
Lecture Hierarchical Planning

Chapter:
Solving Hierarchical Problems via Search

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 19, 2019)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Overview:

1 Introduction
Solving Techniques
Running Example

2 HTN Progression Search
Introduction
Algorithm
Properties
Excursions

3 Decomposition-Based HTN Planning
Introduction
Prerequisites of Algorithm
Algorithm
Properties
Excursions

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 2 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like

SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).

ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).

Many more (what ever problem (class) fits to the current problem).

Search:

Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:

Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:
Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.

(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:
Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.

Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Solving Techniques

How to Solve Hierarchical Planning Problems?

Via reduction, i.e., compilation to other problems like
SAT, i.e., Satisfiability (later in this lecture).
ASP, i.e., Answer Set Programming (not covered).
Many more (what ever problem (class) fits to the current problem).

Search:
Forward progression search in the space of world state – plus the
remaining task network to go thereby extending classical planning.
(Regression-like) search in the space of partial plans – extends
POCL planning to deal with abstract tasks.
Local search (not covered).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 3 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

High-Level Description of Example Domain

We have a delivery domain consisting of four locations, A, . . . ,D.

A can be reached from B and vice versa. Similar for C and D.

There are two trucks and two packages.

Trucks can load and unload packages.

ö A 4

B

P1 T1 D

ö C 4P2 T2

We model the respective domain and problem as an HTN problem.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

High-Level Description of Example Domain

We have a delivery domain consisting of four locations, A, . . . ,D.

A can be reached from B and vice versa. Similar for C and D.

There are two trucks and two packages.

Trucks can load and unload packages.

ö A 4

B

P1 T1 D

ö C 4P2 T2

We model the respective domain and problem as an HTN problem.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

High-Level Description of Example Domain

We have a delivery domain consisting of four locations, A, . . . ,D.

A can be reached from B and vice versa. Similar for C and D.

There are two trucks and two packages.

Trucks can load and unload packages.

ö A 4

B

P1 T1 D

ö C 4P2 T2

We model the respective domain and problem as an HTN problem.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

High-Level Description of Example Domain

We have a delivery domain consisting of four locations, A, . . . ,D.

A can be reached from B and vice versa. Similar for C and D.

There are two trucks and two packages.

Trucks can load and unload packages.

ö A 4

B

P1 T1 D

ö C 4P2 T2

We model the respective domain and problem as an HTN problem.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

High-Level Description of Example Domain

We have a delivery domain consisting of four locations, A, . . . ,D.

A can be reached from B and vice versa. Similar for C and D.

There are two trucks and two packages.

Trucks can load and unload packages.

ö A 4

B

P1 T1 D

ö C 4P2 T2

We model the respective domain and problem as an HTN problem.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 4 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

Graphical Illustration of Domain Model

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 5 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

deliver(p, l2)

get-to(v , l1) pick -up(v , l1, p) get-to(v , l2) drop(v , l2, p)

m-deliver(p, l1, l2, v)

get-to(v , l2)

drive(v , l1, l2)

m-direct(v , l1, l2)

l1 6= l2

get-to(v , l2)

get-to(v , l1) drive(v , l1, l2)

m-via(v , l1, l2)

l1 6= l2

get-to(v , l)

no-op()

m-noop(v , l)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Running Example

Formal Action Model

drive(v , l1, l2)
at(v , l1)

road(l1, l2) at(v , l2)
¬at(v , l1)

no-op()

pick -up(v , l, p)at(v , l)
at(p, l) ¬at(p, l)

in(p, v)

drop(v , l, p)at(v , l)
in(p, v) at(p, l)

¬in(p, v)

Assume the following sorts/types: v – vehicle, l, l1, l2 – location,
and p – package. Further assume that constants of the respective
sorts/types are provided.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 6 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.

A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?

→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?
→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?
→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?

→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?
→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?
→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

HTN progression search behaves similar to classical planning, but performs both
search in the space of states and in the space of task networks:

We maintain a current state, starting with the initial state.

In addition, maintain a current task network, starting with the initial one.

To perform progression, we identify the set of tasks without predecessors.
Only those can get applied:

A primitive task gets applied to the current state as usual.
A compound task gets “applied” by decomposing it.

When are we done? What are the termination criteria?
→ The current task network is empty!

Thus, progression HTN planning produces totally ordered solutions!
Reminder: Technically they are not even solutions. Why?
→ In the general case, these totally ordered action sequences can not be
obtained via decomposition. They are witnesses of solutions, though.

Note: The standard progression algorithm, SHOP2, relies on preconditions
of methods. (We only discuss this briefly here.)

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 7 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Pseudo Code

Algorithm: HTN Progression Search
Input: An HTN problem P = (V ,P, δ,C,M, sI , tnI)
Output: A solution ā or fail if none exists

1 fringe← {(sI , tnI , ε)}
2 while fringe 6= ∅ do
3 n = (s, tn, ā)← nodeSelectAndRemove(fringe)
4 if tn is empty then
5 return ā

6 else
7 U ← detectUnconstrainedSteps(tn)
8 for t ∈ U do
9 if isPrimitive(t) and pre(t) ⊆ s then

10 fringe← fringe ∪ {n.apply(t)}
11 else if isCompound(t) then
12 fringe← fringe ∪ {n.decompose(t,m) |

m ∈ M with m = (α(t), tnm)}

13 return fail

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 8 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

=

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺ ≺

≺

≺ ≺

...
...

...
...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op(), no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1 P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2)

get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2)

get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D)

drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1

4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D)

drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2), drive(T2,C,D))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1

4T2P2ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2), drive(T2,C,D), drop(T2,D,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 9 / 28

A

B C

D

4T1

4T2P2ö

P1ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2), drive(T2,C,D), drop(T2,D,P2), drop(T1,B,P1))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Pseudo Code of Standard HTN Progression Search – Can We Do Better?

Algorithm: HTN Progression Search
Input: An HTN problem P = (V ,P, δ,C,M, sI , tnI)
Output: A solution ā or fail if none exists

1 fringe← {(sI , tnI , ε)}
2 while fringe 6= ∅ do
3 n = (s, tn, ā)← nodeSelectAndRemove(fringe)
4 if tn is empty then
5 return ā

6 else
7 U ← detectUnconstrainedSteps(tn)
8 for t ∈ U do
9 if isPrimitive(t) and pre(t) ⊆ s then

10 fringe← fringe ∪ {n.apply(t)}
11 else if isCompound(t) then
12 fringe← fringe ∪ {n.decompose(t,m) |

m ∈ M with m = (α(t), tnm)}

13 return fail

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 10 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Eliminating Redundancy in Progression Search

The previous algorithm branches over:

All applicable primitive tasks.
All decomposition methods for all compound tasks.

We have to decompose all compound tasks and – in contrast to
action application – the order in which they are handled has no
influence on the resulting solutions.

→ It’s also correct to pick an abstract task!

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 11 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Eliminating Redundancy in Progression Search

The previous algorithm branches over:
All applicable primitive tasks.

All decomposition methods for all compound tasks.

We have to decompose all compound tasks and – in contrast to
action application – the order in which they are handled has no
influence on the resulting solutions.

→ It’s also correct to pick an abstract task!

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 11 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Eliminating Redundancy in Progression Search

The previous algorithm branches over:
All applicable primitive tasks.
All decomposition methods for all compound tasks.

We have to decompose all compound tasks and – in contrast to
action application – the order in which they are handled has no
influence on the resulting solutions.

→ It’s also correct to pick an abstract task!

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 11 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Eliminating Redundancy in Progression Search

The previous algorithm branches over:
All applicable primitive tasks.
All decomposition methods for all compound tasks.

We have to decompose all compound tasks and – in contrast to
action application – the order in which they are handled has no
influence on the resulting solutions.

→ It’s also correct to pick an abstract task!

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 11 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Eliminating Redundancy in Progression Search

The previous algorithm branches over:
All applicable primitive tasks.
All decomposition methods for all compound tasks.

We have to decompose all compound tasks and – in contrast to
action application – the order in which they are handled has no
influence on the resulting solutions.

→ It’s also correct to pick an abstract task!

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 11 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Pseudo Code

Algorithm: HTN Progression Search
Input: An HTN problem P = (V ,P, δ,C,M, sI , tnI)
Output: A solution ā or fail if none exists

1 fringe← {(sI , tnI , ε)}
2 while fringe 6= ∅ do
3 n = (s, tn, ā)← nodeSelectAndRemove(fringe)
4 if tn is empty then
5 return ā

6 else
7 (UP ,UC)← detectUnconstrainedSteps(tn)
8 for t ∈ UP do
9 if pre(t) ⊆ s then

10 fringe← fringe ∪ {n.apply(t)}

11 t ← compoundTaskSelect(UC)
12 fringe← fringe ∪ {n.decompose(t,m) |

m ∈ M with m = (α(t), tnm)}

13 return fail

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 12 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺...

...
...

...
...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺ ≺

...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺ ≺

...

...
...

...
...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

≺ ≺ ≺

...
...

...
...

...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺ ≺ ≺

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺

≺ ≺

...
...

...
...

...

π = ()

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺

≺

≺ ≺

...
...

...

...
...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺

...
...

...

...
...

π = (no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

≺ ≺

...
...

...
...

...

π = (no-op(), no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2)

get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2)

get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1

4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D)

drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D)

drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

DP1ö 4T1 4T2

deliver(P1,B)

get-to(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D)

drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op())

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

D4T1 4T2

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D)

drop(T2,D,P2)

no-op() drive(T2,C,D)

≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

D4T1 4T2P2ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

D4T1 4T2P2ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

D4T1 4T2P2ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

D

4T1

4T2P2ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B)

drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2), drive(T1,A,B))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Improved HTN Progression, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 13 / 28

A

B C

D

4T1

4T2P2ö

P1ö

deliver(P1,B)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2), drive(T1,A,B), drop(T1,B,P1)))

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Properties

Properties

Theorem

HTN progression search is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove().

Proof:
Follows from the properties of the underlying search algorithm.
However:

Be aware that the transition system is not finite!

We need to argue why the restricted algorithm is still complete
although not branching over all choices.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Properties

Properties

Theorem

HTN progression search is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove().

Proof:
Follows from the properties of the underlying search algorithm.
However:

Be aware that the transition system is not finite!

We need to argue why the restricted algorithm is still complete
although not branching over all choices.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 14 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else
use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).

Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else
use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else
use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise

if ψ holds in s, use method mj for task t , else
use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else

use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else
use method mk for task t .

Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else
use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

SHOP/SHOP2 and Method Preconditions

One of the best-known (and still in use) HTN planners is SHOP2,
which performs progression search.

SHOP, the predecessor of SHOP2, can only cope with totally
ordered methods (and a totally ordered initial task network).
Both SHOP and SHOP2 perform by default depth-first search and
specify in which order decomposition methods should be applied.
This order relies on additional preconditions, e.g.:

If ϕ holds in s, use method mi for task t , otherwise
if ψ holds in s, use method mj for task t , else
use method mk for task t .
Note: these valuations can be arbitrary program calls.

Note the semantical difference of method preconditions in
total-order HTN probelms (i.e., SHOP) versus partial-order HTN
problems (i.e, SHOP2).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 15 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:

Progression search is also applicable for TIHTN problems.
The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description:

Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints:

They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:
Progression search is also applicable for TIHTN problems.

The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description:

Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints:

They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:
Progression search is also applicable for TIHTN problems.
The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description:

Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints:

They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:
Progression search is also applicable for TIHTN problems.
The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description:

Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints:

They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:
Progression search is also applicable for TIHTN problems.
The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description: Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints:

They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:
Progression search is also applicable for TIHTN problems.
The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description: Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints:

They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Further Extensions

TIHTN problems:
Progression search is also applicable for TIHTN problems.
The only required extension is that in addition to progressing
compound or primitive tasks in the task network we can also apply
primitive tasks from the model.

Goal description: Add the criterion that the current state needs to
be a goal state (in addition to the current task network being
empty).

State constraints: They can simply be tracked as well (and
removed as soon as satisfied) in accordance to the definition
given in the lecture.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 16 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

Progression search commits to executable linearizations, similar
to classical planning.

In particular if a problem admits solutions with many
linearizations, this approach might suffer from large search
spaces.

An alternative is decomposition-based HTN planning (also: plan
space-based planning or hybrid planning), which extends POCL
planning by the necessary concepts from hierarchical planning.

Terminology:

In the remainder, we will fuse the terminologies from POCL
planning with those from HTN planning.

Rather than talking about task networks, we refer to them as
partial plans.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 17 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

Progression search commits to executable linearizations, similar
to classical planning.

In particular if a problem admits solutions with many
linearizations, this approach might suffer from large search
spaces.

An alternative is decomposition-based HTN planning (also: plan
space-based planning or hybrid planning), which extends POCL
planning by the necessary concepts from hierarchical planning.

Terminology:

In the remainder, we will fuse the terminologies from POCL
planning with those from HTN planning.

Rather than talking about task networks, we refer to them as
partial plans.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 17 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

Progression search commits to executable linearizations, similar
to classical planning.

In particular if a problem admits solutions with many
linearizations, this approach might suffer from large search
spaces.

An alternative is decomposition-based HTN planning (also: plan
space-based planning or hybrid planning), which extends POCL
planning by the necessary concepts from hierarchical planning.

Terminology:

In the remainder, we will fuse the terminologies from POCL
planning with those from HTN planning.

Rather than talking about task networks, we refer to them as
partial plans.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 17 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

Progression search commits to executable linearizations, similar
to classical planning.

In particular if a problem admits solutions with many
linearizations, this approach might suffer from large search
spaces.

An alternative is decomposition-based HTN planning (also: plan
space-based planning or hybrid planning), which extends POCL
planning by the necessary concepts from hierarchical planning.

Terminology:

In the remainder, we will fuse the terminologies from POCL
planning with those from HTN planning.

Rather than talking about task networks, we refer to them as
partial plans.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 17 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Introduction

Introduction

Progression search commits to executable linearizations, similar
to classical planning.

In particular if a problem admits solutions with many
linearizations, this approach might suffer from large search
spaces.

An alternative is decomposition-based HTN planning (also: plan
space-based planning or hybrid planning), which extends POCL
planning by the necessary concepts from hierarchical planning.

Terminology:

In the remainder, we will fuse the terminologies from POCL
planning with those from HTN planning.

Rather than talking about task networks, we refer to them as
partial plans.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 17 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Extensions to POCL Planning, New Flaws

New flaws:
Compound task flaw:

Each compound task needs to be refined, thus raises an flaw.
For each abstract task flaw, the set of modifications equals the set
of methods for that task.

Any further flaws?

No, but we need to alter the remaining flaws
and modifications.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Extensions to POCL Planning, New Flaws

New flaws:
Compound task flaw:

Each compound task needs to be refined, thus raises an flaw.

For each abstract task flaw, the set of modifications equals the set
of methods for that task.

Any further flaws?

No, but we need to alter the remaining flaws
and modifications.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Extensions to POCL Planning, New Flaws

New flaws:
Compound task flaw:

Each compound task needs to be refined, thus raises an flaw.
For each abstract task flaw, the set of modifications equals the set
of methods for that task.

Any further flaws?

No, but we need to alter the remaining flaws
and modifications.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Extensions to POCL Planning, New Flaws

New flaws:
Compound task flaw:

Each compound task needs to be refined, thus raises an flaw.
For each abstract task flaw, the set of modifications equals the set
of methods for that task.

Any further flaws?

No, but we need to alter the remaining flaws
and modifications.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Extensions to POCL Planning, New Flaws

New flaws:
Compound task flaw:

Each compound task needs to be refined, thus raises an flaw.
For each abstract task flaw, the set of modifications equals the set
of methods for that task.

Any further flaws? No, but we need to alter the remaining flaws
and modifications.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 18 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.

In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.
In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.
Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.
In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.
In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.
Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.
In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.

In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.
Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.
In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.
In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.
Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.
In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.
In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.
Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.
In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.
In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.

Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions

Open precondition flaw:

As in POCL planning, each precondition without causal link raises an
open precondition flaw.
In POCL planning, we provided one modification for each possible
producer:

In the current partial plan: only add causal link.
In the model: add action plus link.

In hybrid planning, we also provide one modification for each
possible producer:

Producer is already in the current partial plan: only add causal link.
Producer could be added via decomposing a compound task:
decompose with the respective methods (more details later).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 19 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d I

Let (PS,≺,CL, α) be a partial plan (where a plan step ps ∈ PS can
also contain compound tasks, α(ps) ∈ P ∪ C).

Let ps ∈ PS a primitive plan step with open condition (v , ps) an
open precondition flaw.

Let ps′ ∈ PS be compound (i.e., α(ps′) ∈ C) and possibly be
ordered before ps (i.e., (ps, ps′) 6∈ ≺).

What to do exactly to offer modifications that address/resolve (v , ps)?

Only checking the very next level of α(ps′) (i.e., the tasks in the
methods of α(ps′)) is not sufficient and might lead to an
incomplete algorithm.

We need a mapping from each compound task to each reachable
state variable. For efficiency reasons, this has to be done once in
a preprocessing step.

How to deal with cylces?

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d I

Let (PS,≺,CL, α) be a partial plan (where a plan step ps ∈ PS can
also contain compound tasks, α(ps) ∈ P ∪ C).

Let ps ∈ PS a primitive plan step with open condition (v , ps) an
open precondition flaw.

Let ps′ ∈ PS be compound (i.e., α(ps′) ∈ C) and possibly be
ordered before ps (i.e., (ps, ps′) 6∈ ≺).

What to do exactly to offer modifications that address/resolve (v , ps)?

Only checking the very next level of α(ps′) (i.e., the tasks in the
methods of α(ps′)) is not sufficient and might lead to an
incomplete algorithm.

We need a mapping from each compound task to each reachable
state variable. For efficiency reasons, this has to be done once in
a preprocessing step.

How to deal with cylces?

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d I

Let (PS,≺,CL, α) be a partial plan (where a plan step ps ∈ PS can
also contain compound tasks, α(ps) ∈ P ∪ C).

Let ps ∈ PS a primitive plan step with open condition (v , ps) an
open precondition flaw.

Let ps′ ∈ PS be compound (i.e., α(ps′) ∈ C) and possibly be
ordered before ps (i.e., (ps, ps′) 6∈ ≺).

What to do exactly to offer modifications that address/resolve (v , ps)?

Only checking the very next level of α(ps′) (i.e., the tasks in the
methods of α(ps′)) is not sufficient and might lead to an
incomplete algorithm.

We need a mapping from each compound task to each reachable
state variable. For efficiency reasons, this has to be done once in
a preprocessing step.

How to deal with cylces?

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d I

Let (PS,≺,CL, α) be a partial plan (where a plan step ps ∈ PS can
also contain compound tasks, α(ps) ∈ P ∪ C).

Let ps ∈ PS a primitive plan step with open condition (v , ps) an
open precondition flaw.

Let ps′ ∈ PS be compound (i.e., α(ps′) ∈ C) and possibly be
ordered before ps (i.e., (ps, ps′) 6∈ ≺).

What to do exactly to offer modifications that address/resolve (v , ps)?

Only checking the very next level of α(ps′) (i.e., the tasks in the
methods of α(ps′)) is not sufficient and might lead to an
incomplete algorithm.

We need a mapping from each compound task to each reachable
state variable. For efficiency reasons, this has to be done once in
a preprocessing step.

How to deal with cylces?

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d I

Let (PS,≺,CL, α) be a partial plan (where a plan step ps ∈ PS can
also contain compound tasks, α(ps) ∈ P ∪ C).

Let ps ∈ PS a primitive plan step with open condition (v , ps) an
open precondition flaw.

Let ps′ ∈ PS be compound (i.e., α(ps′) ∈ C) and possibly be
ordered before ps (i.e., (ps, ps′) 6∈ ≺).

What to do exactly to offer modifications that address/resolve (v , ps)?

Only checking the very next level of α(ps′) (i.e., the tasks in the
methods of α(ps′)) is not sufficient and might lead to an
incomplete algorithm.

We need a mapping from each compound task to each reachable
state variable. For efficiency reasons, this has to be done once in
a preprocessing step.

How to deal with cylces?

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d I

Let (PS,≺,CL, α) be a partial plan (where a plan step ps ∈ PS can
also contain compound tasks, α(ps) ∈ P ∪ C).

Let ps ∈ PS a primitive plan step with open condition (v , ps) an
open precondition flaw.

Let ps′ ∈ PS be compound (i.e., α(ps′) ∈ C) and possibly be
ordered before ps (i.e., (ps, ps′) 6∈ ≺).

What to do exactly to offer modifications that address/resolve (v , ps)?

Only checking the very next level of α(ps′) (i.e., the tasks in the
methods of α(ps′)) is not sufficient and might lead to an
incomplete algorithm.

We need a mapping from each compound task to each reachable
state variable. For efficiency reasons, this has to be done once in
a preprocessing step.

How to deal with cylces?
Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 20 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d II

Let ps ∈ PS be (primitive), ps′ ∈ PS (compound), and (v , ps) (open condition)
as before.

Let the planning problem be acyclic. Then, we can offer one modification for
each producer for (v , ps). Note that this might include applying methods
over several levels of abstraction at once.

Let the planning problem be cyclic. With the previous strategy, there might
be infinitely many modifications. Otherwise, we might become incomplete:

B

... 1
v

A

AA C 2
v

psv → Only offering two modifi-
cations (one for A and one
for B) will wrongly prevent
the planner from inserting C
arbitrarily often.

Solution (in such cyclic cases): We just decompose A, but without resolving
the open precondition flaw. So, how many modifications do we get here?

Three! Two of them do insert a link and hence resolve the flaw.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 21 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d II

Let ps ∈ PS be (primitive), ps′ ∈ PS (compound), and (v , ps) (open condition)
as before.

Let the planning problem be cyclic. With the previous strategy, there might
be infinitely many modifications. Otherwise, we might become incomplete:

B

... 1
v

A

AA C 2
v

psv → Only offering two modifi-
cations (one for A and one
for B) will wrongly prevent
the planner from inserting C
arbitrarily often.

Solution (in such cyclic cases): We just decompose A, but without resolving
the open precondition flaw. So, how many modifications do we get here?

Three! Two of them do insert a link and hence resolve the flaw.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 21 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d II

Let ps ∈ PS be (primitive), ps′ ∈ PS (compound), and (v , ps) (open condition)
as before.

Let the planning problem be cyclic. With the previous strategy, there might
be infinitely many modifications. Otherwise, we might become incomplete:

B

... 1
v

A

AA C 2
v

psv → Only offering two modifi-
cations (one for A and one
for B) will wrongly prevent
the planner from inserting C
arbitrarily often.

Solution (in such cyclic cases): We just decompose A, but without resolving
the open precondition flaw. So, how many modifications do we get here?

Three! Two of them do insert a link and hence resolve the flaw.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 21 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d II

Let ps ∈ PS be (primitive), ps′ ∈ PS (compound), and (v , ps) (open condition)
as before.

Let the planning problem be cyclic. With the previous strategy, there might
be infinitely many modifications. Otherwise, we might become incomplete:

B

... 1
v

A

AA C 2
v

psv → Only offering two modifi-
cations (one for A and one
for B) will wrongly prevent
the planner from inserting C
arbitrarily often.

Solution (in such cyclic cases): We just decompose A, but without resolving
the open precondition flaw. So, how many modifications do we get here?

Three! Two of them do insert a link and hence resolve the flaw.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 21 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Open Preconditions, cont’d II

Let ps ∈ PS be (primitive), ps′ ∈ PS (compound), and (v , ps) (open condition)
as before.

Let the planning problem be cyclic. With the previous strategy, there might
be infinitely many modifications. Otherwise, we might become incomplete:

B

... 1
v

A

AA C 2
v

psv → Only offering two modifi-
cations (one for A and one
for B) will wrongly prevent
the planner from inserting C
arbitrarily often.

Solution (in such cyclic cases): We just decompose A, but without resolving
the open precondition flaw. So, how many modifications do we get here?

Three! Two of them do insert a link and hence resolve the flaw.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 21 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound:

If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:

Promotion and Demotion:

Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why?

Because it orders all sub tasks rather than
just those required for eliminating the treatening step.

Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.

If ps′′ is compound:

If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:

Promotion and Demotion:

Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why?

Because it orders all sub tasks rather than
just those required for eliminating the treatening step.

Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:

Promotion and Demotion:

Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why?

Because it orders all sub tasks rather than
just those required for eliminating the treatening step.

Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:

Promotion and Demotion:

Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why?

Because it orders all sub tasks rather than
just those required for eliminating the treatening step.

Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:
Promotion and Demotion:

Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why?

Because it orders all sub tasks rather than
just those required for eliminating the treatening step.

Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:
Promotion and Demotion: Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why?

Because it orders all sub tasks rather than
just those required for eliminating the treatening step.
Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:
Promotion and Demotion: Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why? Because it orders all sub tasks rather than
just those required for eliminating the treatening step.

Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:
Promotion and Demotion: Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why? Because it orders all sub tasks rather than
just those required for eliminating the treatening step.
Decomposition: Could we just choose decompositions that
prevent deleting v?

No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Prerequisites of Algorithm

Alterations to POCL Planning, Causal Threats

Let ps, ps′ ∈ PS be primitive tasks sharing a causal link (ps, v , ps′).
When does a further step ps′′ ∈ PS threaten that causal link?

If ps′′ is primitive: Just as in POCL planning.
If ps′′ is compound: If there is some primitive task reachable with
v in its delete list (and the ordering restrictions as usual).

Modifications if ps′′ is compound:
Promotion and Demotion: Doing this is correct and resolves the
flaw, but introduces non-systematicity and violates least
commitment. Why? Because it orders all sub tasks rather than
just those required for eliminating the treatening step.
Decomposition: Could we just choose decompositions that
prevent deleting v? No!
ps

v
ps′

v
A

DCBCA
¬v

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 22 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Pseudo Code

Algorithm: Plan space-based HTN Search
Input: An HTN problem P = (V ,P, δ,C,M, sI , tnI)
Output: A solution plan or fail.

1 fringe = {PI} // Created from tnI as seen in first lecture.
2 while fringe 6= ∅ do
3 P := nodeSelectAndRemove(()fringe)
4 F := flawDetection(P)
5 if F = ∅ then return P
6 f := flawSelection(F)
7 fringe := {applyModification(m, f) | m is a modification for f}
8 return fail

Note: Syntactically, this algorithm looks exactly like the POCL
algorithm, but with flaws/modifications altered accordingly.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 23 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

deliver (P1,B)

deliver (P2,D)

...

...
...

...
...

Flaws Modifications

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

deliver (P1,B)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)
< <<

deliver (P2,D)

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)
< < <

...

...
...

...
...

Flaws Modifications
compound task: deliver(P1,B) decompose with m-deliver(P1,A,B, T1)
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

deliver (P1,B)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)
< <<

deliver (P2,D)

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)
< < <

...

...
...

...
...

Flaws Modifications
compound task: deliver(P1,B) decompose with m-deliver(P1,A,B, T1)
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(P1,A) of pick-up(T1,A,P1) insert causal link from init
compound task: get-to(T1,B) decompose with m-direct(T1,A,B)

decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T1,A,P1)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(P1,A) of pick-up(T1,A,P1) insert causal link from init
compound task: get-to(T1,B) decompose with m-direct(T1,A,B)

decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T1,A,P1)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T1,A,P1)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T 1,A,P1)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: road(A,B) of drive(T1,A,B) insert causal link from init
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: road(A,B) of drive(T1,A,B) insert causal link from init
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

drive(T1,B,A)

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
open prec: at(T1,B) of drive(T1,B,A) —
open prec.: road(B,A) of drive(T1,B,A) insert causal link from init
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init

insert causal link from drive(T1,B,A)
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init

insert causal link from drive(T1,B,A)
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

drive(T1,B,A)

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
open prec: at(T1,B) of drive(T1,B,A) —
open prec.: road(B,A) of drive(T1,B,A) insert causal link from init
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init

insert causal link from drive(T1,B,A)
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init

insert causal link from drive(T1,B,A)
.

This partial plan can be discarded, because it has a flaw without modifications

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <

no-op()

<

...

...
...

...
...
...

Flaws Modifications
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <

no-op()

<

...

...
...

...
...
...

Flaws Modifications
.

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Plan Space-based HTN Planning, Example

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 24 / 28

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <

no-op()

<

...

...
...

...
...

Flaws Modifications

This partial plan has no flaws, so it is a solution and returned

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Algorithm

Flaw Selection Strategies

Many of the flaw selection strategies for POCL planning can be
reused for plan space-based HTN planning.

As for POCL planning, one good possibility is LCFR. Further
strategies might be discussed in the exercises.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 25 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Properties

Properties

Theorem

Plan space-based search is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove().

Proof:
Follows from the properties of the underlying search algorithm.
However:

Be aware that the transition system is not finite!

We had to show that for each flaw, all possible ways to resolve it
are generated and that no unintended side effects occur such as
being overly restrictive thereby unintentionally ruling out solutions.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Properties

Properties

Theorem

Plan space-based search is sound and complete.

The completeness, however, depends on the deployed search
strategy, i.e., the implementation of nodeSelectAndRemove().

Proof:
Follows from the properties of the underlying search algorithm.
However:

Be aware that the transition system is not finite!

We had to show that for each flaw, all possible ways to resolve it
are generated and that no unintended side effects occur such as
being overly restrictive thereby unintentionally ruling out solutions.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 26 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions:

They can be handled via compilation.
How?

Exercise!

TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How?

Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!

TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.

The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description:

Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description: Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description: Just add the artificial goal action as in POCL
planning.

State constraints:

Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description: Just add the artificial goal action as in POCL
planning.

State constraints: Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Excursions

Extensions

Method preconditions: They can be handled via compilation.
How? Exercise!
TIHTN problems:

Plan space-based search is also applicable for TIHTN problems.
The only required extension is to re-enable action insertion as in
POCL planning.

Goal description: Just add the artificial goal action as in POCL
planning.

State constraints: Unclear/not yet implemented/published.

Extension to hybrid planning, where compound tasks show
preconditions and effects as well: Discussed at the end of the
lecture if time.

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 27 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Summary

Again, do not mistake hierarchical planning algorithms as “just
another algorithm for solving planning problems” – they are
required to solve hierarchical problems, which are more
expressive than non-hierarchical ones (confer last lecture!).

Similar to solving non-hierarchical problems,

planning as search is one of the standard approaches for solving
hierarchical planning problems,
there is progression-based search in the space of states (plus the
remaining task network),
search in the space of partial plans, and
both approaches rely on heuristics to guide search (next lecture).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Summary

Again, do not mistake hierarchical planning algorithms as “just
another algorithm for solving planning problems” – they are
required to solve hierarchical problems, which are more
expressive than non-hierarchical ones (confer last lecture!).
Similar to solving non-hierarchical problems,

planning as search is one of the standard approaches for solving
hierarchical planning problems,
there is progression-based search in the space of states (plus the
remaining task network),
search in the space of partial plans, and
both approaches rely on heuristics to guide search (next lecture).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Summary

Again, do not mistake hierarchical planning algorithms as “just
another algorithm for solving planning problems” – they are
required to solve hierarchical problems, which are more
expressive than non-hierarchical ones (confer last lecture!).
Similar to solving non-hierarchical problems,

planning as search is one of the standard approaches for solving
hierarchical planning problems,

there is progression-based search in the space of states (plus the
remaining task network),
search in the space of partial plans, and
both approaches rely on heuristics to guide search (next lecture).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Summary

Again, do not mistake hierarchical planning algorithms as “just
another algorithm for solving planning problems” – they are
required to solve hierarchical problems, which are more
expressive than non-hierarchical ones (confer last lecture!).
Similar to solving non-hierarchical problems,

planning as search is one of the standard approaches for solving
hierarchical planning problems,
there is progression-based search in the space of states (plus the
remaining task network),

search in the space of partial plans, and
both approaches rely on heuristics to guide search (next lecture).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Summary

Again, do not mistake hierarchical planning algorithms as “just
another algorithm for solving planning problems” – they are
required to solve hierarchical problems, which are more
expressive than non-hierarchical ones (confer last lecture!).
Similar to solving non-hierarchical problems,

planning as search is one of the standard approaches for solving
hierarchical planning problems,
there is progression-based search in the space of states (plus the
remaining task network),
search in the space of partial plans, and

both approaches rely on heuristics to guide search (next lecture).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 28

Introduction HTN Progression Search Decomposition-Based HTN Planning Summary

Summary

Again, do not mistake hierarchical planning algorithms as “just
another algorithm for solving planning problems” – they are
required to solve hierarchical problems, which are more
expressive than non-hierarchical ones (confer last lecture!).
Similar to solving non-hierarchical problems,

planning as search is one of the standard approaches for solving
hierarchical planning problems,
there is progression-based search in the space of states (plus the
remaining task network),
search in the space of partial plans, and
both approaches rely on heuristics to guide search (next lecture).

Chapter: Solving Hierarchical Problems via Search by Dr. Pascal Bercher Winter Term 2018/2019 28 / 28

	Introduction
	Solving Techniques
	Running Example

	HTN Progression Search
	Introduction
	Algorithm
	Properties
	Excursions

	Decomposition-Based HTN Planning
	Introduction
	Prerequisites of Algorithm
	Algorithm
	Properties
	Excursions

	Summary

