Lecture Hierarchical Planning

Chapter: Plan Recognition in Hierarchical Planning

Daniel Höller

Institute of Artificial Intelligence, Ulm University, Germany

Winter Term 2018/2019 (Compiled on: February 20, 2019)

(Based on slides by Héctor Geffner)

ulm university universität **UUU**

Overview:

1 Introduction

2 Plan Recognition in Non-Hierarchical Planning

3 Plan Recognition in Hierarchical Planning

So far: Automated Planning

Given:

- Model of behavior.
 - What characterizes the world (with respect to a task)?
 - How can we/an agent change the world?
- Initial state How does the world look like in the current situation?
- Goal and initial task definition Which properties of the world do we want to achieve (classical planning) and how should the plans look like (hierarchical planning)?

Task:

Find a sequence of actions that transforms the world from the initial state to a state that has the desired goal properties.

Plan and Goal Recognition

Given:

- Model of behavior.
 - What characterizes the world (with respect to a task)?
 - How can an agent change the world?
 - What are desirable goals?
- Initial state How does the world look like in the current situation?
- Observations A sequence of actions some agent(s) has/have executed.

Task:

- Determine which of the goals the agent is pursuing.
- Determine what the agent is doing next.

Application Scenarios

Robotics/software systems that interact with:

- Humans and/or
- other (autonomous) agents.

Application Scenarios

- Robotics/software systems that interact with:
 - Humans and/or
 - other (autonomous) agents.
- Intrusion detection:
 - Classify behavior.
 - Detect unusual behavior.

Automated planning:

- Based on an abstraction of the world, we generate a plan to reach some goal.
- When the model is sufficiently precise, generated solutions will transform the system as intended.

Automated planning:

- Based on an abstraction of the world, we generate a plan to reach some goal.
- When the model is sufficiently precise, generated solutions will transform the system as intended.

Plan and goal recognition:

What must be fulfilled to classify some activity (e.g. some movement) as intentional action?

Automated planning:

- Based on an abstraction of the world, we generate a plan to reach some goal.
- When the model is sufficiently precise, generated solutions will transform the system as intended.

Plan and goal recognition:

- What must be fulfilled to classify some activity (e.g. some movement) as intentional action?
- We make assumptions about reasons of behavior (the agent wants to realize something).

Automated planning:

- Based on an abstraction of the world, we generate a plan to reach some goal.
- When the model is sufficiently precise, generated solutions will transform the system as intended.

Plan and goal recognition:

- What must be fulfilled to classify some activity (e.g. some movement) as intentional action?
- We make assumptions about reasons of behavior (the agent wants to realize something).
- We presume objectives of an agent and judge the helpfulness of actions regarding the objectives.

So, What are we Doing?

- We solve a combinatorial problem.
 - Decision problem: Is there a plan in line with the observations (this is a generalization of planning).

So, What are we Doing?

- We solve a combinatorial problem.
 - Decision problem: Is there a plan in line with the observations (this is a generalization of planning).
 - Practical: Find a plan that is in line with observations (and output the corresponding goal).

So, What are we Doing?

- We solve a combinatorial problem.
 - Decision problem: Is there a plan in line with the observations (this is a generalization of planning).
 - Practical: Find a plan that is in line with observations (and output the corresponding goal).
 - More practical: Return a probability distribution over possible goals/plans.

- Is the agent behaving rational?
- What does this mean?
 - Is purchasing a goal.
 - Is purchasing a goal *optimally*.

- Is the agent behaving rational?
- What does this mean?
 - Is purchasing a goal.
 - Is purchasing a goal *optimally*.
- Often assumed: "keyhole" observations (no contact to agent).

- Is the agent behaving rational?
- What does this mean?
 - Is purchasing a goal.
 - Is purchasing a goal *optimally*.
- Often assumed: "keyhole" observations (no contact to agent).
- Problematic: what is if the agent wants to confuse the observer (adversarial behavior, intrusion detection)?

- Is the agent behaving rational?
- What does this mean?
 - Is purchasing a goal.
 - Is purchasing a goal *optimally*.
- Often assumed: "keyhole" observations (no contact to agent).
- Problematic: what is if the agent wants to confuse the observer (adversarial behavior, intrusion detection)?
- Integration of PGR and Planning: cooperative behavior.

- Is the agent behaving rational?
- What does this mean?
 - Is purchasing a goal.
 - Is purchasing a goal *optimally*.
- Often assumed: "keyhole" observations (no contact to agent).
- Problematic: what is if the agent wants to confuse the observer (adversarial behavior, intrusion detection)?
- Integration of PGR and Planning: cooperative behavior.
- Is the model correct/complete?

Introduction
000000000

Environment

What is the input for the PGR system?

Environment

- What is the input for the PGR system?
 - Usually: actions (\rightarrow Activity Recognition).
 - Sometimes: changes in the environment.

Environment

- What is the input for the PGR system?
 - Usually: actions (\rightarrow Activity Recognition).
 - Sometimes: changes in the environment.
- Does the observer see all actions (missed observations)?

Environment

- What is the input for the PGR system?
 - Usually: actions (\rightarrow Activity Recognition).
 - Sometimes: changes in the environment.
- Does the observer see all actions (missed observations)?
- Can we be wrong (False observations)?

Environment

- What is the input for the PGR system?
 - Usually: actions (\rightarrow Activity Recognition).
 - Sometimes: changes in the environment.
- Does the observer see all actions (missed observations)?
- Can we be wrong (False observations)?

Goals

Single/multiple goal?

Environment

- What is the input for the PGR system?
 - Usually: actions (\rightarrow Activity Recognition).
 - Sometimes: changes in the environment.
- Does the observer see all actions (missed observations)?
- Can we be wrong (False observations)?

Goals

- Single/multiple goal?
- Plans interleaved?

Environment

- What is the input for the PGR system?
 - Usually: actions (\rightarrow Activity Recognition).
 - Sometimes: changes in the environment.
- Does the observer see all actions (missed observations)?
- Can we be wrong (False observations)?

Goals

- Single/multiple goal?
- Plans interleaved?
- Static/dynamic?

Introduction
000000000

Approaches

Based on

- plan libraries
- Parsing
- Probabilistic models
- · · · ·
- Most recent approach: Plan Recognition as Planning

Plan Recognition in Hierarchical Planning

Plan Recognition as Planning

Benefit from research in planning.

- Benefit from research in planning.
- Well-established formalisms.

- Benefit from research in planning.
- Well-established formalisms.
- Use the efficient solvers that are available in planning.

- Benefit from research in planning.
- Well-established formalisms.
- Use the efficient solvers that are available in planning.
- We will have a look at tree approaches:

- Benefit from research in planning.
- Well-established formalisms.
- Use the efficient solvers that are available in planning.
- We will have a look at tree approaches:
 - Next: Two approaches based on STRIPS (slides by Héctor Geffner).

- Benefit from research in planning.
- Well-established formalisms.
- Use the efficient solvers that are available in planning.
- We will have a look at tree approaches:
 - Next: Two approaches based on STRIPS (slides by Héctor Geffner).
 - Afterwards: Based on Hierarchical Task Network (HTN) planning.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Summary O

Plan Recognition

A		B		С
		1		
		ł		
J		s		D
Н		F		Е

Agent can move one unit in the four directions.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Summary O

Plan Recognition

A		B		С
		t		
		ł		
J		s		D
Н		F		Е

- Agent can move one unit in the four directions.
- Possible targets are A, B, C, …

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Plan Recognition

A		B		С
		1		
		ł		
J		s		D
Н		F		Е

- Agent can move one unit in the four directions.
- Possible targets are A, B, C, …
- Starting in S, he is observed to move up twice.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Plan Recognition

A		B		С
		1		
		ł		
J		s		D
Н		F		Е

- Agent can move one unit in the four directions.
- Possible targets are A, B, C, …
- Starting in S, he is observed to move up twice.
- Where is he going?

Standard Plan Recognition over Libraries (Abstract View)

- A plan recognition problem defined by triple $T = (\mathcal{G}, \Pi, O)$, where
 - \blacksquare \mathcal{G} is the set of possible goals G.
 - $\Pi(G)$ is the set of possible plans π for $G, G \subseteq \mathcal{G}$.
 - *O* is an observation sequence $a_1, \ldots a_n$ where each a_i is an action.

Standard Plan Recognition over Libraries (Abstract View)

- A plan recognition problem defined by triple $T = (\mathcal{G}, \Pi, O)$, where
 - \blacksquare \mathcal{G} is the set of possible goals G.
 - $\Pi(G)$ is the set of possible plans π for $G, G \subseteq \mathcal{G}$.
 - *O* is an observation sequence $a_1, \ldots a_n$ where each a_i is an action.
- A possible goal $G \in G$ is plausible if \exists plan π in $\Pi(G)$ that satisfies O.
- An action sequence π satisfies O if O is a subsequence of π .

(Classical) Plan Recognition over Action Theories

- PR over classical planning domains is similar but with set of plans Π(G) defined implicitly:
- A plan recognition problem is a triplet T = (P, G, O), where
 - P = (F, A, I) is planning domain: fluents F, actions A, init I, no goal.
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots a_n$, with $a_i \in A$.

(Classical) Plan Recognition over Action Theories

- PR over classical planning domains is similar but with set of plans Π(G) defined implicitly:
- A plan recognition problem is a triplet T = (P, G, O), where
 - P = (F, A, I) is planning domain: fluents F, actions A, init I, no goal.
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots a_n$, with $a_i \in A$.
- If Π(*G*) stands for "good plans" for *G* in *P* (to be defined), then as before:
 - A possible goal $G \in \mathcal{G}$ is plausible if there is a plan π in $\Pi(G)$ that satisfies O.
 - An action sequence π satisfies *O* if *O* is a subsequence of π .

(Classical) Plan Recognition over Action Theories

- PR over classical planning domains is similar but with set of plans Π(G) defined implicitly:
- A plan recognition problem is a triplet T = (P, G, O), where
 - P = (F, A, I) is planning domain: fluents F, actions A, init I, no goal.
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots a_n$, with $a_i \in A$.
- If Π(*G*) stands for "good plans" for *G* in *P* (to be defined), then as before:
 - A possible goal $G \in \mathcal{G}$ is plausible if there is a plan π in $\Pi(G)$ that satisfies O.
 - An action sequence π satisfies *O* if *O* is a subsequence of π .
- Our goal: define the good plans and solve the problem with a classical planner.

Plan Recognition as Planning: First Formulation

Define the set $\Pi(G)$ of "good plans" for *G* in *P*, as the optimal plans for *G* in *P*.

- Then $G \in \mathcal{G}$ is a plausible goal given observations O:
 - Iff there is an optimal plan π for G in P that satisfies O;
 - iff there is an optimal plan π for G in P that is a plan for G + O in P';
 - iff cost of G in P equal to cost of G + O in P' abbreviated

$$c_P'(G+O)=c_P(G)$$

Plan Recognition as Planning: First Formulation

Define the set $\Pi(G)$ of "good plans" for *G* in *P*, as the optimal plans for *G* in *P*.

- Then $G \in \mathcal{G}$ is a plausible goal given observations O:
 - Iff there is an optimal plan π for G in P that satisfies O;
 - iff there is an optimal plan π for G in P that is a plan for G + O in P';
 - iff cost of G in P equal to cost of G + O in P' abbreviated

$$c_P'(G+O)=c_P(G)$$

- Given that we can create a "new" planning problem solving G + O,
- it follows that plausibility of *G* can be computed exactly by calling an optimal planner twice: one for computing $c'_P(G + O)$, one for computing $c_P(G)$.

We get rid of observations *O* by transforming P = (F, I, A) into P' = (F', I', A') so that

• π is a plan for *G* in *P* that satisfies *O* iff π is a plan for *G* + *O* in *P'*. and

• π is a plan for *G* in *P* that doesn't satisfy *O* iff π is a plan for $G + \overline{O}$ in *P'*.

The transformation from P into P' is quite simple.

- Given P = (F, I, A), the transformed problem is P' = (F', I', A'):
 F' = F ∪ {p_a | a ∈ O}, where p_a is new fluent for the observed action a.
 I' = I.
 - $\blacksquare A' = A.$

- Given P = (F, I, A), the transformed problem is P' = (F', I', A'):
 - $F' = F \cup \{p_a \mid a \in O\}$, where p_a is new fluent for the observed action *a*.
 - $\blacksquare I' = I.$
 - $\blacksquare A' = A.$
- The actions $a \in O$ have an extra effect in A':
 - *p_a*, if *a* is the first observation in *O*, and
 - $p_b \rightarrow p_a$, if *b* is the action that immediately precedes *a* in *O*.

- Given P = (F, I, A), the transformed problem is P' = (F', I', A'):
 - $F' = F \cup \{p_a \mid a \in O\}$, where p_a is new fluent for the observed action *a*.
 - $\blacksquare I' = I.$
 - $\blacksquare A' = A.$
- The actions $a \in O$ have an extra effect in A':
 - *p_a*, if *a* is the first observation in *O*, and
 - $p_b \rightarrow p_a$, if *b* is the action that immediately precedes *a* in *O*.
- The "goals" *O* and \overline{O} in *P*′ are p_a and $\neg p_a$ for the last action *a* in *O*.
- The plans π for *G* in *P* that satisfy/don't satisfy *O* are the plans in *P'* for $G + O/G + \overline{O}$ respectively.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Plan Recognition as Planning: A More General Formulation

So far we filter goals *G* as plausible or implausible.

Plan Recognition as Planning: A More General Formulation

- So far we filter goals *G* as plausible or implausible.
- Rather rank them with a probability distribution P(G|O), $G \in \mathcal{G}$.

Plan Recognition as Planning: A More General Formulation

- So far we filter goals *G* as plausible or implausible.
- Rather rank them with a probability distribution P(G|O), $G \in \mathcal{G}$.
- From Bayes Rule $P(G|O) = \alpha P(O|G)P(G)$, where
 - α is a normalizing constant.
 - \square *P*(*G*) is assumed to be given in problem specification.
 - P(O|G) is defined in terms of extra cost to pay for not complying with the observations O:

$$P(O|G) = function(c(G + \overline{O}) - c(G + O))$$

Plan Recognition in Hierarchical Planning

Example: Navigation in a Grid Revisited

A		в		С
		t		
		ł		
J		s		D
н		F		Е

If $\Delta(G, O)$ defined as $c(G + \overline{O}) - c(G + O)$:

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Example: Navigation in a Grid Revisited

If $\Delta(G, O)$ defined as $c(G + \overline{O}) - c(G + O)$: For G = B, c(B + O) = c(B) = 4; $c(B + \overline{O}) = 6$; thus $\Delta(B, O) = 2$.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Example: Navigation in a Grid Revisited

If $\Delta(G, O)$ defined as $c(G + \overline{O}) - c(G + O)$:

- For G = B, c(B + O) = c(B) = 4; $c(B + \overline{O}) = 6$; thus $\Delta(B, O) = 2$.
- For G = C or A, $c(C + O) = c(C + \overline{O}) = c(C) = 8$; thus $\Delta(C, O) = 0$.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Example: Navigation in a Grid Revisited

If $\Delta(G, O)$ defined as $c(G + \overline{O}) - c(G + O)$:

- For G = B, c(B + O) = c(B) = 4; $c(B + \overline{O}) = 6$; thus $\Delta(B, O) = 2$.
- For G = C or A, $c(C + O) = c(C + \overline{O}) = c(C) = 8$; thus $\Delta(C, O) = 0$.
- For all other G, c(G+O) = 8; $c(G+\overline{O}) = c(G) = 4$; thus $\Delta(G, O) = -4$.

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Example: Navigation in a Grid Revisited

If $\Delta(G, O)$ defined as $c(G + \overline{O}) - c(G + O)$:

- For G = B, c(B + O) = c(B) = 4; $c(B + \overline{O}) = 6$; thus $\Delta(B, O) = 2$.
- For G = C or A, $c(C + O) = c(C + \overline{O}) = c(C) = 8$; thus $\Delta(C, O) = 0$.

For all other G, c(G+O) = 8; $c(G+\overline{O}) = c(G) = 4$; thus $\Delta(G, O) = -4$.

If P(O|G) is a monotonic function of $\Delta(G, O)$, then

$$\mathsf{P}(\mathsf{O}|\mathsf{B}) > [\mathsf{P}(\mathsf{O}|\mathsf{C}) = \mathsf{P}(\mathsf{O}|\mathsf{A})] > \mathsf{P}(\mathsf{O}|\mathsf{G}), ext{ for } \mathsf{G}
ot\in \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Summary O

Defining the Likelihoods P(O|G)

Assuming Boltzmann distribution and writing *exp*{*x*} for *e^x*, likelihoods become

$$P(O|G) = \alpha exp\{-\beta c(G+O)\}$$
$$P(\overline{O}|G) = \alpha exp\{-\beta c(G+\overline{O})\}$$

where α is a normalizing constant, and β is a positive constant.

Plan Recognition in Hierarchical Planning

Summary O

Defining the Likelihoods P(O|G)

 Assuming Boltzmann distribution and writing exp{x} for e^x, likelihoods become

$$\begin{split} & P(O|G) = \alpha \exp\{-\beta c(G+O)\} \\ & P(\overline{O}|G) = \alpha \exp\{-\beta c(G+\overline{O})\} \end{split}$$

where α is a normalizing constant, and β is a positive constant.

Taking ratio of two equations, it follows that

$$P(O|G)/P(\overline{O}|G) = exp\{\beta\Delta(G,O)\}$$

and hence

$$P(O|G) = 1/(1 + exp\{-\beta\Delta(G, O)\}) = sigmoid(\beta\Delta(G, O))$$

(whiteboard)

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Summary O

Defining the Likelihoods P(O|G)

$$P(O|G) = sigmoid(\beta\Delta(G, O))$$

 $\Delta(G, O) = c(G + \overline{O}) - c(G + O)$

E.g.,

$$egin{aligned} & P(O|G) < P(\overline{O}|G) ext{ if } c(G+\overline{O}) < c(G+O) \ & P(O|G) = 1 ext{ if } c(G+O) < c(G+\overline{O}) = \infty \end{aligned}$$

Plan Recognition in Non-Hierarchical Planning

- A plan recognition problem is a tuple T = (P, G, O, Prob) where
 - P is a planning domain P = (F, I, A).
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots, a_n, a_i \in O$.
 - *Prob* is prior distribution over \mathcal{G} .

- A plan recognition problem is a tuple T = (P, G, O, Prob) where
 - *P* is a planning domain P = (F, I, A).
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots, a_n, a_i \in O$.
 - *Prob* is prior distribution over \mathcal{G} .
- Posterior distribution P(G|O) obtained from:
 - Bayes Rule $P(G|O) = \alpha P(O|G) Prob(G)$ and
 - Likelihood $P(O|G) = sigmoid \{\beta[c(G + \overline{O}) c(G + O)]\}.$

- A plan recognition problem is a tuple T = (P, G, O, Prob) where
 - P is a planning domain P = (F, I, A).
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots, a_n, a_i \in O$.
 - *Prob* is prior distribution over \mathcal{G} .
- Posterior distribution P(G|O) obtained from:
 - Bayes Rule $P(G|O) = \alpha P(O|G) Prob(G)$ and
 - Likelihood $P(O|G) = sigmoid \{\beta[c(G + \overline{O}) c(G + O)]\}.$
- Distribution P(G|O) computed exactly or approximately:
 - exactly using optimal planner for determining c(G + O) and $c(G + \overline{O})$ and
 - approximately using suboptimal planner for c(G + O) and $c(G + \overline{O})$.

- A plan recognition problem is a tuple T = (P, G, O, Prob) where
 - P is a planning domain P = (F, I, A).
 - \mathcal{G} is a set of possible goals $G, G \subseteq F$.
 - *O* is the observation sequence $a_1, \ldots, a_n, a_i \in O$.
 - *Prob* is prior distribution over \mathcal{G} .
- Posterior distribution P(G|O) obtained from:
 - Bayes Rule $P(G|O) = \alpha P(O|G) Prob(G)$ and
 - Likelihood $P(O|G) = sigmoid \{\beta[c(G + \overline{O}) c(G + O)]\}.$
- Distribution P(G|O) computed exactly or approximately:
 - exactly using optimal planner for determining c(G + O) and $c(G + \overline{O})$ and
 - approximately using suboptimal planner for c(G + O) and $c(G + \overline{O})$.
- In either case, $2 \times |G|$ planner calls are needed.

Plan Recognition in Hierarchical Planning

Example: Noisy Walk

Graph on the left shows "noisy walk" and possible targets; curves on the right show posterior P(G|O) of each possible target *G* as a function of time.

Plan and Goal Recognition as HTN Planning

- STRIPS: specifies what has to be in a plan.
- HTN: also excludes other elements from being in the plan.
 - No actions apart from hierarchy.
 - Enables to plan only once, regardless how many goals there are.
 - Interesting to rule out non-fitting plans/goals.

Plan and Goal Recognition as HTN Planning

- STRIPS: specifies what has to be in a plan.
- HTN: also excludes other elements from being in the plan.
 - No actions apart from hierarchy.
 - Enables to plan only once, regardless how many goals there are.
 - Interesting to rule out non-fitting plans/goals.
- Formalism much more expressive than STRIPS planning.

Problem Definition

Let $\mathcal{D} = (V, P, \delta, C, M)$ be an HTN planning domain.

Definition (Plan and Goal Recognition Problem)

A PGR problem $(\mathcal{D}, s_I, O, \mathcal{G})$ extends the model by:

■ *s*₀ the initial state.

• $O = \langle o_1, o_2, \dots, o_m \rangle$ the sequence of observations.

• $\mathcal{G} = \{G_1, G_2, \dots, G_r\}$ a set of possible *goal (task) networks*.

Problem Definition

Let $\mathcal{D} = (V, P, \delta, C, M)$ be an HTN planning domain.

Definition (Plan and Goal Recognition Problem)

A PGR problem $(\mathcal{D}, s_l, O, \mathcal{G})$ extends the model by:

■ *s*₀ the initial state.

• $O = \langle o_1, o_2, \dots, o_m \rangle$ the sequence of observations.

• $\mathcal{G} = \{G_1, G_2, \dots, G_r\}$ a set of possible *goal (task) networks*.

Definition (Recognized Plan and Goal)

Given a PGR problem, a *goal* $G_i \in \mathcal{G}$ *explains* the observations $\langle o_1, o_2, \ldots, o_m \rangle$ iff there is a solution $s \in Sol(\mathcal{D}, s_0, G_i)$ with an executable linearization $\langle a_1, a_2, \ldots, a_n \rangle$ of its tasks with:

•
$$n \ge m$$
 and $o_i = a_i$ for $1 \le i \le m$.

•
$$\langle a_1, a_2, \ldots, a_n \rangle$$
 is the recognized *plan*.

Plan Recognition in Non-Hierarchical Planning	Plan Recognition in Hierarchical Planning 000000	

Approach

Plan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Summary O

Approach - Make Goals Reachable

lan Recognition in Non-Hierarchical Planning

Plan Recognition in Hierarchical Planning

Summary O

Approach - Enforce a Prefix

Approach - Enforce a Prefix

$$s_0 \models \overset{b_0}{\vdash} \cdots \qquad \overset{b_0}{=} = \underbrace{a_1} \models \overset{b_1}{\vdash} \cdots \qquad \overset{b_1}{=} = \underbrace{a_2} \models \overset{b_1}{\vdash} \cdots \qquad \overset{b_{m-1}}{\cdots} = \underbrace{a_m} \models \overset{b_m}{\vdash} \overset{b_m}{\cdots} \qquad \overset{b_m}{=} = \underbrace{a_l} \models \cdots \qquad \overset{b_m}{\cdots} = \underbrace{a_l} \models \cdots \qquad \overset{b_m}{$$

- Copy observed actions: $a \rightarrow a, a'$
- a' gets new preconditions and effects, it can only be placed at the position where it has been observed
- *a* is modified such that they can only be placed after the prefix
- Observed actions have to be in the plan

Approach - Enforce a Prefix

Observations: ab

Set of methods:

. . .

Approach - Enforce a Prefix

Observations: ab

Set of methods:

. . .

Approach – Enforce a Prefix

Observations: ab

. . .

Approach – Enforce a Prefix

Observations: ab

. . .

Approach – Enforce a Prefix

Observations: ab

	Plan Recognition in Non-Hierarchical Planning	Plan Recognition in Hierarchical Planning 00000●	
Approach			

- Off-the-shelf HTN planners solve the PGR problem.
- Needing a single run of the planner, regardless how many goals there are.

Plan Recognition in Hierarchical Planning

Approach

- Off-the-shelf HTN planners solve the PGR problem.
- Needing a single run of the planner, regardless how many goals there are.
- Example: Simple cooking domain.
 - There is a short plan for making noodles.
 - There is a long plan for making tiramisu (needing eggs).
 - Observation: an egg was broken.

Plan Recognition in Hierarchical Planning

Approach

- Off-the-shelf HTN planners solve the PGR problem.
- Needing a single run of the planner, regardless how many goals there are.
- Example: Simple cooking domain.
 - There is a short plan for making noodles.
 - There is a long plan for making tiramisu (needing eggs).
 - Observation: an egg was broken.

HTN planning behavior:

- HTN planner is forced to generate the long plan.
- Planner will tend to find a short/cheap plan.

Plan Recognition in Hierarchical Planning

Approach

- Off-the-shelf HTN planners solve the PGR problem.
- Needing a single run of the planner, regardless how many goals there are.
- Example: Simple cooking domain.
 - There is a short plan for making noodles.
 - There is a long plan for making tiramisu (needing eggs).
 - Observation: an egg was broken.

HTN planning behavior:

- HTN planner is forced to generate the long plan.
- Planner will tend to find a short/cheap plan.

Consider a similar (goal) encoding in STRIPS:

- Planner might start with "open egg" and make noodles afterwards.
- This might even be cheaper when planning optimally.

Plan Recognition in Hierarchical Planning

Plan and Goal Recognition (as Planning)

- We studied the *Plan and Goal Recognition* problem.
- Assumptions are more problematic than in planning.

Plan and Goal Recognition (as Planning)

- We studied the *Plan and Goal Recognition* problem.
- Assumptions are more problematic than in planning.
- Less "converged" problem definition:
 - type of behavior model,
 - what is an observation,

- what is computed,
- ...

Plan and Goal Recognition (as Planning)

- We studied the *Plan and Goal Recognition* problem.
- Assumptions are more problematic than in planning.
- Less "converged" problem definition:
 - type of behavior model, what is computed,
 - what is an observation,...
- One way to solve it: "Plan Recognition as Planning".
- Compilation to planning, we have seen:
 - 1st transformation into classical planning: Miquel Ramírez and Héctor Geffner. "Plan Recognition as Planning". In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009). AAAI Press, 2009, pp. 1778–1783
 - 2nd transformation, enabling the computation of probability distributions: Miquel Ramírez and Hector Geffner. "Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners". In: *Proc. of the 24th AAAI Conf. on Artificial Intelligence (AAAI 2010)*. AAAI Press, 2010
 - Transformation into the more expressive HTN formalism.

Chapter: Plan Recognition in Hierarchical Planning by Daniel Höller