Lecture Hierarchical Planning

Chapter: Complexity Results for Plan Verification

Dr. Pascal Bercher

Institute of Artificial Intelligence, Ulm University, Germany

Winter Term 2018/2019

(Compiled on: February 20, 2019)

ulm university universität **UUIM**

Introduction			

Overview:

- 1 Introduction
- 2 Recap on Complexity Theory
- 3 Plan Verification
- 4 Verify Non-hierarchical Plans
- 5 Verify Hierarchical Plans

6 Summary

Introduction ●O			

Complexity analysis studies the computational hardness of a decision problem. In this lecture we study:

Introduction ●○			

Complexity analysis studies the computational hardness of a decision problem. In this lecture we study:

The plan existence problem:

Introduction ●○			

Complexity analysis studies the computational hardness of a decision problem. In this lecture we study:

The plan existence problem:

How hard is it to decide whether a problem $\ensuremath{\mathcal{P}}$ has a solution?

Introduction ●○			

Complexity analysis studies the computational hardness of a decision problem. In this lecture we study:

- The plan existence problem: How hard is it to decide whether a problem *P* has a solution?
- The plan verification problem:

Introduction ●○			

Complexity analysis studies the computational hardness of a decision problem. In this lecture we study:

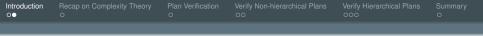
- The plan existence problem: How hard is it to decide whether a problem P has a solution?
- The plan verification problem: How hard is it to decide whether a given plan is actually a solution?

Introduction			

Introduction			

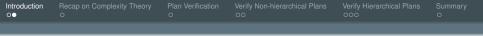
Benefits of complexity studies:

We know how to design algorithms:



- We know how to design algorithms:
 - If a problem is undecidable, any terminating algorithm must be wrong. Similarly: if a problem is Nℙ-complete, it is not a good idea to design a decision procedure that runs in polynomial time.

- We know how to design algorithms:
 - If a problem is undecidable, any terminating algorithm must be wrong. Similarly: if a problem is NP-complete, it is not a good idea to design a decision procedure that runs in polynomial time.
 - If the complexity of a problem is not known, at which runtime should we aim? P? EXPTIME?

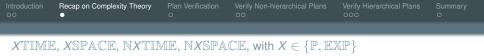


- We know how to design algorithms:
 - If a problem is undecidable, any terminating algorithm must be wrong. Similarly: if a problem is NP-complete, it is not a good idea to design a decision procedure that runs in polynomial time.
 - If the complexity of a problem is not known, at which runtime should we aim? P? EXPTIME?
- We can identify special cases to be exploited by algorithms.

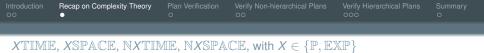
- We know how to design algorithms:
 - If a problem is undecidable, any terminating algorithm must be wrong. Similarly: if a problem is NP-complete, it is not a good idea to design a decision procedure that runs in polynomial time.
 - If the complexity of a problem is not known, at which runtime should we aim? P? EXPTIME?
- We can identify special cases to be exploited by algorithms.
 Example: heuristics! (Most of them exploit special cases that can be decided in P.)

- We know how to design algorithms:
 - If a problem is undecidable, any terminating algorithm must be wrong. Similarly: if a problem is NP-complete, it is not a good idea to design a decision procedure that runs in polynomial time.
 - If the complexity of a problem is not known, at which runtime should we aim? P? EXPTIME?
- We can identify special cases to be exploited by algorithms. Example: heuristics! (Most of them exploit special cases that can be decided in P.)
- Insights may also allow for compilation techniques.

- We know how to design algorithms:
 - If a problem is undecidable, any terminating algorithm must be wrong. Similarly: if a problem is NP-complete, it is not a good idea to design a decision procedure that runs in polynomial time.
 - If the complexity of a problem is not known, at which runtime should we aim? P? EXPTIME?
- We can identify special cases to be exploited by algorithms. Example: heuristics! (Most of them exploit special cases that can be decided in P.)
- Insights may also allow for compilation techniques.
- Last, but not-at-all least: they help understanding the problem! (Understanding the problem should always be the first step.)



A problem can be decided in P (also: PTIME) if there is an algorithm that requires only polynomial time. (Similar for higher classes, such as EXPTIME.



- A problem can be decided in P (also: PTIME) if there is an algorithm that requires only polynomial time. (Similar for higher classes, such as EXPTIME.
- A problem can be decided in NP (also: NPTIME) if there is a non-deterministic algorithm that requires only polynomial time. (Similar for higher classes, such as NEXPTIME.

- A problem can be decided in P (also: PTIME) if there is an algorithm that requires only polynomial time. (Similar for higher classes, such as EXPTIME.
- A problem can be decided in NP (also: NPTIME) if there is a non-deterministic algorithm that requires only polynomial time. (Similar for higher classes, such as NEXPTIME.
- A problem can be decided in PSPACE if there is an algorithm that requires only polynomial space. (Similar for higher classes, such as EXPSPACE.

- A problem can be decided in P (also: PTIME) if there is an algorithm that requires only polynomial time. (Similar for higher classes, such as EXPTIME.
- A problem can be decided in NP (also: NPTIME) if there is a non-deterministic algorithm that requires only polynomial time. (Similar for higher classes, such as NEXPTIME.
- A problem can be decided in PSPACE if there is an algorithm that requires only polynomial space. (Similar for higher classes, such as EXPSPACE.
- Note: PSPACE = NPSPACE (holds also for higher classes).

Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable.

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?
 - All linearizations of *P* are executable.

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?
 - All linearizations of *P* are executable.
 - There exist a linearization of *P*.

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?
 - All linearizations of *P* are executable.
 - There exist a linearization of *P*.
- We might consider special cases:

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?
 - All linearizations of *P* are executable.
 - There exist a linearization of *P*.
- We might consider special cases:
 - Task insertion.

Problem Definition

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?
 - All linearizations of *P* are executable.
 - There exist a linearization of *P*.
- We might consider special cases:
 - Task insertion.
 - Empty or primitive initial task network.

Problem Definition

- Decision problem: given a task network *tn* and an HTN planning problem *P*, is *P* a solution for *P*?
- What do we need to verify?
 - *tn* is a refinement of the initial task (network).
 - tn is executable. According to which definition?
 - All linearizations of *P* are executable.
 - There exist a linearization of *P*.
- We might consider special cases:
 - Task insertion.
 - Empty or primitive initial task network.
 - Totally ordered methods/initial task network.

Introduction		Verify Non-hierarchical Plans ●O	

Verification of Classical Solutions

Theorem

Let $\mathcal P$ be a STRIPS planning problem and $\bar a$ an action sequence. Then, deciding whether $\bar a$ is a solution for $\mathcal P$ is

Introduction		Verify Non-hierarchical Plans	

Verification of Classical Solutions

Theorem

Let \mathcal{P} be a STRIPS planning problem and \overline{a} an action sequence. Then, deciding whether \overline{a} is a solution for \mathcal{P} is in \mathbb{P} .

Introduction		Verify Non-hierarchical Plans ●O	

Verification of Classical Solutions

Theorem

Let \mathcal{P} be a STRIPS planning problem and \overline{a} an action sequence. Then, deciding whether \overline{a} is a solution for \mathcal{P} is in \mathbb{P} .

Proof:

Execute the plan and check whether every action can be applied in the respective state and whether a goal is produced. (\rightarrow Linear effort.)

Introduction		Verify Non-hierarchical Plans	

Verification of Partial Orders

Theorem

Let *tn* be a primitive task network, i.e., a partially ordered set of (labeled) actions.

Then, deciding whether tn has an executable linearization is

Introduction		Verify Non-hierarchical Plans	

Verification of Partial Orders

Theorem

Let *tn* be a primitive task network, i.e., a partially ordered set of (labeled) actions.

Then, deciding whether *tn* has an executable linearization is \mathbb{NP} -complete.

Introduction		Verify Non-hierarchical Plans	

Verification of Partial Orders

Theorem

Let *tn* be a primitive task network, i.e., a partially ordered set of (labeled) actions.

Then, deciding whether *tn* has an executable linearization is \mathbb{NP} -complete.

Proof:

Introduction		Verify Non-hierarchical Plans	

Verification of Partial Orders

Theorem

Let *tn* be a primitive task network, i.e., a partially ordered set of (labeled) actions. Then, deciding whether *tn* has an executable linearization is \mathbb{NP} -complete.

Proof: Membership: guess and verify.

Introduction		Verify Non-hierarchical Plans	

Verification of Partial Orders

Theorem

Let *tn* be a primitive task network, i.e., a partially ordered set of (labeled) actions. Then, deciding whether *tn* has an executable linearization is \mathbb{NP} -complete.

Proof:

Membership: guess and verify.

Hardness: Reduction from CNF Sat (proof idea via black board).

Introduction 00		Verify Hierarchical Plans ●○○	
			-

Corollary

Introduction 00		Verify Hierarchical Plans ●○○	
			_

Corollary

Introduction 00		Verify Hierarchical Plans ●○○	

Corollary

Let *tn* be a primitive task network and \mathcal{P} an HTN or TIHTN planning problem. Then, deciding whether *tn* is a solution is \mathbb{NP} -hard.

What about membership?

Introduction		Verify Hierarchical Plans ●○○	

Corollary

Let *tn* be a primitive task network and \mathcal{P} an HTN or TIHTN planning problem. Then, deciding whether *tn* is a solution is \mathbb{NP} -hard.

What about membership? Easy if methods are non-empty, tricky (but possible) otherwise.

Introduction			Verify Hierarchical Plans ●೦೦	
Verificat	tion of HTN Plans			

Corollary

- What about membership? Easy if methods are non-empty, tricky (but possible) otherwise.
- What if we have the witness for executability given? → Then, checking executability is in P, right?

Introduction 00		Verify Hierarchical Plans ●○○	
N 10 1			

Corollary

- What about membership? Easy if methods are non-empty, tricky (but possible) otherwise.
- What if we have the witness for executability given? → Then, checking executability is in P, right?
 - No! This is only the case if we know the *labels/task ids* rather than just the actions.

Introduction 00		Verify Hierarchical Plans ●○○	
N 10 1			

Corollary

- What about membership? Easy if methods are non-empty, tricky (but possible) otherwise.
- What if we have the witness for executability given?
 - \rightarrow Then, checking executability is in $\mathbb P,$ right?
 - No! This is only the case if we know the *labels/task ids* rather than just the actions.
 - Otherwise, we have to check whether there is a refinement of the task network's ordering constraint leading to the witness, which is again NP-hard.

- Let's consider a practically more Useful definition of executability.
- Let's require a primitive task network to be executable if and only if *every linearization* is executable.

- Let's consider a practically more Useful definition of executability.
- Let's require a primitive task network to be executable if and only if *every linearization* is executable.

Theorem

Deciding whether a (primitive) task network is executable (in the sense given above) is

- Let's consider a practically more Useful definition of executability.
- Let's require a primitive task network to be executable if and only if every linearization is executable.

Theorem

Deciding whether a (primitive) task network is executable (in the sense given above) is in $\mathbb{P}.$

- Let's consider a practically more Useful definition of executability.
- Let's require a primitive task network to be executable if and only if every linearization is executable.

Theorem

Deciding whether a (primitive) task network is executable (in the sense given above) is in $\mathbb{P}.$

Proof: Black board.

- So, given a task network with *all executability semantics*, plan verification can be decided in P, right?
- No! We still need to check the refinement criterion. This is NP-hard, however. (Reduction from Vertex Cover, maybe later.)

- So, given a task network with *all executability semantics*, plan verification can be decided in P, right?
- No! We still need to check the refinement criterion. This is NP-hard, however. (Reduction from Vertex Cover, maybe later.)

Theorem

Deciding whether a (primitive) task network is a solution is, even for *all* executability semantics, \mathbb{NP} -complete.

So far, we studied the computational complexity of the *plan verification problem*.

- So far, we studied the computational complexity of the *plan verification problem*.
- It ranges from \mathbb{P} to \mathbb{NP} -complete.

- So far, we studied the computational complexity of the *plan verification problem*.
- It ranges from \mathbb{P} to \mathbb{NP} -complete.
- Verifying total-order plans is much easier than verifying partially ordered plans.

Introduction			Summary •
Summa	ry		

- So far, we studied the computational complexity of the *plan verification problem*.
- It ranges from \mathbb{P} to \mathbb{NP} -complete.
- Verifying total-order plans is much easier than verifying partially ordered plans.
- The hardness of verifying partially ordered plans depends on whether an executable linearization needs to exist or whether all of them need to be executable.

Introduction			Summary •
Summa	ry		

- So far, we studied the computational complexity of the *plan verification problem*.
- It ranges from \mathbb{P} to \mathbb{NP} -complete.
- Verifying total-order plans is much easier than verifying partially ordered plans.
- The hardness of verifying partially ordered plans depends on whether an executable linearization needs to exist or whether all of them need to be executable.
- Verifying hierarchical plans is often harder, because we also need to check the refinement criterion.

Introduction			Summary •
Summa	ry		

- So far, we studied the computational complexity of the *plan verification problem*.
- It ranges from \mathbb{P} to \mathbb{NP} -complete.
- Verifying total-order plans is much easier than verifying partially ordered plans.
- The hardness of verifying partially ordered plans depends on whether an executable linearization needs to exist or whether all of them need to be executable.
- Verifying hierarchical plans is often harder, because we also need to check the refinement criterion.
- Complexity results give raise to specialized algorithms, to heuristics, and to translations to other problem classes.

