
Lecture Hierarchical Planning

Chapter:
Solving Hierarchical Planning Problems via SAT

Gregor Behnke

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 20, 2019)

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Overview:

1 Theoretical Background
Bridging the Gap between NP and PSPACE
Bridging the Gap between NP and Undecidability

2 What are we looking for?

3 Compactifying Decomposition Trees

4 SAT Encoding
Decomposition
Executability

5 Evaluation

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 2 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

HTN Planning via SAT

In lecture 04 (Solving (Non-Hierarchical) Planning Problems via SAT)
we have seen how classical planning problems can be solved via a

translation into SAT.

Can this also be done for HTN planning?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 3 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

HTN Planning via SAT

In lecture 04 (Solving (Non-Hierarchical) Planning Problems via SAT)
we have seen how classical planning problems can be solved via a

translation into SAT.

Can this also be done for HTN planning?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 3 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Issues with HTN Planning via SAT

Reminder: For a planning problem P create a CNF formula F that is
satisfiable iff P has a solution.

(Potential) Issues:

HTN planning is undecidable, i.e. there cannot be such a formula F .

Even if we find a way, how do we represent decomposition?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 4 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Issues with HTN Planning via SAT

Reminder: For a planning problem P create a CNF formula F that is
satisfiable iff P has a solution.

(Potential) Issues:

HTN planning is undecidable, i.e. there cannot be such a formula F .

Even if we find a way, how do we represent decomposition?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 4 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Issues with HTN Planning via SAT

Reminder: For a planning problem P create a CNF formula F that is
satisfiable iff P has a solution.

(Potential) Issues:

HTN planning is undecidable, i.e. there cannot be such a formula F .

Even if we find a way, how do we represent decomposition?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 4 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Issues with HTN Planning via SAT

Reminder: For a planning problem P create a CNF formula F that is
satisfiable iff P has a solution.

(Potential) Issues:

HTN planning is undecidable, i.e. there cannot be such a formula F .

Even if we find a way, how do we represent decomposition?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 4 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Idea for Transforming Classical Planning

PLANEX is PSPACE

PLANEX “is” NP-“complete” for `-length bounded planning if ` is
encoded unary.

For full PLANEX: theoretical limit 2|V |.

Start with a small ` and increase until a solution is found.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 5 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Idea for Transforming Classical Planning

PLANEX is PSPACE
PLANEX “is” NP-“complete” for `-length bounded planning if ` is
encoded unary.

For full PLANEX: theoretical limit 2|V |.

Start with a small ` and increase until a solution is found.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 5 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Idea for Transforming Classical Planning

PLANEX is PSPACE
PLANEX “is” NP-“complete” for `-length bounded planning if ` is
encoded unary.

For full PLANEX: theoretical limit 2|V |.

Start with a small ` and increase until a solution is found.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 5 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Idea for Transforming Classical Planning

PLANEX is PSPACE
PLANEX “is” NP-“complete” for `-length bounded planning if ` is
encoded unary.

For full PLANEX: theoretical limit 2|V |.

Start with a small ` and increase until a solution is found.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 5 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = 1

SAT problem

SAT Solver

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = 1

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = 1

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = 2

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = 3

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = . . .

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer

` = 2|V |

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 6 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.

For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length

totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise

tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification

general: ∞
For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.
For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 7 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Is plan length a good bound for HTN planning?

Not really.
A length bound follows easily from a depth bound, but not the other
way around.
We use decomposition depth instead.

“Is” PLANEX NP-“complete” for K -depth bounded HTN planning if K is
encoded unary?

Issue? We loose optimality!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 8 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Is plan length a good bound for HTN planning?
Not really.
A length bound follows easily from a depth bound, but not the other
way around.

We use decomposition depth instead.

“Is” PLANEX NP-“complete” for K -depth bounded HTN planning if K is
encoded unary?

Issue? We loose optimality!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 8 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Is plan length a good bound for HTN planning?
Not really.
A length bound follows easily from a depth bound, but not the other
way around.
We use decomposition depth instead.

“Is” PLANEX NP-“complete” for K -depth bounded HTN planning if K is
encoded unary?

Issue? We loose optimality!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 8 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Is plan length a good bound for HTN planning?
Not really.
A length bound follows easily from a depth bound, but not the other
way around.
We use decomposition depth instead.

“Is” PLANEX NP-“complete” for K -depth bounded HTN planning if K is
encoded unary?

Issue?

We loose optimality!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 8 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Is plan length a good bound for HTN planning?
Not really.
A length bound follows easily from a depth bound, but not the other
way around.
We use decomposition depth instead.

“Is” PLANEX NP-“complete” for K -depth bounded HTN planning if K is
encoded unary?

Issue? We loose optimality!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 8 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = 1

SAT problem

SAT Solver

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = 1

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = 1

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = 2

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = 3

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = . . .

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K =∞

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 9 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Our Objective

Given an HTN planning problem P and a depth bound K ,
construct a CNF formula F that is satisfiable iff

P has a solution whose decomposition depth is ≤ K

A satisfying valuation β of F should represent a solution to P .

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 10 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Our Objective

Given an HTN planning problem P and a depth bound K ,
construct a CNF formula F that is satisfiable iff

P has a solution whose decomposition depth is ≤ K

A satisfying valuation β of F should represent a solution to P .

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 10 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Solutions in HTN Planning

What is the solution to an HTN planning problem?

β should represent a Decomposition Tree.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Solutions in HTN Planning

What is the solution to an HTN planning problem?

sI

β should represent a Decomposition Tree.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Solutions in HTN Planning

What is the solution to an HTN planning problem?

sI

β should represent a Decomposition Tree.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Solutions in HTN Planning

What is the solution to an HTN planning problem?

sI

β should represent a Decomposition Tree.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Solutions in HTN Planning

What is the solution to an HTN planning problem?

sI

β should represent a Decomposition Tree.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Solutions in HTN Planning

What is the solution to an HTN planning problem?

sI

β should represent a Decomposition Tree.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

⊕ =

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

⊕ =

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

⊕ =

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

⊕ =

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

⊕ =

First, we assume totally-ordered planning problems.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 12 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar

{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

{A,C}

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

{A,C}

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 13 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r

B C
?

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r
{B,A}

{A,C,r}
{C,p}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r
{B,A}

{A,C,r}
{C,p}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r
{B,A}

{A,C,r}
{C,p}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Path Decomposition Trees with Partial Order

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}

What about methods containing partial order?

1 Guess a linearization and check order later (tree encoding)

2 Merge task-labeled DAGs instead of task sequences

cI →
B

A
C

cI →
B

C
p

cI →
A

r
{B,A}

{A,C,r}
{C,p}

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 14 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 15 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Minimising the SOG

Merging Methods

Given a family Gi of-vertex labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Difficult question: How does an optimal PDT look like?

Fewer leafs?

Fewer tasks per leaf?

Fewer tasks per inner node?

Fewer edges in the Solution Order Graph?

⇒ Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G∗ is NP-complete.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 16 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Minimising the SOG

Merging Methods

Given a family Gi of-vertex labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Difficult question: How does an optimal PDT look like?

Fewer leafs?

Fewer tasks per leaf?

Fewer tasks per inner node?

Fewer edges in the Solution Order Graph?

⇒ Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G∗ is NP-complete.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 16 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Minimising the SOG

Merging Methods

Given a family Gi of-vertex labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Difficult question: How does an optimal PDT look like?

Fewer leafs?

Fewer tasks per leaf?

Fewer tasks per inner node?

Fewer edges in the Solution Order Graph?

⇒ Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G∗ is NP-complete.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 16 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Minimising the SOG

Merging Methods

Given a family Gi of-vertex labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Difficult question: How does an optimal PDT look like?

Fewer leafs?

Fewer tasks per leaf?

Fewer tasks per inner node?

Fewer edges in the Solution Order Graph?

⇒ Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G∗ is NP-complete.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 16 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Minimising the SOG

Merging Methods

Given a family Gi of-vertex labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Difficult question: How does an optimal PDT look like?

Fewer leafs?

Fewer tasks per leaf?

Fewer tasks per inner node?

Fewer edges in the Solution Order Graph?

⇒ Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G∗ is NP-complete.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 16 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

What are PDTs Good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a rooted
sub-tree

Let the valuation β of F
describe such a tree
The formula then asserts
that it is a valid DT
Two types of decision
variables:

av – node v is part of the
DT and is labeled with the
task a
mv – method m is applied
to the task in node v

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 17 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

What are PDTs Good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a rooted
sub-tree
Let the valuation β of F
describe such a tree

The formula then asserts
that it is a valid DT
Two types of decision
variables:

av – node v is part of the
DT and is labeled with the
task a
mv – method m is applied
to the task in node v

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 17 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

What are PDTs Good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a rooted
sub-tree
Let the valuation β of F
describe such a tree
The formula then asserts
that it is a valid DT

Two types of decision
variables:

av – node v is part of the
DT and is labeled with the
task a
mv – method m is applied
to the task in node v

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 17 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

What are PDTs Good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a rooted
sub-tree
Let the valuation β of F
describe such a tree
The formula then asserts
that it is a valid DT
Two types of decision
variables:

av – node v is part of the
DT and is labeled with the
task a
mv – method m is applied
to the task in node v

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 17 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

What are PDTs Good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a rooted
sub-tree
Let the valuation β of F
describe such a tree
The formula then asserts
that it is a valid DT
Two types of decision
variables:

av – node v is part of the
DT and is labeled with the
task a
mv – method m is applied
to the task in node v

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 17 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?
6 cr

I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true Really?
6 cr

I is true

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 18 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 ∧ ∧
t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 (4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 19 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 ∧ ∧
t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 (4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 19 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 ∧ ∧
t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 (4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 19 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 ∧ ∧
t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 (4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 19 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Decomposition

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 ∧ ∧
t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 (4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 19 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

What now?

We have a formula F that is satisfiable iff it represents a valid
Decomposition Tree T .

To ensure that it is a solution, we have to check whether the leafs of T
are executable in sI in a valid linearization.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 20 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

What now?

We have a formula F that is satisfiable iff it represents a valid
Decomposition Tree T .

To ensure that it is a solution, we have to check whether the leafs of T
are executable in sI in a valid linearization.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 20 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Where are the leafs of T?

A leaf of T could be any vertex of the PDT ...
“inherit” them towards the leafs!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 21 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Where are the leafs of T?

A leaf of T could be any vertex of the PDT ...

“inherit” them towards the leafs!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 21 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Where are the leafs of T?

A leaf of T could be any vertex of the PDT ...
“inherit” them towards the leafs!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 21 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 ∧ ∧
t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi

 (4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 22 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Encoding PDTs

F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v) ∧ inheritPrimitive(v) (5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
 ∧

t∈α(v)∩C

tv →
∨

m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv

→
 ∧

vi∈E(v)

∧
t∈C∪P

¬tvi



∧
∧

t∈α(v)∩P

tv →
∧

vi∈E(v)

∧
t∈C∪P

¬tvi



(4&2)

inheritPrimitive(v) =
∧

p∈α(v)∩P

[
pv →

pv1 ∧
∧

vi∈E(v)\{v1}

∧
k∈α(v)

¬kvi

]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 22 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

β assigns primitive tasks to
some leafs of the PDT

A solution is an executable
linearization of these tasks

Linearization has to be
compatible with the ordering
represented by the SOG

We represent a matching of
the leafs to a sequence of
timesteps and assert the
correct order

We can use any classical
encoding of executability!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 23 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

sI

β assigns primitive tasks to
some leafs of the PDT

A solution is an executable
linearization of these tasks

Linearization has to be
compatible with the ordering
represented by the SOG

We represent a matching of
the leafs to a sequence of
timesteps and assert the
correct order

We can use any classical
encoding of executability!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 23 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

β assigns primitive tasks to
some leafs of the PDT

A solution is an executable
linearization of these tasks

Linearization has to be
compatible with the ordering
represented by the SOG

We represent a matching of
the leafs to a sequence of
timesteps and assert the
correct order

We can use any classical
encoding of executability!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 23 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

sI

β assigns primitive tasks to
some leafs of the PDT

A solution is an executable
linearization of these tasks

Linearization has to be
compatible with the ordering
represented by the SOG

We represent a matching of
the leafs to a sequence of
timesteps and assert the
correct order

We can use any classical
encoding of executability!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 23 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

sI

β assigns primitive tasks to
some leafs of the PDT

A solution is an executable
linearization of these tasks

Linearization has to be
compatible with the ordering
represented by the SOG

We represent a matching of
the leafs to a sequence of
timesteps and assert the
correct order

We can use any classical
encoding of executability!

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 23 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Reminder: SAT Planning for Classical Problems – Decision Variables

sI g

t1@1

t2@1

t3@1

t4@1

t5@1

t1@2

t2@2

t3@2

t4@2

t5@2

t1@3

t2@3

t3@3

t4@3

t5@3

t1@4

t2@4

t3@4

t4@4

t5@4

t1@5

t2@5

t3@5

t4@5

t5@5

t1@6

t2@6

t3@6

t4@6

t5@6

t1@7

t2@7

t3@7

t4@7

t5@7

t1@8

t2@8

t3@8

t4@8

t5@8

t1@9

t2@9

t3@9

t4@9

t5@9

v1@0

v2@0

v3@0

v4@0

v1@1

v2@1

v3@1

v4@1

v1@2

v2@2

v3@2

v4@2

v1@3

v2@3

v3@3

v4@3

v1@4

v2@4

v3@4

v4@4

v1@5

v2@5

v3@5

v4@5

v1@6

v2@6

v3@6

v4@6

v1@7

v2@7

v3@7

v4@7

v1@8

v2@8

v3@8

v4@8

v1@9

v2@9

v3@9

v4@9

Two types of decision variables!
1 t@i – Action t is executed at time i .
2 v@i – State variable v is true at time i .

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 24 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`



F3 =
∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i



F4 =
∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 25 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

qto delat? – Checking Order

sI

So far, the matching does
not check the order imposed
by the methods.

Since SOG S is fixed:
If leaf l is matched to time t ,
all successors of l must be
matched to time after t , i.e.
cannot be matched to times
before t

Using this property, we can
reduce to O(n3) clauses

Often degenerates to O(n2)

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 26 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

qto delat? – Checking Order

sI

So far, the matching does
not check the order imposed
by the methods.

Since SOG S is fixed:
If leaf l is matched to time t ,
all successors of l must be
matched to time after t , i.e.
cannot be matched to times
before t

Using this property, we can
reduce to O(n3) clauses

Often degenerates to O(n2)

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 26 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

qto delat? – Checking Order

sI

So far, the matching does
not check the order imposed
by the methods.

Since SOG S is fixed:
If leaf l is matched to time t ,
all successors of l must be
matched to time after t , i.e.
cannot be matched to times
before t

Using this property, we can
reduce to O(n3) clauses

Often degenerates to O(n2)

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 26 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

qto delat? – Checking Order

sI

So far, the matching does
not check the order imposed
by the methods.

Since SOG S is fixed:
If leaf l is matched to time t ,
all successors of l must be
matched to time after t , i.e.
cannot be matched to times
before t

Using this property, we can
reduce to O(n3) clauses

Often degenerates to O(n2)

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 26 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 27 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 27 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 27 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 27 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 27 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.

sI

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 27 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Evaluation – Partially-Ordered Problems [Behnke, Hller, Biundo, 2019]

SAT-F ∃-step expMC
SAT-F Kautz&Selman cryptominisat
SAT-tree ∃-step cryptominisat
SAT-tree Kautz&Selman cryptominisat
PANDApro lm-cut
PANDA TDG-m
HTN2STRIPS jasper
SHOP2
FAPE

1 2 5 10 20 50 100 200 500

20

40

60

80

100

120

140

so
lv

ed
in

st
an

ce
s

runtime in seconds
SAT-F SAT-F SAT-tree SAT-tree PANDApro PANDA HTN2STRIPS
∃-step Kautz&Selman ∃-step

#i
ns

ta
nc

es

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

lm
-c

ut

FF A
D

D

TD
G

-m

TD
G

-c

ja
sp

er

FD
-S

S
20

18

S
aa

rp
la

n

LA
P

K
T-

B
FW

S

M
pC

S
H

O
P

2

FA
P

E

UM-TRANSLOG 22 19 17 17 17 6 22 -
SATELLITE 25 25 25 25 25 24 24 25 25 25 25 25 25 25 25 25 25 25 24 23 25 21 23 19 14 12 0 22 22
WOODWORKING 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 9 9 8 10 5 5 5 5 4 8 0
SMARTPHONE 7 7 7 7 7 7 7 6 7 6 6 7 7 6 6 6 7 5 5 5 5 5 6 6 5 5 4 4 -
PCP 17 12 12 12 12 12 12 12 12 12 12 11 12 11 12 11 12 9 10 11 9 8 3 3 3 3 0 0 -
ENTERTAINMENT 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 12 9 9 5 5 5 4 4 5 -
ROVER 20 10 11 9 8 5 6 4 4 4 4 4 6 4 4 4 5 4 3 4 2 2 5 5 4 4 4 3 3
TRANSPORT 30 22 20 20 20 15 14 15 17 22 20 19 21 15 15 15 18 9 11 7 1 1 19 17 13 13 3 0 -
total 144 121 120 118 117 108 108 107 110 114 112 111 116 106 107 106 112 95 95 93 81 78 85 77 66 63 25 64 25/56

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 28 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Even undecidable problems can be solved via a translation into SAT.

We have introduced

Path Decomposition Trees (PDTs)

Solution Order Graphs (SOGs)

An encoding for PDTs and SOGs into propositional logic

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 29 / 30

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

References

Behnke,Höller,Biundo, 2018 totSAT – Totally-ordered hierarchical planning through SAT

Behnke,Höller,Biundo, 2018 Tracking Branches in Trees – A Propositional Encoding for Solving
Partially-Ordered HTN Planning Problems

Behnke,Höller,Biundo, 2019 Bringing order to chaos – A compact representation of partial order in
SAT-based HTN planning

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 30 / 30

	Theoretical Background
	Bridging the Gap between NP and PSPACE
	Bridging the Gap between NP and Undecidability

	What are we looking for?
	Compactifying Decomposition Trees
	SAT Encoding
	Decomposition
	Executability

	Evaluation
	Summary
	References

