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Recap on Search in Non-hierarchical Planning

m In planning as search, we rely upon heuristics to guide search.

m With the right combination of algorithm and heuristic, we can also
provide optimality guarantees.

m In classical planning, heuristics estimate the number of actions
(or their costs) that need to be applied to reach a goal state.

m In POCL planning, heuristics could also estimate the number of
required modifications (which, in addition to task insertion, may
estimate the number of ordering constraints and causal links that
need to be added).
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What about Search in Hierarchical Planning?

What'’s the different to hierarchical planning?

= In general, we don’t have a goal description.

m In general, we don’t allow task insertion, i.e., rather than
estimating which tasks to insert we need to estimate how to
decompose.

m We always have a task network (or partial plan), instead of/in
addition to the initial state.

= We have to deal with the partial order.

= We have to deal with abstract tasks (see above).

= Additional challenges for decomposition-based planning:

= There is no current state, only the current partial plan.
m Search nodes get bigger and bigger. Thus, paradoxically, the
problem gets harder the closer we approach a solution.
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Introduction

= Many heuristics base upon the so-called task decomposition
graph (TDG).

m ltis basically an explicit data structure showing how the (ground)
methods interact.

= Recap: the decomposition tree (DT) is the representation of the
decompositional structure of a single task network.

m In contrast, the decomposition graph represents the planning
domain (cf. introductory chapter).

m Due to possibly cyclic methods, DTs are in general no sub
structures of TDGs.
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Example

The Task Decomposition Graph (TDG) represents how tasks can be
decomposed:

A TDG is a bipartite graph G

/ \ N N e B it
/@\A
A
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The Task Decomposition Graph (TDG) represents how tasks can be

decomposed:
fo A TDG is a bipartite graph G
/ \ (N7, N, E(1.my, Em, 7)) with
my my m Nr, the task nodes,

/4% A m Ny, the method nodes,
® E(r um), the action edges,
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Example

The Task Decomposition Graph (TDG) represents how tasks can be
decomposed:

A TDG is a bipartite graph G

ANy
A&A
/ \ / \
A \A

Ny, the method nodes,
E(r,m), the action edges,

E(m,1), the method edges.
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Prerequisites of Formal Definition

m Although we primarily focus on propositional (or ground) (TI)HTN
problems, we define the ground TDG based on a lifted model.
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Prerequisites of Formal Definition

m Although we primarily focus on propositional (or ground) (TI)HTN
problems, we define the ground TDG based on a lifted model.

m Here, the representation relies on a quantifier-free first-order
predicate logic L.

m Among others, decomposition methods are lifted:
(¢(7), thm, VCpm) € M means:

m t(7) is a task name followed by its parameter list (which are terms,
i.e., variables or constants).

m ing is a task network of the form (T, <, VC, &), which now
contains a set of variable constraints VC.

m VC, is also a set of variable constraints to relate the variables in 7
to the variables in tny,.

= Groundyc(tn) denotes the set of all possible groundings of tn by
also taking into account the variable constraints VC.
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Let P = (D, s, ¢/) with D = (L, P, d, C, M) be an HTN planning problem.
The graph G = (Vr, Vm, Er—m, Em— 1) is called the TDG of P if it holds:

base case (task vertex for the given task)
¢ € V7, the TDG's root.
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Let P = (D, s, ¢/) with D = (L, P, d, C, M) be an HTN planning problem.
The graph Gg= <VT, Vi, Er—m, EM—>T> is called the TDG of P if it holds:

[l base case (task vertex for the given task)
¢ € V7, the TDG's root.

method vertices (derived from task vertices)
Let v; € V7 with v; = t(c) and (¢(7), thm, VCr) € M.
Then, for all v, € Groundyc,, 7=z (tnm) holds:
evpL,EVYy e (Vt, Vm) € Er_m.

task vertices (derived from method vertices)
Let vy € Vi with vy, = (T, <, VC, a). Then, for all
task identifiers t' € T with v; = «(t') = t(¢), holds:
evieVr o (v v) € Eysyr.

tightness
G is minimal, such that 1. to 3. hold.
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Properties

m Every task occurs just once, even if present multiple times within the
same method! Questions:
= |s that required? No, we can easily extend the definition to incorporate
duplicates. (But it becomes more complicated.)
= What impact does it have on heuristic values? We discuss this later.
m Even with a cyclic model, the TDG is finite. What's its size?
It's size is bounded by or identical to (depending on whether
optimizations are incorporated) the number of ground methods.
m What'’s its construction time? That depends on the input:

m Ground Model: Polynomial time.
m Lifted Model: Exponential time (due to the grounding).

Chapter: Heuristics for (Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019



Task Decomposition Graph
000008000

Further Notes

m Our formal definition relies on a planning problem.
But we can also represent the entire domain:
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Further Notes

m Our formal definition relies on a planning problem.
But we can also represent the entire domain:

= Simply start constructing the TDG with an arbitrary compound
task until it is converged.

= If not every compound task (i.e., every grounding!) is in the TDG,
add one such task and extend the TDG. Note that the old TDG(s)
and the new one may be connected; but only in one direction.

m Repeat until every compound task (i.e., their groundings) is in the
TDG.
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Optimizations

m If a problem instance is given, we can perform a reachability analysis
and thereby reducing its size:
m We can restrict the TDG to those tasks reachable from the initial task
(network). (This follows already from the definition.)
— Top-down reachability analysis.

= We can restrict the TDG’s primitive tasks to those reachable from the
initial (current?) state.
Bottom-up reachability analysis.
We can restrict to compound tasks with at least one method.
We can restrict to compound tasks that allow a primitive decomposition.
We can restrict to task networks without “eliminated elements”.

IIIJ/
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m If a problem instance is given, we can perform a reachability analysis
and thereby reducing its size:
m We can restrict the TDG to those tasks reachable from the initial task
(network). (This follows already from the definition.)
— Top-down reachability analysis.
= We can restrict the TDG’s primitive tasks to those reachable from the
initial (current?) state.
—> Bottom-up reachability analysis.
m We can restrict to compound tasks with at least one method.
= We can restrict to compound tasks that allow a primitive decomposition.
= We can restrict to task networks without “eliminated elements”.

— More details on next slide.

Chapter: Heuristics for (Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 11/50



Task Decomposition Graph
00000000

Optimizations

m If a problem instance is given, we can perform a reachability analysis
and thereby reducing its size:
m We can restrict the TDG to those tasks reachable from the initial task
(network). (This follows already from the definition.)
— Top-down reachability analysis.
= We can restrict the TDG’s primitive tasks to those reachable from the
initial (current?) state.
—> Bottom-up reachability analysis.
m We can restrict to compound tasks with at least one method.
= We can restrict to compound tasks that allow a primitive decomposition.
= We can restrict to task networks without “eliminated elements”.

— More details on next slide.

Note: Technically, any modification to the TDG will violate its definition. We
still refer to the resulting structures as TDGs, though.
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Step 1: Construct PG to find reachable ground primitive tasks.
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Step 2: Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
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Step 1: Construct PG to find reachable ground primitive tasks.
Step 2: Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.

Step 3: Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
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Restricting the TDG

Step 1: Construct PG to find reachable ground primitive tasks.
Step 2: Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Step 3: Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
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Restricting the TDG

Step 1: Construct PG to find reachable ground primitive tasks.
Step 2: Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Step 3: Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.
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Restricting the TDG

Step 1: Construct PG to find reachable ground primitive tasks.
Step 2: Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Step 3: Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.
= Continue until no more tasks can be marked as reachable
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Restricting the TDG

Step 1: Construct PG to find reachable ground primitive tasks.
Step 2: Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Step 3: Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.

m Continue until no more tasks can be marked as reachable
Step 4: Restrict TDG:
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Restricting the TDG

Step 1:
Step 2:

Step 3:

Step 4:

Construct PG to find reachable ground primitive tasks.
Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.
= Continue until no more tasks can be marked as reachable
Restrict TDG:
= Remove all task networks with an unreachable compound task.
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Restricting the TDG

Step 1:
Step 2:

Step 3:

Step 4:

Construct PG to find reachable ground primitive tasks.
Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.
= Continue until no more tasks can be marked as reachable
Restrict TDG:
= Remove all task networks with an unreachable compound task.
= Remove all compound tasks without decomposition method.
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Restricting the TDG

Step 1:
Step 2:

Step 3:

Step 4:

Construct PG to find reachable ground primitive tasks.
Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.
= Continue until no more tasks can be marked as reachable
Restrict TDG:
= Remove all task networks with an unreachable compound task.
= Remove all compound tasks without decomposition method.
= Repeat until nothing can be deleted.
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Restricting the TDG

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Construct PG to find reachable ground primitive tasks.
Construct TDG top-down (ignoring task networks with
unreachable primitive tasks) until converged.
Bottom-Up reachability to eliminate tasks that do not admit a
primitive decomposition:
= Mark all primitive tasks as reachable.
= lterate over all task networks in the TDG in which all tasks are
marked as reachable (base case: primitive task networks). Mark
their parent compound task as reachable.
= Continue until no more tasks can be marked as reachable
Restrict TDG:
= Remove all task networks with an unreachable compound task.
= Remove all compound tasks without decomposition method.
= Repeat until nothing can be deleted.
Since the set of reachable primitive tasks may have changed, we
can repeat all previous steps (possibly multiple times).
This step does usually not pay off empirically.
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Restricting the TDG — Further Optimization

m Obviously, the order of steps 1 and 2 are somehow interchangeable:
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Restricting the TDG — Further Optimization

m Obviously, the order of steps 1 and 2 are somehow interchangeable:

= Should we first restrict to top-down-reachability thereby reducing the
PG construction process?
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= Should we first restrict to top-down-reachability thereby reducing the

PG construction process?
= Or should we first do a top-down reachability thereby reducing the

TDG construction process?
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m Obviously, the order of steps 1 and 2 are somehow interchangeable:
= Should we first restrict to top-down-reachability thereby reducing the

PG construction process?
= Or should we first do a top-down reachability thereby reducing the

TDG construction process?
= We deem the given order more useful, but we first perform a step 0:
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Restricting the TDG — Further Optimization

m Obviously, the order of steps 1 and 2 are somehow interchangeable:
= Should we first restrict to top-down-reachability thereby reducing the

PG construction process?
= Or should we first do a top-down reachability thereby reducing the

TDG construction process?
= We deem the given order more useful, but we first perform a step 0:
= We first perform a parameter-relaxed top-down analysis.
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Restricting the TDG — Further Optimization

m Obviously, the order of steps 1 and 2 are somehow interchangeable:
= Should we first restrict to top-down-reachability thereby reducing the
PG construction process?
= Or should we first do a top-down reachability thereby reducing the
TDG construction process?
= We deem the given order more useful, but we first perform a step 0:

= We first perform a parameter-relaxed top-down analysis.
= We build a task parameter- and predicate parameter-free TDG.
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m Obviously, the order of steps 1 and 2 are somehow interchangeable:
= Should we first restrict to top-down-reachability thereby reducing the
PG construction process?
= Or should we first do a top-down reachability thereby reducing the
TDG construction process?

= We deem the given order more useful, but we first perform a step 0:

= We first perform a parameter-relaxed top-down analysis.
= We build a task parameter- and predicate parameter-free TDG.
= This TDG can be built very efficiently.
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Restricting the TDG — Further Optimization

m Obviously, the order of steps 1 and 2 are somehow interchangeable:
= Should we first restrict to top-down-reachability thereby reducing the

PG construction process?
= Or should we first do a top-down reachability thereby reducing the

TDG construction process?
= We deem the given order more useful, but we first perform a step 0:
= We first perform a parameter-relaxed top-down analysis.
= We build a task parameter- and predicate parameter-free TDG.

= This TDG can be built very efficiently.
m This overestimates the number of reachable tasks, but already rules
out some unreachable actions for the PG construction.

Winter Term 2018/2019
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Non-Hierarchical Landmarks

m The concept of landmarks originates from classical planning, but
it was transferred to hierarchical planning later on.
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m The concept of landmarks originates from classical planning, but
it was transferred to hierarchical planning later on.

m A classical fact landmark is a state variable that has to be true at
some point in every solution. Generalization: Conjunctions,
disjunctions, or arbitrary formulae of state variables.

= What are trivial fact landmarks? The initial state and goal
description.

Chapter: Heuristics for (Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 14 /50



Landmarks
€00

Introduction and Definitions

Non-Hierarchical Landmarks

m The concept of landmarks originates from classical planning, but
it was transferred to hierarchical planning later on.

m A classical fact landmark is a state variable that has to be true at
some point in every solution. Generalization: Conjunctions,
disjunctions, or arbitrary formulae of state variables.

= What are trivial fact landmarks? The initial state and goal
description.

m A classical action landmark is an action that is part of every
solution.
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Introduction and Definitions

Hierarchical Landmarks

= A hierarchical landmark is a task (primitive or compound) that
occurs on any sequence of decompositions from the initial task
(network) to any solution.

m A formal definition will be provided or has to be found in the
exercises.
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m Why are we interested in landmarks?
m They are measurements of how “important” state variables and/or
actions/tasks are.

= They can be exploited, probably among others, for explanations
and heuristics.

m Explanations: Explanations basing on landmarks might be more
convincing.
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Introduction and Definitions

Exploitation of Landmarks

m Why are we interested in landmarks?

m They are measurements of how “important” state variables and/or
actions/tasks are.
= They can be exploited, probably among others, for explanations
and heuristics.
m Explanations: Explanations basing on landmarks might be more
convincing.
= Heuristics: Later in this section!
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m Determining whether a fact is a classical landmark is as hard as
planning! (As we will see later: PSPACE-complete.) Why?
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planning! (As we will see later: PSPACE-complete.) Why?

= We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial state s}
and three new actions.

= One action generates the original s;.

m One action is a shortcut to the goal: It generates some v* ¢ V.

= One action exploits that shortcut: It uses v* as precondition and
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Classical Landmarks (Hardness)

m Determining whether a fact is a classical landmark is as hard as
planning! (As we will see later: PSPACE-complete.) Why?

= We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial state s}
and three new actions.

= One action generates the original s;.

m One action is a shortcut to the goal: It generates some v* ¢ V.

= One action exploits that shortcut: It uses v* as precondition and
generates the goal.

m If v* is a landmark, then the original task was unsolvable.
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Computational Complexity

Classical Landmarks (Hardness)

m Determining whether a fact is a classical landmark is as hard as
planning! (As we will see later: PSPACE-complete.) Why?

= We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial state s}
and three new actions.

= One action generates the original s;.

m One action is a shortcut to the goal: It generates some v* ¢ V.

= One action exploits that shortcut: It uses v* as precondition and
generates the goal.

m If v* is a landmark, then the original task was unsolvable.

— All'in all: Reduction from the Plan-Nonexistence decision problem
to the Landmark decision problem.
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planning! (As we will see later: PSPACE-complete.) Why?
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m Determining whether a fact is a classical landmark is as “easy” as
planning! (As we will see later: PSPACE-complete.) Why?
m We again exploit that deciding the unsolvability is as hard as
deciding the solvability:
= Given a fact v € V, remove all actions that generate v and check
whether the problem is still solvable.
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Classical Landmarks (Membership)

m Determining whether a fact is a classical landmark is as “easy” as
planning! (As we will see later: PSPACE-complete.) Why?
m We again exploit that deciding the unsolvability is as hard as
deciding the solvability:
= Given a fact v € V, remove all actions that generate v and check

whether the problem is still solvable.
= vis alandmark if and only if it has become unsolvable.
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Hierarchical Landmarks (Hardness)

m Determining whether a task is a hierarchical landmark is as hard
as hierarchical planning! (As we will see later: undecidable.)
Why?
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as hierarchical planning! (As we will see later: undecidable.)
Why?

m We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial task ¢/
with two methods and another compound task with a new method.
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Hierarchical Landmarks (Hardness)

m Determining whether a task is a hierarchical landmark is as hard
as hierarchical planning! (As we will see later: undecidable.)
Why?

m We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial task ¢/
with two methods and another compound task with a new method.

= One method maps to the original ¢, the other to a network
containing the other new compound task c*.
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Why?

m We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial task ¢/
with two methods and another compound task with a new method.

= One method maps to the original ¢, the other to a network
containing the other new compound task c*.

= The third method maps c* to the empty task network thereby
allowing a trivial solution.
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m We exploit that deciding the unsolvability (Plan-Nonexistence
decision problem) is as hard as deciding the solvability:

m Construct an easier planning problem with a new initial task ¢/
with two methods and another compound task with a new method.

= One method maps to the original ¢, the other to a network
containing the other new compound task c*.

= The third method maps c* to the empty task network thereby
allowing a trivial solution.
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Computational Complexity

Hierarchical Landmarks (Membership)

m Is the problem semi-decidable?

— Exercise!
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Computation

Landmark Computation

General idea: Compute the intersection of all partial plans that belong
to the same compound task.
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Computation
Landmark Computation, Improved

We can still do better than that, though...
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Landmark Exploitation

Exploitation of Landmarks

m Landmarks were developed for flaw selectors: Choose to
decompose a compound task with fewer landmarks (as a
measure of its hardness).
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Landmark Exploitation

Exploitation of Landmarks

m Landmarks were developed for flaw selectors: Choose to
decompose a compound task with fewer landmarks (as a
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Landmark Exploitation

Exploitation of Landmarks

m Landmarks were developed for flaw selectors: Choose to
decompose a compound task with fewer landmarks (as a
measure of its hardness).

m We can also choose a task network (from the search fringe, i.e.,
the search strategy) based on the number of its landmarks.

— Both approaches lack from the problem that the landmarks as
computed are those that will be used no matter what, i.e., one
cannot prevent having them in a sequence of decompositions —
limiting their usefulness.

m We can use all primitive landmarks as the basis for state-based
heuristics!
— This allows to use any classical heuristic (or classical landmark
technique!).
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Introduction

Introduction

m The landmark heuristics take only simple landmarks into account.

m More precisely: one can easily rewrite a model, such that none of
its landmarks gets discovered.

m Even in these cases, the TDG holds valuable information that can
be exploited to estimate goal distances...
= But how..? We know that:

m all tasks within a method need to be “accomplished” (applied or
decomposed).

m For each compound task, only one of its methods needs to be
applied.

= Note: For convenience, we later write #(7) € T as shorthand for
H(T) =a(t),t €T.
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oe

Introduction
Overview
Exploit TDG for effort estimation.

Step 1:
Compute the TDG.

/ \ Step 2:
Compute TDG-based estimates

hr(t)/hu(t) for each task/method node in

A& A the TDG (once via preprocessing).

Step 3:

/ For search node (task network or partial
plan) tn and its tasks T, compute h(tn)
based on the estimates forthe t € T.

= Via estimating the costs of missing
actions — TDG-c.

m Via estimating the still required
modifications — TDG-m.
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Cost-sensitive TDG Heuristic, TDG-c

Motivation

m To obtain good (or cheap) solutions heuristically, we need to
estimate the costs of a plan that can be developed from a current
task network.
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Cost-sensitive TDG Heuristic, TDG-c

Motivation

m To obtain good (or cheap) solutions heuristically, we need to
estimate the costs of a plan that can be developed from a current
task network.

= We thus exploit the TDG and use its action costs as basis for
estimates.

m The resulting heuristic will be admissible (trivial).
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Cost-sensitive TDG Heuristic, TDG-c

lllustration of TDG-c Computation

Example:

/ \ r(t6) = min {a(m ), hua(me)
A&A

/ \ / \
A \A

Chapter: Heuristics for (Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 2750



TDG-c & TDG-m
0®00

Cost-sensitive TDG Heuristic, TDG-c

lllustration of TDG-c Computation

Example:

ANA s
A \A o

/ \ Method my = (to, tn) with task network
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Cost-sensitive TDG Heuristic, TDG-c

lllustration of TDG-c Computation

Example:

tn:

/ \ Method my4 = (t;, tn) with task network

<

A&A el B
/\ /\ h(ma) = c(ts) + c(te)
A \A
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Cost-sensitive TDG Heuristic, TDG-c

TDG-c Computation

Let g = <V7'7 VM, ET%M, EM%T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

cost(v;) if v; primitive

hr(ve) = min  hy(vm) else
(vt,Vm)EET—Mm
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TDG-c Computation

Let g = <VT, VM, ET%M, EM%T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

cost(v;) if v; primitive
hr(ve) = min  hy(vm) else
(vt,Vm)EET—Mm

For methods nodes v, = (T, <, VC, a):
hu(vm) == > hr(v)
(Vm,vt)EEM—T
Heuristic value for tn = (T, <, VC, a):
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TDG-c Computation

Let g = <VT, VM, ET%M, EM%T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

cost(v;) if v; primitive
hr(ve) = min  hy(vm) else
(vt,Vm)EET—Mm

For methods nodes v, = (T, <, VC, a):
hu(vm) == > hr(v)
(Vm,vt)EEM—T
Heuristic value for tn = (T, <, VC, a):
decomposition-based: hrpg—c(tn) == > ( min hT(v,))

HF)eT vi€Groundyc(t(7))
t(7) abstract

progression-based:  hrpg—c(tn) := > ( min hT(vt)>
HF)eT vi€Groundyc (t(7))
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Cost-sensitive TDG Heuristic, TDG-c

Notes

m The heuristic formulae were given for lifted planning and can be
simplified for ground planning:

> ( min hT(vt)) becomes > hr(t(c)).
HF)eT vi€ Groundyc (t(7)) t©)eT

t(7) abstract t(T) abstract
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= Why do we have two different formulae for progression- and
decomposition-based search?
= Because the costs of search nodes are usually computed
differently.
= In decomposition-based search, a search node’s costs is given by
its primitive tasks.
m In progression-based search, those costs are usually incorporated
after an action has been progressed away.
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Cost-sensitive TDG Heuristic, TDG-c

Notes

m The heuristic formulae were given for lifted planning and can be
simplified for ground planning:
> ( min hT(vt)) becomes > hr(t(c)).
HF)eT vi€ Groundyc(t(T)) t©)eT
t(7) abstract t(T) abstract
= Why do we have two different formulae for progression- and
decomposition-based search?
= Because the costs of search nodes are usually computed
differently.
= In decomposition-based search, a search node’s costs is given by
its primitive tasks.
m In progression-based search, those costs are usually incorporated
after an action has been progressed away.
— Using only the abstract tasks for the heuristic in
decomposition-based planning thus prevents taking those
primitive costs into account twice.
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Modification-sensitive TDG Heuristic, TDG-m

Motivation

m Just estimating the final solution costs says little about the effort
finding it. One can easily construct examples, where expensive
solutions can be found easily (with only few decompositions),
whereas cheap solutions need more search effort.
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Modification-sensitive TDG Heuristic, TDG-m

Motivation

Just estimating the final solution costs says little about the effort
finding it. One can easily construct examples, where expensive
solutions can be found easily (with only few decompositions),
whereas cheap solutions need more search effort.

We thus exploit the TDG to estimate how many modifications we
require for certain tasks.

The resulting heuristic will be not be admissible, but admissible in
the number of required modifications (trivial). This means that
any solution returned by A* will have the property that no other
solution can be created with fewer modifications. (This is not
something we aim for, it’s just a property we get.)
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Modification-sensitive TDG Heuristic, TDG-m

lllustration of TDG-m Computation — For Decomposition-based Search

Example:

/ \ hr(to) = 1+ min {hug(m). hua(m)}
A&A

/ \ / \
A \A
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Modification-sensitive TDG Heuristic, TDG-m

lllustration of TDG-m Computation — For Decomposition-based Search

Example:

Method my = (to, tn) with task network
/ \ tn:
/ \ / \ hulm) = S he(t)
te{t bt}
(Also subtract |CL| in case we have a
A \ A partial plan containing causal links.)
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Modification-sensitive TDG Heuristic, TDG-m

lllustration of TDG-m Computation — For Decomposition-based Search

Example:

/ \ hr(t1) =1+ min{hy(ms), hm(ms)}
A&A
/ \ / \
A \A
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Modification-sensitive TDG Heuristic, TDG-m

lllustration of TDG-m Computation — For Decomposition-based Search

Example:

/ \ Method my4 = (t;, tn) with task network
tn:

ANA -
S s

|pre(ts)| + | pre(ts)|
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Modification-sensitive TDG Heuristic, TDG-m

lllustration of TDG-m Computation — For Decomposition-based Search

Example:

/ \ Method my = (t, P) with partial plan
P:

A& A =
/\ /\ hu(ma) = hr(ts) + hr(ts) — [CL|

= |pre(ts)[ + [pre(te)| — 2

A \A
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Modification-sensitive TDG Heuristic, TDG-m

TDG-m Computation

LetG = (VT, Vi, Er—m, EM—>T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

lpre(v;)| if v; primitive
hr(vi) 1+  min  hy(vm) else
(Vtan)EET—>M
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LetG = (VT, Vi, Er—m, EM—>T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

lpre(v;)| if v; primitive

hr(vi) 1+  min  hy(vm) else

(vt,Vm)EET M

For methods nodes v, = (T, <, VC, CL, a):

hu(vm) = > hr(v) - |CL|

(Vm,vt)EEM—T
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Modification-sensitive TDG Heuristic, TDG-m

TDG-m Computation

LetG = (VT, Vi, Er—m, EM—>T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

lpre(v;)| if v; primitive

hr(v) =914 min hu(vm) else
(Vtan)EET—>M

For methods nodes v, = (T, <, VC, CL, a):
hu(vm) = > hr(v) - |CL|
(Vm,vt)EEM—T
Heuristic value for partial plan P = (T, <, VC, CL, a):

decomposition-based: hrpg_m(P) :i= 3 ( min hT(Vt)) —|CL|
HF)eT vi€ Groundyc(t(7))
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Modification-sensitive TDG Heuristic, TDG-m

TDG-m Computation

LetG = (VT, Vi, Er—m, EM—>T> be a TDG.
The TDG-c estimates of G’s task nodes are given by:

lpre(v;)| if v; primitive

hr(v) =914 min hu(vm) else
(Vtan)EET—>M

For methods nodes v, = (T, <, VC, CL, a):
hu(vm) = > hr(v) - |CL|
(Vm,vt)EEM—T
Heuristic value for partial plan P = (T, <, VC, CL, a):

decomposition-based: hrpg_m(P) :i= 3 ( min hT(Vt)) —|CL|
HF)eT vi€ Groundyc(t(7))

progression-based:  Ignore links and use 1 instead of |pre(v;)|.
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Properties of TDG Heuristics

Properties

= Note that this heuristic does not compute executable plans. So
what does it compute?
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Properties

= Note that this heuristic does not compute executable plans. So
what does it compute?

m The cheapest set of primitive tasks that can be made true by any
primitive tasks.

= However, the costs (or the effort) of these tasks is not reflected in
the heuristic value!

m To illustrate what this means: What heuristic do we get if the only
abstract task can be decomposed into an empty task network
(which will not work as solution due to a goal description or
subsequent primitive tasks).
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TDG-c & TDG-m
°

Properties of TDG Heuristics

Properties

= Note that this heuristic does not compute executable plans. So
what does it compute?

m The cheapest set of primitive tasks that can be made true by any
primitive tasks.

= However, the costs (or the effort) of these tasks is not reflected in
the heuristic value!

m To illustrate what this means: What heuristic do we get if the only
abstract task can be decomposed into an empty task network
(which will not work as solution due to a goal description or
subsequent primitive tasks).

m However, the heuristic can still come up with even exponentially
large heuristic values. (This is true although every task occurs
just once in the TDG. Why?)
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TDG Recomputation

Motivation

m Recall from the beginning (construction of the TDG) that the TDG
can be recomputed as soon as any of its tasks is identified as
unreachable.
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TDG Recomputation

Motivation

m Recall from the beginning (construction of the TDG) that the TDG
can be recomputed as soon as any of its tasks is identified as
unreachable.

m So far, the TDG is only computed once. However, different search
nodes might have different reachable action sets!

Py
m] mg mg Mg
v Y] Pmy

ENEENEEE]

enables
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TDG Recomputation

Example
Py
P;  usemq
my m2
v 4

use Mo

enables

m Let ¢(ps) = iand hy(Pm,) = hr(ps) + hr(as) =j > i.
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TDG Recomputation

Example

Py

P
P;  usemq —
ml mg mg Mg —
4 + + AN Prmy
P1 P2 -Ps a3

enables

m Let ¢(ps) = iand hy(Pm,) = hr(ps) + hr(as) =j > i.
m Then, we get hr(az) = i. Let us now consider the heuristic values for
P; and P; resulting from decomposing a; using my or my, respectively.
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TDG Recomputation

Example

Py

Py
P;  usemq —

az
mi mg mg Mg _—
B EoEs &2

enables

m Let ¢(ps) = iand hy(Pm,) = hr(ps) + hr(as) =j > i.

m Then, we get hr(az) = i. Let us now consider the heuristic values for
P; and P; resulting from decomposing a; using my or my, respectively.

= Without recomputation, we get h(Py) = h(P.) = i. With recomputation,
we get h(P1) = j and h(P.) = i, so we get improved heuristic accuracy
due to updated reachability information in the TDG.
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TDG Recomputation

When to Recompute? — In Decomposition-based Planning

m Let P be a partial plan, mod a modification, and P’ the partial
plan resulting from applying modto P.
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m Let P be a partial plan, mod a modification, and P’ the partial
plan resulting from applying modto P.

= In case mod is a decomposition m = (t, Pp,) and there are also
further methods for ¢, then we recompute the TDG. Otherwise,
we perform an incremental heuristic calculation.
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plan resulting from applying modto P.

= In case mod is a decomposition m = (t, Pp,) and there are also
further methods for ¢, then we recompute the TDG. Otherwise,
we perform an incremental heuristic calculation.

m Why? If there is just one method, the reachable action set cannot
possibly change.
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TDG Recomputation

When to Recompute? — In Decomposition-based Planning

m Let P be a partial plan, mod a modification, and P’ the partial
plan resulting from applying modto P.

= In case mod is a decomposition m = (t, Pp,) and there are also
further methods for ¢, then we recompute the TDG. Otherwise,
we perform an incremental heuristic calculation.

m Why? If there is just one method, the reachable action set cannot
possibly change.

m There are other cases, which are not yet handled, though. E.g.,
causal links might also limit the available actions.
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TDG Recomputation

When to Recompute? — In Progression-based Planning

m Here, we have just two modifications: method application and
progression (i.e., action application).
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TDG Recomputation
When to Recompute? — In Progression-based Planning

m Here, we have just two modifications: method application and
progression (i.e., action application).

= With methods, we have the same situation as in
decomposition-based planning (since also here, decompositions
restrict the reachable actions).
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TDG Recomputation

When to Recompute? — In Progression-based Planning

m Here, we have just two modifications: method application and
progression (i.e., action application).

= With methods, we have the same situation as in
decomposition-based planning (since also here, decompositions
restrict the reachable actions).

m Also, each progression allows a recomputation.
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TDG Recomputation

What if we don’t Recompute TDG-c?

m If mod is not a decomposition (i.e., an insertion of a causal link,
an ordering, or a variable constraint), we get:

hrog—c(P) = hrpa—c(P')
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m If mod is not a decomposition (i.e., an insertion of a causal link,
an ordering, or a variable constraint), we get:
h1pG—c(P) = h1pg—c(P')

m If modis a method m = (t, tny,) (without alternatives), we can
set:

htog—c(P') = hrog—c(P) — > c(t(c))
t(C)ETm
t(T) primitive
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TDG Recomputation

What if we don’t Recompute TDG-c?

m If mod is not a decomposition (i.e., an insertion of a causal link,
an ordering, or a variable constraint), we get:
h1pG—c(P) = h1pg—c(P')

m If modis a method m = (t, tny,) (without alternatives), we can
set:

htog—c(P') = hrog—c(P) — > c(t(c))
t(C)ETm
t(T) primitive

= These equations are specific to decomposition-based planning.
The latter is required because the method’s primitive tasks were
accounted by the heuristic, but are now covered by the cost value
of the search node.
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TDG Recomputation

What if we don’t Recompute TDG-m?

m If modis an ordering or variable insertion, we get:
h1og—-m(P) = hrpg—m(P’)
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TDG Recomputation

What if we don’t Recompute TDG-m?

m If modis an ordering or variable insertion, we get:
h1oG—m(P) = hrpg—m(P’)

m If mod is a causal link insertion or a decomposition (without
alternatives), we get:

hrog—m(P) = hrpg—m(P’) — 1
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TDG Recomputation

What if we don’t Recompute TDG-m?

m If modis an ordering or variable insertion, we get:
h1oG—m(P) = hrpg—m(P’)

m If mod is a causal link insertion or a decomposition (without
alternatives), we get:
hroG—m(P) = hrpg—m(P") — 1

= No difference between decomposition- and progression-based
planning.
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Motivation

m We would like to exploit existing classical planning heuristics in
HTN planning.
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= More expressive formalism (cf. lecture on expressiveness and
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Motivation

m We would like to exploit existing classical planning heuristics in
HTN planning.
m Issues:

= More expressive formalism (cf. lecture on expressiveness and
next lecture on computational complexity). In particular:
Hierarchical problems are undecidable, so they cannot be
translated into classical problems.

= In general, HTN problems do not have a goal description, so
what'’s the classical problem’s goal?

m In classical planning, all actions can be applied, in hierarchical
planning only those reachable from the initial task (network).
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Classical Heuristics in HTN Planning

Similarities and differences to TDG heuristic:
= Both heuristics can estimate plan cost or modification effort.
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Classical Heuristics in HTN Planning

Similarities and differences to TDG heuristic:

= Both heuristics can estimate plan cost or modification effort.

m Both heuristics work for progression- and decomposition-based
planning.

= They both, somehow, incorporate the TDG.

m It is not a preprocessing heuristic: Its “heuristics model” gets
adapted for every search node. In that way, it corresponds the
previous heuristics with enabled recomputation.

HTN search

.- el A
HTN model heuristic searc updated
value Ioop model

~
el

Irela.xatllon tg | .. classmal
ical m
classical mode heurlsllc

solution

Chapter: Heuristics for (Hierarchical) Planning Problems by Dr. Pascal Bercher Winter Term 2018/2019 41/50



Compilation Technique
00@0000000

Simulating Composition

EC D
m Let’s assume we want to “reconstruct” \ 5 /
a decomposition tree via composition. I
deliver(P, D) A

m-deliver(P, C,D, T)

get-to(T, C)
m-via(T, B, C)

drive(T, B, C)

get-to(T, D)
m-via(T, B, D)

drive(T, B, D)

pick-up(T, C, P) drop(T, D, P)

get-to(T, B)
m-direct(T, A, B)

get-to(T, B)
m-direct(T, C, B)

drive(T, A, B) drive(T, C, B)
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m Let’'s assume we want to “reconstruct”

a decomposition tree via composition. I
] Fhor nfc:w, we wouldlllke‘to estimate deli 1 (P, D) e
the effort constructing it. m-deliver(P, C, D, T)

gei 4. (T,D)
m-via(T, B, D)

ge1 2(T,C)

m-via(T, B, C)
9¢ 6(T.B) ge 8 (T,B)

drive 7, B, C)
m-direct(T, A, B) m-direct(T, C, B)

(i 10 A.B) driv11 ¢, B)

drog 5,D, P)
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drive 9 , B, D)
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m Introduce new state features. \ 5 /
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deliver(P, D)()
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Simulating Composition

D
= Introduce new state features. \ /

deliver(P, D)() A
m-deliver(P, C,D, T)

get-to(T, C) ()
m-via(T, B, C)

get-to(T, B)
m-direct(T, A, B)

|

drive(T, A, B) drive(T, C, B)

at(v, . at(v. b at(v. ! e —at(p. ) at(v. ! at(p, 1)
roadélulzg drive(v h k) ﬁatEv.h; aép,/; pick-up(v, 1. p) in(p, v) in(p, v; drop(v. . p) —in(p, v)
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m Introduce new state features. \ 5 /
= Modify actions. I
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Simulating Composition

wC D
m Introduce new state features. \ 5 /

= Modify actions. I
A

u Introduce new action for every method.  ggjiver(p, )@
m Goal is to reach current task network. m-deliver(P,C, D, T)

get-to(T, C) ()
m-via(T, B, C)

get-to(T, )Y grive(T, B, C)
m-direct(T, A, B)

drive(T, A, B) drive(T, C, B)
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Simulating Composition — Resulting Model

Altered action encodings:

at(v, /2
roai’t(lv ;1 drive(v. h, k) = —at(v. h)
(ks k) b-drive(v, h, k)
ﬂat (o, 1)
) Do L
p b- plck up(v, I, p)
at(p, 1)
s {amtonn | 520
(p, b-drop(v, I, p)
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New actions encoding methods:

b-get-to(v, )
b-pick-up(v, h. p)
b-get-to(v, )
b-drop(v, 2, p)

am-deliver(p, ly, b, v) |— b-deliver(p, k)

b-drive(v, Iy, k) am-direct(v, h, I, b-get-to(v, b)

b-get-to(v, Ir)

b-drive(v, h, b) am-via(v h, k)

b-get-to(v, b)

b-no-op() am-noop(v. b-get-to(v, 1)
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Unrelaxed Planning in the Transformed Model

-]
deliver(P, D)@
m-deliver(P, C,D, T)
get-10(T, ) ( pick-up(T, C, P) drop(T, D, P)

m-via(T, B, C) m-via(T, B, D) -

get-to(T, B)(O) drive(T, B, D)

m-direct(T, C, B)

get-to(T,B)()
m-direct(T, A, B)

drive(T, B, C)

drive(T, A, B) drive(T, C, B)

{at(.A),
at(P.C)}
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Plan cost: 9 — recall: true effort is 11 and unrelaxed plan cost is 10.
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m Heuristic function is allowed to do:
m Task sharing (every task must be processed only once).
= Task insertion (e.g. to fulfill preconditions).
= HTN ordering relations are relaxed.
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General Characteristics

Technique simulates task composition,

incorporates hierarchical reachability information,

combines it with information on state-based executability, and
solves the problem of a missing goal description.

NN SN =

m The transformation from an HTN problem to a classical problem
is a relaxation.

The set of valid solutions increases.

The new model essentially encodes the TDG.

m |

m Heuristic function is allowed to do:
m Task sharing (every task must be processed only once).
= Task insertion (e.g. to fulfill preconditions).
= HTN ordering relations are relaxed.
m Heuristic function may only insert tasks that lie within the
decomposition hierarchy (not given here).
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Computational Aspects

m The size of the new model is linear in the input HTN domain.
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to update:
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Computational Aspects

m The size of the new model is linear in the input HTN domain.
= Most parts of the model are static during search. One only needs
to update:

m Initial state.
= Goal description.
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Resulting Heuristic Values

m If unit costs are used, the heuristic value encodes the search
effort of a progression search.
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Resulting Heuristic Values

m If unit costs are used, the heuristic value encodes the search
effort of a progression search.

m If method actions cost one and all primitive tasks’ cost equals
their number of preconditions, then the heuristic value encodes
the search effort of a decomposition search.
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Resulting Heuristic Values

m If unit costs are used, the heuristic value encodes the search
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m If unit costs are used, the heuristic value encodes the search
effort of a progression search.

m If method actions cost one and all primitive tasks’ cost equals
their number of preconditions, then the heuristic value encodes
the search effort of a decomposition search.

m [f all actions stemming from primitive tasks keep their original
costs and all new actions cost 0, then the heuristic value
estimates the resulting plan costs.

m When the used classical heuristic has one of the following
properties, the resulting HTN heuristic has it, too:

= Safety.
= Goal-awareness.
= Admissibility (only if costs are chosen as above).
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Discussion

m Technigue can be combined with many classical heuristics.

m It thus profits automatically from any progress made in classical
heuristic search.

= Applicable to both decomposition-based and progression-based
search.

m The new technique in general neither dominates the TDG
heuristics nor gets dominated by it:

= The technique can clearly dominate TDG heuristics, because it
incorporates costs of inserted actions (which the TDG heuristics
do not). Recall what happens in domains in which tasks can be
decomposed into empty task networks.

= Many classical heuristics compute heuristic values that are
polynomial in the the input. The TDG heuristics can come up with
exponential heuristic values.
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m Hierarchical planning as search relies, just as classical planning,
on heuristics to guide search.

m There are still only a very heuristics and techniques known —
most other approaches rely on domain-specific models.

= We introduced the task decomposition graph (TDG) as a basis for
many heuristics.

= Landmarks — tasks that occur on any sequence from the initial
task network to a solution — can be used as basis for heuristics.

m The TDG heuristics compute admissible estimates, but take task
insertion into account to only a limited extent.

m We can also exploit classical heuristics for hierarchical planning
by a relaxing problem transformation.
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