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HTN Planning via SAT

In lecture 04 (Solving (Non-Hierarchical) Planning Problems via SAT)
we have seen how classical planning problems can be solved via a

translation into SAT.

Can this also be done for HTN planning?
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Issues with HTN Planning via SAT

Reminder: For a planning problem P create a CNF formula F that is
satisfiable iff P has a solution.

(Potential) Issues:

HTN planning is undecidable, i.e. there cannot be such a formula F .

Even if we find a way, how do we represent decomposition?
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Bridging the Gap between NP and PSPACE

Idea for Transforming Classical Planning

PLANEX is PSPACE

PLANEX “is” NP-“complete” for `-length bounded planning if ` is
encoded unary.

For full PLANEX: theoretical limit 2|V |.

Start with a small ` and increase until a solution is found.
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Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
` = 1

SAT problem

SAT Solver
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Bridging the Gap between NP and PSPACE
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Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Why not do the same for HTN planning?

Start with a small length bound ` and increase until a solution is
found.

For full PLANEX: upper bound depends on the problem!

acyclic: maximum decomposable length
totally-ordered: maximum decomposable length with depth(
2|V |)2 |C|

regular: exercise
tail-recursive: more complex, use stratification
general: ∞

For general HTNs we can only construct algorithm that
terminates on success but not (always) on failure.

“Is” PLANEX NP-“complete” for `-length bounded HTN planning if
` is encoded unary?
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Bridging the Gap between NP and Undecidability

Idea for Transforming HTN Planning

Is plan length a good bound for HTN planning?

Not really.
A length bound follows easily from a depth bound, but not the other
way around.
We use decomposition depth instead.

“Is” PLANEX NP-“complete” for K -depth bounded HTN planning if K is
encoded unary?

Issue? We loose optimality!
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Bridging the Gap between NP and Undecidability

Bound Iteration

Planning Problem

Transformer
K = 1

SAT problem

SAT Solver
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Bridging the Gap between NP and Undecidability
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Bridging the Gap between NP and Undecidability
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Our Objective

Given an HTN planning problem P and a depth bound K ,
construct a CNF formula F that is satisfiable iff

P has a solution whose decomposition depth is ≤ K

A satisfying valuation β of F should represent a solution to P .
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Solutions in HTN Planning

What is the solution to an HTN planning problem?

β should represent a Decomposition Tree.
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Representing Decomposition Trees Compactly

There are doubly-exponentially many trees of depth ≤ K

We need a compact representation of all possible Decomposition
Trees of depth ≤ K

⇒ Construct a super-tree of all possible Decomposition Trees

First, we assume totally-ordered planning problems.
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Constructing Path Decomposition Trees

It’s infeasable to compute all Decomposition Trees and
then to merge them

⇒ Compute super-tree by step-wise local expansion

cI → ABC and cI → CBp and cI → Ar
{A,C} {B} {C, p, r}
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What about methods containing partial order?
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2 Merge task-labeled DAGs instead of task sequences
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Merging Decomposition Methods

Merging Methods

Given a family Gi of vertex-labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Resulting ordering of leafs is
called Solution Order Graph S

Any task network derivable
via decomposition is an
induced subgraph of S

When checking executability,
we only have to consider the
ordering in S, which is fixed –
independent of selected
methods
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Minimising the SOG

Merging Methods

Given a family Gi of-vertex labeled transitively closed DAGs.
Find a vertex set-labeled graph G∗ s.t. all Gi are induced subgraphs of
G∗.

Difficult question: How does an optimal PDT look like?

Fewer leafs?

Fewer tasks per leaf?

Fewer tasks per inner node?

Fewer edges in the Solution Order Graph?

⇒ Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G∗ is NP-complete.
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Decomposition

What are PDTs Good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a rooted
sub-tree

Let the valuation β of F
describe such a tree
The formula then asserts
that it is a valid DT
Two types of decision
variables:

av – node v is part of the
DT and is labeled with the
task a
mv – method m is applied
to the task in node v
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Decomposition

Encoding – Overview

Two types of decision variables:
av – node v is part of the DT and is labeled
with the task a
mv – method m is applied to the task in node v

We then have to ensure the following properties
for each node v :

1 if av is true and a ∈ C, then
∨

m=(a,tn)∈M mv

2 if av is true and a ∈ P or all av are false, then∧
m∈M ¬mv

3 if mv is true, the children assigned by the PDT
contain the correct tasks

4 if all mv are false, all av′
are false for all

children v ′

5 at most one av and mv is true

Really?

6 cr
I is true
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F = F(r) ∧ cr
I

∧ Fexe

(6)

F(v) = M({tv | t ∈ α(v)}) ∧M({mv | M(α(v) ∩ C)}) ∧ selectedMethod(v)

∧ applyMethod(v) ∧ nonePresent(v)

∧ inheritPrimitive(v)

(5)

selectedMethod(v) =

 ∧
m∈M(α(v)∩C)

(mv → tv)

 ∧
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t∈α(v)∩C

tv →
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m∈M(t)

mv

 (1&2&4)

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

 |tn|∧
i=1

tvi
tn,i ∧

∧
vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈α(v)

¬t∗
vi

] (3)

nonePresent(v) =

 ∧
t∈α(v)

¬tv
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vi∈E(v)

∧
t∈C∪P
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∧
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]

α(v) is the set of labels of each vertex of the PDT.
E(v) are the children of v in the PDT.
For every method m = (c, tn), let vi be the child to which the task ttn,i is assigned.
M(A) is any encoding of the at-most-one constraint over the set of decision variables A.
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Executability

What now?

We have a formula F that is satisfiable iff it represents a valid
Decomposition Tree T .

To ensure that it is a solution, we have to check whether the leafs of T
are executable in sI in a valid linearization.
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Executability

Where are the leafs of T?

A leaf of T could be any vertex of the PDT ...
“inherit” them towards the leafs!
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Executability

Executability

β assigns primitive tasks to
some leafs of the PDT

A solution is an executable
linearization of these tasks

Linearization has to be
compatible with the ordering
represented by the SOG

We represent a matching of
the leafs to a sequence of
timesteps and assert the
correct order

We can use any classical
encoding of executability!
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Executability

Reminder: SAT Planning for Classical Problems – Decision Variables

sI g

t1@1

t2@1

t3@1

t4@1

t5@1

t1@2

t2@2

t3@2

t4@2

t5@2

t1@3

t2@3

t3@3

t4@3

t5@3

t1@4

t2@4

t3@4

t4@4

t5@4

t1@5

t2@5

t3@5

t4@5

t5@5

t1@6

t2@6

t3@6

t4@6

t5@6

t1@7

t2@7

t3@7

t4@7

t5@7

t1@8

t2@8

t3@8

t4@8

t5@8

t1@9

t2@9

t3@9

t4@9

t5@9

v1@0

v2@0

v3@0

v4@0

v1@1

v2@1

v3@1

v4@1

v1@2

v2@2

v3@2

v4@2

v1@3

v2@3

v3@3

v4@3

v1@4

v2@4

v3@4

v4@4

v1@5

v2@5

v3@5

v4@5

v1@6

v2@6

v3@6

v4@6

v1@7

v2@7

v3@7

v4@7

v1@8

v2@8

v3@8

v4@8

v1@9

v2@9

v3@9

v4@9

Two types of decision variables!
1 t@i – Action t is executed at time i .
2 v@i – State variable v is true at time i .
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Executability

Executability – Matching Leafs to Timesteps

`i – the leaf ` is matched to timestep i
a` – the leaf ` is active, i.e. a task is assigned to it

Fexe = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6

F1 =

|L|∧
i=1

M({`i | ` ∈ L}) ∧
∧
`∈L

M({`i | 1 ≤ i ≤ L})

F2 =
∧
`∈L

¬a` →∧
p∈α(`)

¬p`

 ∧
a` →

∨
p∈α(`)

p`


F3 =

∧
`∈L

¬a` →∧
1≤i≤|L|

¬`i

 ∧
a` →

∨
1≤i≤|L|

`i


F4 =

∧
`∈L

∧
t∈α(`)

∧
1≤i≤|L|

t` ∧ `i → t@i

F5 =
∧

1≤i≤|L|

[(∧
`∈L
¬`i

)
→

(∧
t∈O

¬t@i

)]

L is the set of leafs of the PDT.

sI
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Executability

qto delat? – Checking Order

sI

So far, the matching does
not check the order imposed
by the methods.

Since SOG S is fixed:
If leaf l is matched to time t ,
all successors of l must be
matched to time after t , i.e.
cannot be matched to times
before t

Using this property, we can
reduce to O(n3) clauses

Often degenerates to O(n2)
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Executability

Executability

f `i – matching the leaf ` to timestep i is forbidden (and implicitly
also to any previous timestep)

F6 =
∧
`∈L

∧
1≤i≤|L|

f1(`, i) ∧ f2(`, i) ∧ f3(`, i) ∧ f4(`, i)

f1(`, i) = if i = 1 then true else
∧

`′∈N+
S (`)

`i → f `
′

i−1

f2(`, i) =
∧

`′∈N+
S (`)

f `i → f `
′

i

f3(`, i) = if i = 1 then true else f `i → f `i−1

f4(`, i) = f `i → ¬`i

L is the set of leafs of the PDT.
S is the Solution Order Graph.
N+

G (`) are the direct successors of vertex ` in
the graph G.
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Evaluation – Partially-Ordered Problems [Behnke, Hller, Biundo, 2019]

SAT-F ∃-step expMC
SAT-F Kautz&Selman cryptominisat
SAT-tree ∃-step cryptominisat
SAT-tree Kautz&Selman cryptominisat
PANDApro lm-cut
PANDA TDG-m
HTN2STRIPS jasper
SHOP2
FAPE

1 2 5 10 20 50 100 200 500

20

40

60

80

100

120

140

so
lv

ed
in

st
an

ce
s

runtime in seconds
SAT-F SAT-F SAT-tree SAT-tree PANDApro PANDA HTN2STRIPS
∃-step Kautz&Selman ∃-step

#i
ns

ta
nc

es

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

ex
pM

C

M
ap

le
LC

M

C
aD

iC
aL

cr
yp

to
m

in
is

at

lm
-c

ut

FF A
D

D

TD
G

-m

TD
G

-c

ja
sp

er

FD
-S

S
20

18

S
aa

rp
la

n

LA
P

K
T-

B
FW

S

M
pC

S
H

O
P

2

FA
P

E

UM-TRANSLOG 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 19 17 17 17 6 22 -
SATELLITE 25 25 25 25 25 24 24 25 25 25 25 25 25 25 25 25 25 25 24 23 25 21 23 19 14 12 0 22 22
WOODWORKING 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 9 9 8 10 5 5 5 5 4 8 0
SMARTPHONE 7 7 7 7 7 7 7 6 7 6 6 7 7 6 6 6 7 5 5 5 5 5 6 6 5 5 4 4 -
PCP 17 12 12 12 12 12 12 12 12 12 12 11 12 11 12 11 12 9 10 11 9 8 3 3 3 3 0 0 -
ENTERTAINMENT 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 12 9 9 5 5 5 4 4 5 -
ROVER 20 10 11 9 8 5 6 4 4 4 4 4 6 4 4 4 5 4 3 4 2 2 5 5 4 4 4 3 3
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total 144 121 120 118 117 108 108 107 110 114 112 111 116 106 107 106 112 95 95 93 81 78 85 77 66 63 25 64 25/56

Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 28 / 30



Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Summary

Even undecidable problems can be solved via a translation into SAT.

We have introduced

Path Decomposition Trees (PDTs)

Solution Order Graphs (SOGs)

An encoding for PDTs and SOGs into propositional logic
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