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What are Complexity Studies?

Complexity analysis studies the computational hardness of a decision
problem. In this lecture we study:

The plan existence problem:

How hard is it to decide whether a problem P has a solution?

The plan verification problem:

How hard is it to decide whether a given plan is actually a
solution?
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Why are we Interested in Complexity Studies?

Benefits of complexity studies:

We know how to design algorithms:

If a problem is undecidable, any terminating algorithm must be
wrong. Similarly: if a problem is NP-complete, it is not a good idea
to design a decision procedure that runs in polynomial time.
If the complexity of a problem is not known, at which runtime
should we aim? P? EXPTIME?

We can identify special cases to be exploited by algorithms.

Example: heuristics! (Most of them exploit special cases that can
be decided in P.)

Insights may also allow for compilation techniques.

Last, but not-at-all least: they help understanding the problem!
(Understanding the problem should always be the first step.)
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Decidability, Undecidability

A problem is decidable if there is an algorithm that, for each
possible input, terminates after a finite time with the correct
solution (i.e., true or false).

More formally, a set of natural numbers N ⊆ N is called decidable
if the function χN : N→ {0, 1} can be computed, where:

χN(n) =

{
1 if n ∈ N

0 otherwise

A problem is called undecidable if it is not decidable.
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Semi-decidability

A problem is semi-decidable if there is an algorithm that, for each
possible input, terminates eventually in case the correct answer is
yes. For instance, breadth-first-search usually serves as proof for
the semi-decidability.

More formally, a set of natural numbers N ⊆ N is called
semi-decidable if the function χN : N→ {undef, 1} can be
computed, where:

χN(n) =

{
1 if n ∈ N

undef otherwise

→ Corollary: Each decidable problem is semi-decidable.

Note: semi-decidable problems (sets) are also called, among
others, recursively enumerable.
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Introduction

Overview

Which properties make the plan existence problem easier?

Task insertion.

Total order of all task networks.
Recursion. Methods are:

acyclic: no recursion.
regular: only one compound task, which is the last one.
tail-recursive: arbitrary many compound tasks, only the last one is
recursive.

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive
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Totally Ordered Problems

Totally Ordered Problems, Problem Definition

An HTN planning problem P is called totally ordered if:

All decomposition methods are totally ordered, i.e., for each
m ∈ M, m = (c, tn), tn is a totally ordered task network.

In case P uses an initial task network tnI rather than an initial
task cI , then tnI needs to be totally ordered as well.
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Regular Problems

Regular Problems, Problem Definition

A task network tn = (T ,≺, α) is called regular if

at most one task in T is compound and
if t ∈ T is a compound task, then it is the last task in tn, i.e., all
other tasks t ′ ∈ T are ordered before t .

A method (c, tn) is called regular if tn is regular.

A planning problem is called regular if all methods are regular.

Note: In case the planning problem features an initial task network, a
problem is defined as regular if this network is regular, too. (Although
this restriction in not necessary with regard to the results that base
upon it.)
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Tail-Recursive Problems

Tail-Recursive Problems, Informal Problem Definition

Informally, tail-recursive problems look as follows:

limited recursion for all tasks in all methods

non-last tasks have a more restricted recursion

Formally, the restrictions on recursion are defined in terms of so-called
stratifications.
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Tail-Recursive Problems

Stratifications

A stratification is defined as follows:

A set ≤ ⊆ C × C is called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

We call any inclusion-maximal subset of C a stratum of ≤ if for all
x , y ∈ C both (x , y) ∈ ≤ and (y , x) ∈ ≤ hold.

The height of a stratification is the number of its strata.
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Tail-Recursive Problems

Stratifications: Example

(Non-)Examples for Stratifications:

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .
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Tail-Recursive Problems

Stratifications

A stratification is defined as follows:

A set ≤ ⊆ C × C is called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

We call any inclusion-maximal subset of C a stratum of ≤ if for all
x , y ∈ C both (x , y) ∈ ≤ and (y , x) ∈ ≤ hold.

The height of a stratification is the number of its strata.
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S1 = {E}, S2 = {A,B}, and S3 = {C,D} are strata

≤b and ≤c have a height of 3.

If we add, e.g., an edge from E to D in ≤c , i.e., the tuple (D,E),
then we only have a single stratification with height 1.
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Tail-Recursive Problems

Tail-Recursive Problems,Problem Definition

An HTN problem P is called tail-recursive if there is a stratification ≤
on the compound tasks C of P with the following property:

For all methods (c, (T ,≺, α)) ∈ M holds:

If there is a last task t ∈ T that is compound (i.e., α(t) ∈ C and
for all t ′ 6= t holds (t ′, t) ∈ ≺), then (α(t), c) ∈ ≤.

For any non-last task t ∈ T with α(t) ∈ C it holds (α(t), c) ∈ ≤
and (c, α(t)) /∈ ≤.
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Problem Classes – Recap

Overview of Problem Classes

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Notes:

Do not confuse these problem classes with the language classes!

Totally ordered problems are not shown because this restriction is
independent of all the ones depicted.
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Problem Definition

Decision problem: given a planning problem P , does P possess a
solution?

For which problems do we already know their complexities?

STRIPS with positive preconditions and effects:

in P.

as before, but k -length:

NP-complete.

STRIPS with arbitrary preconditions and positive effects:

NP-complete.

So, what’s still missing?

STRIPS with arbitrary effects.

Will show: PSPACE-complete.

HTN planning under several restrictions (cf. problem classes).
TIHTN planning.
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Complexity of the General Case, Membership

Theorem

Let P be a classical planning problem. Deciding whether P has a solution
is PSPACE-complete.

Proof, Membership:

Maximal plan length that needs to be considered: 2n with n = |V |.
But we still only need polynomial space:

For all states s1, s2, we want to know whether there is a plan from s1

to s2. This is done via asking:
Is there a plan of length ≤ n from s1 to s′ and another from s′ to s2?
(This reduces the hardness of the plan existence problem of length 2n
to two problems of length n each.)
By iterating over all states, this requires polynomial space.
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Complexity of the General Case, Hardness

Theorem

Let P be a classical planning problem. Deciding whether P has a solution
is PSPACE-complete.

Proof, Hardness:

We encode a space-bounded Turing-machine into a STRIPS
problem.

An operator checks the current state and tape content.

The operators’ effects encode the successor state and tape changes.

Number of operators is proportional to number of transitions times
tape squares.
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More Complexity Results

There are several further cases that can be studied, e.g.:

Take the number of preconditions/effects into account (special
cases are often revealed via looking into the reductions).

Perform a fixed parameter study.

Perform partial relaxations by ignoring only some parts (e.g.,
delete effects) of the model.

Take dependencies between actions into account (they can be
represented as graphs, the properties of which can be exploited).
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cases are often revealed via looking into the reductions).

Perform a fixed parameter study.

Perform partial relaxations by ignoring only some parts (e.g.,
delete effects) of the model.

Take dependencies between actions into account (they can be
represented as graphs, the properties of which can be exploited).
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Undecidability Proof

Theorem

HTN planning is undedicable.

Proof:
Reduction from the language intersection problem of two context-free gram-
mars: given G and G′, is there a word ω in both languages L(G) ∩ L(G′)?

Construct an HTN planning problem P that has a solution if and only if
the correct answer is yes.

Translate the production rules to decomposition methods. That way
only words in L(G) and L(G′) can be produced.

Any solution tn contains the word ω – encoded as action sequence –
twice: once produced by G and once produced by G′. The action
encodings ensure that no other task networks are executable.
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Undecidability Proof, cont’d – by Example

Proof idea by example:

Let G = (

non-terminal
symbols︷ ︸︸ ︷

Γ = {H,Q},

terminal
symbols︷ ︸︸ ︷

Σ = {a, b},

production
rules︷︸︸︷
R ,

start
symbol︷︸︸︷

H )
and G′ = (Γ′ = {D, F},Σ′ = {a, b}, R′,D) be formal grammars.

Production rules R: H 7→ aQb Q 7→ aQ | bQ | a | b
Production rules R′: D 7→ aFD | ab F 7→ a | b

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 22 / 43



Introduction Recap Problem Classes Plan Existence Classical HTN TIHTN TO-HTN Acyclic Regular Tail-Recursive Summary

Undecidability Proof, cont’d – by Example

Proof idea by example:

Contructed HTN problem with desired solution set:

P = (V ,

C︷ ︸︸ ︷
{H,Q,D, F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G} )

V = {vturn:G, vturn:G′} ∪ {va, vb}
δ = {(a, ({vturn:G}, {vturn:G′ , va}, {vturn:G})),

(b, ({vturn:G}, {vturn:G′ , vb}, {vturn:G})),

(a′, ({vturn:G′ , va}, {vturn:G}, {vturn:G′ , va})),

(b′, ({vturn:G′ , vb}, {vturn:G}, {vturn:G′ , vb}))}
M = M(G) ∪M(G′) (translated production rules of G′ and G′)

tnI = ({t, t ′}︸ ︷︷ ︸
T

, ∅︸︷︷︸
≺

, {(t,H), (t ′,D)}︸ ︷︷ ︸
α

)
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Implications of Undecidability

So, HTN planning is undecidable... What does it mean?

There cannot be a single algorithm that terminates with the correct
“answer” (i.e., a solution or fail, meaning that no solution exists) for
every possible problem.

But are there any termination guarantees?

That is: could it be that an algorithm never terminates independent of
whether there is a solution?

In principle, according to the result shown so far: yes.

However, for HTN planning: no! In case there is a solution we can
prove this eventually (we just never know when, i.e., whether this is
still going to happen).

In other words: HTN planning is also(!) semi-decidable.
undecidable + semi-decidable is also called strictly semi-decidable.
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Semi-decidability Proof, cont’d

Theorem

HTN planning is semi-decidable.

Proof:
Reminder: We need to find a function χN : M → {undef, 1} with:

χN(n) =

{
1 if n ∈ N

undef otherwise
(Here, M is the set of all HTN planning problems. N is its subset of
problems with a solution.)

Let n = P . Define χN as a BFS procedure (starting with the initial task
network) that returns 1 if and only if it discovered a solution to P (we
can also return undef in case it can prove it to be unsolvable).
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TIHTN, General Case

Influence of Task Insertion
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TIHTN, General Case

Complexity of TIHTN Planning (Membership)
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TIHTN, General Case

Complexity of TIHTN Planning (Hardness)

We can show that the previous bound is tight, i.e., TIHTN
planning is NEXPTIME-complete.

To show hardness, we reduce a non-deterministic
(exponential)time-bounded Turing Machine to TIHTN planning.

The proof is not provided in this lecture.
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TIHTN, General Case

Implications of TIHTN Results

Recursive models are equivalent to their non-recursive versions.

None of the restrictions of the hierarchy matters for TIHTN
problems.

TIHTN problems are less expressive than HTN problems (also cf.
language results).
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TO-TIHTN

Complexity of Totally Ordered TIHTN Planning

Theorem

Deciding whether a totally ordered TIHTN planning problem has a
solution is

NEXPTIME-complete.

Proof, Membership:
Like before, but now, we need to guess less (the order is already
given).

Proof, Hardness:
The previous reduction already used a totally ordered TIHTN problem.
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solution is

EXPTIME-complete.

Intuition of Membership:

Since plans are totally ordered, the only means of choosing the
right refinement for a given compound task is to produce a
suitable successor state.

. . .

. . .
 set of totally ordered

primitive refinements

There are only finitely many states that can be produced by the
refinements of a given compound task.
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Complexity of Totally Ordered HTN Planning (Memberhsip)

Theorem

Deciding whether a totally ordered HTN planning problem has a
solution is EXPTIME-complete.

Proof, Membership:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:

s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′.
s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′.

Algorithm:

Initialize the table (with all states and tasks) with value ?.
Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement.
Continue as long as at least one value ? is changed.
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Complexity of Totally Ordered HTN Planning (Hardness)

Theorem

Deciding whether a totally ordered HTN planning problem has a
solution is EXPTIME-complete.

Proof, Hardness:

We reduce from a 2-player game, which is EXPTIME-complete.

The proof is not provided in this lecture.
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Complexity of Acyclic HTN Planning (Membership)

Theorem

Deciding whether an acyclic HTN planning problem has a solution is

NEXPTIME-complete.

Proof, Membership:

Do the same as for TIHTN problems, but without the task insertion part:

Guess at most b|C|+1 decompositions.
(C = set of compound tasks.)
(b = size of largest task network in the model.)

Verify in O(b|C|+1) whether the decompositions can be applied in
sequence.

Guess a linearization of the resulting task network.

Verify applicability of resulting linearization in O(b|C|+1).
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Complexity of Acyclic HTN Planning (Hardness)

Theorem

Deciding whether an acyclic HTN planning problem has a solution is
NEXPTIME-complete.

Proof, Hardness:

Almost the same proof as to TIHTN planning: We reduce from a
non-deterministic turing machine, but now don’t allow task insertion.

The proof is not provided in this lecture.
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Complexity of Regular HTN Planning (Membership)

Theorem

Deciding whether a regular HTN planning problem has a solution is

PSPACE-complete.

Proof, Membership:

Rely on progression search.

Until the compound task gets decomposed, all primitive tasks
have been “progressed away”.

That way, the size of any task network is bounded by the size of
the largest task network in the model.
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Recap and Example: HTN Progression Search

s A B

C

Always progress tasks that are a possibly first task in the network.

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state.
compound: decompose it.
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Complexity of Regular HTN Planning (Hardness)

Theorem

Deciding whether a regular HTN planning problem has a solution is
PSPACE-complete.

Proof, Hardness: Every STRIPS problem PSTRIPS can be canonically
expressed by a totally ordered regular HTN problem P :

The actions in PSTRIPS are primitive tasks in P .

There is just one compound task X generating all possible action
sequences: for all p ∈ P, we have a method mapping X to p
followed by X .

For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description.

The initial task is X .
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Complexity of Tail-Recursive HTN Planning (Membership)

Theorem

Deciding whether a tail-recursive HTN planning problem has a solution
is

EXPSPACE-complete.

Proof, Membership:

Again, rely on progression search. Until the last task gets decom-
posed, all tasks ordered before it have been “progressed away”.
Only the decomposition of a last task might let the current
stratification height unchanged.
The decomposition of non-last tasks results into tasks of strictly
lower stratum.
From this, we can calculate a progression bound – a maximal
size of task network created under progression.
We get progression bound k ·mh, with k size of initial task
network, m size of the largest method, and h stratification height.
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Recap and Example: Progression Search with Tail-Recursive HTNs

Consider the following initial task network of size 3:

0 5

4

Using a method with last task increases the size,

and a task with the same stratification height remains(!),

but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.
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Complexity of Tail-Recursive HTN Planning (Membership)

Theorem

Deciding whether a tail-recursive HTN planning problem has a solution
is EXPSPACE-complete.

Proof, Membership:
Again, rely on progression search. Until the last task gets decom-
posed, all tasks ordered before it have been “progressed away”.
Only the decomposition of a last task might let the current
stratification height unchanged.
The decomposition of non-last tasks results into tasks of strictly
lower stratum.
From this, we can calculate a progression bound – a maximal
size of task network created under progression.
We get progression bound k ·mh, with k size of initial task
network, m size of the largest method, and h stratification height.
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Complexity of Tail-Recursive HTN Planning (Hardness)

Theorem

Deciding whether a tail-recursive HTN planning problem has a solution
is

EXPSPACE-complete.

Proof, Hardness:

To show hardness, we reduce a (exponential)space-bounded
Turing Machine to HTN planning.

The proof is not provided in this lecture.
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Summary

We studied the computational complexity of the plan existence
problem.

It ranges from P up to undecidable:

In HTN planning, structural properties have a large impact on the
computational complexity.
In TIHTN planning, they do not: Task insertion eliminates the need
for recursion.

Complexity results give raise to specialized algorithms, to
heuristics, and to translations to other problem classes.
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