F → ab

G→ cd

Word 1 cdab X Word 2 acbd

X

ab||cd {abcd} ∪ {cdab}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 34 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d I

HTN Grammar
E

F G

a b c d

E → FG

E → GF

F → ab

G→ cd

Word 1 cdab X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 34 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d I

HTN Grammar
E

F G

a b c d

E → FG

E → GF

F → ab

G→ cd

Word 1 cdab X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 34 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d II

The HTN depicted below generates the language anbn||cmdm.

Using the Pumping Lemma for context-free languages, it can be
shown that this language is not context-free.

→ CFL (HT N−NOOP

E

F

F

G

Ga b c da b c d

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 35 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d II

The HTN depicted below generates the language anbn||cmdm.

Using the Pumping Lemma for context-free languages, it can be
shown that this language is not context-free.

→ CFL (HT N−NOOP

E

F

F

G

Ga b c da b c d

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 35 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Noop HTN Planning Problems, cont’d II

The HTN depicted below generates the language anbn||cmdm.

Using the Pumping Lemma for context-free languages, it can be
shown that this language is not context-free.

→ CFL (HT N−NOOP
E

F

F

G

Ga b c da b c d

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 35 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 36 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Noop HTN Planning Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD
HT N−NOOP

HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 36 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

(Unrestricted) HTN Planning Problems

HT N ⊆ CSL can be shown by providing a linear
space-bounded Turing machine (also called: LBA,
linear-bounded automaton) that decides the word problem for
every HTN problem.

HT N (CSL can be shown by the language {ap | p prime},
which cannot be produced by an HTN problem.

→ These results are just mentioned for the sake of completeness.
Proofs are omitted.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 37 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

(Unrestricted) HTN Planning Problems

HT N ⊆ CSL can be shown by providing a linear
space-bounded Turing machine (also called: LBA,
linear-bounded automaton) that decides the word problem for
every HTN problem.

HT N (CSL can be shown by the language {ap | p prime},
which cannot be produced by an HTN problem.

→ These results are just mentioned for the sake of completeness.
Proofs are omitted.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 37 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

(Unrestricted) HTN Planning Problems

HT N ⊆ CSL can be shown by providing a linear
space-bounded Turing machine (also called: LBA,
linear-bounded automaton) that decides the word problem for
every HTN problem.

HT N (CSL can be shown by the language {ap | p prime},
which cannot be produced by an HTN problem.

→ These results are just mentioned for the sake of completeness.
Proofs are omitted.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 37 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD
HT N−NOOP

HT N

CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 38 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACT IHT N

REG

REG = ST RIPS−CE

CFL

CFL = HT N−ORD
HT N−NOOP
HT N
CSL

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 38 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Extensions of Expressivity Analysis

Several results could still be investigated, e.g.:

Conditional effects in all classes, not just in STRIPS.

No-ops in all classes, not just in non-restricted HTNs.

Further restrictions on hierarchy (e.g., tail-recursive problems), cf.
chapter on complexity theory.

Even higher language features, e.g., functions.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 39 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Extensions of Expressivity Analysis

Several results could still be investigated, e.g.:

Conditional effects in all classes, not just in STRIPS.

No-ops in all classes, not just in non-restricted HTNs.

Further restrictions on hierarchy (e.g., tail-recursive problems), cf.
chapter on complexity theory.

Even higher language features, e.g., functions.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 39 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Extensions of Expressivity Analysis

Several results could still be investigated, e.g.:

Conditional effects in all classes, not just in STRIPS.

No-ops in all classes, not just in non-restricted HTNs.

Further restrictions on hierarchy (e.g., tail-recursive problems), cf.
chapter on complexity theory.

Even higher language features, e.g., functions.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 39 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Extensions of Expressivity Analysis

Several results could still be investigated, e.g.:

Conditional effects in all classes, not just in STRIPS.

No-ops in all classes, not just in non-restricted HTNs.

Further restrictions on hierarchy (e.g., tail-recursive problems), cf.
chapter on complexity theory.

Even higher language features, e.g., functions.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 39 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

(Unrestricted) HTN Planning Problems

Extensions of Expressivity Analysis

Several results could still be investigated, e.g.:

Conditional effects in all classes, not just in STRIPS.

No-ops in all classes, not just in non-restricted HTNs.

Further restrictions on hierarchy (e.g., tail-recursive problems), cf.
chapter on complexity theory.

Even higher language features, e.g., functions.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 39 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.
Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.
Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.

Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.
Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.
Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.
Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.
Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.

Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.
Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.
Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.
Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.
Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

Introduction Formal Grammars and Languages Expressivity Analysis of Planning Formalisms Summary

Summary

To choose an adequate formalism for a problem at hand, we need
to know the expressivity of the different formalisms.

Expressivity analysis studies the structural properties of the
solutions that can be generated.
Analysis abstracts from the problem size and tells little about how
hard a problem is to solve.

No-op HTNs are more expressive than STRIPS problems.
Yet No-op HTNs can be decided (plan existence) in P, whereas
STRIPS problems are PSPACE− complete (see chapter on
complexity theory).

The comparison to formal grammars is independent of
lifting/grounding!

Our analysis reveals interesting relationships between standard
problems in formal grammars/languages and planning.

Chapter: Expressivity Analysis of Planning Formalisms by Dr. Pascal Bercher Winter Term 2018/2019 40 / 40

	Introduction
	Formal Grammars and Languages
	A Quick Recap from Complexity Theory
	Formal Grammars/Languages and the Relation to Planning

	Expressivity Analysis of Planning Formalisms
	Prerequisites
	Executable Action Sequences
	STRIPS and STRIPS with Conditional Effects
	Totally Ordered HTN Planning Problems
	TIHTN and Acyclic HTN Problems
	Noop HTN Planning Problems
	(Unrestricted) HTN Planning Problems

	Summary

