Lecture Hierarchical Planning

Chapter: Solving Hierarchical Planning Problems via SAT

Gregor Behnke

Institute of Artificial Intelligence, Ulm University, Germany

Winter Term 2018/2019

(Compiled on: February 20, 2019)

ulm university universität **UUIM**

	Compactifying Decomposition Trees		

Overview:

- 1 Theoretical Background
 - Bridging the Gap between NP and PSPACE
 - Bridging the Gap between \mathbb{NP} and Undecidability
- 2 What are we looking for?
- 3 Compactifying Decomposition Trees
- 4 SAT Encoding
 - Decomposition
 - Executability

5 Evaluation

	Compactifying Decomposition Trees		

HTN Planning via SAT

In lecture 04 (Solving (Non-Hierarchical) Planning Problems via SAT) we have seen how classical planning problems can be solved via a translation into SAT.

	Compactifying Decomposition Trees		

HTN Planning via SAT

In lecture 04 (Solving (Non-Hierarchical) Planning Problems via SAT) we have seen how classical planning problems can be solved via a translation into SAT.

Can this also be done for HTN planning?

	Compactifying Decomposition Trees		

Reminder: For a planning problem \mathcal{P} create a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution.

	Compactifying Decomposition Trees		

Reminder: For a planning problem \mathcal{P} create a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution.

(Potential) Issues:

	Compactifying Decomposition Trees		

Reminder: For a planning problem \mathcal{P} create a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution.

(Potential) Issues:

HTN planning is undecidable, i.e. there cannot be such a formula \mathcal{F} .

	Compactifying Decomposition Trees		

Reminder: For a planning problem \mathcal{P} create a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution.

(Potential) Issues:

- HTN planning is undecidable, i.e. there cannot be such a formula \mathcal{F} .
- Even if we find a way, how do we represent decomposition?

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betweer	\mathbb{NP} and \mathbb{PSPACE}			

■ PLANEX is PSPACE

Theoretical Background ●○○○○		Compactifying Decomposition Trees		
Bridging the Gap betwee	n NP and PSPACE			

- PLANEX is PSPACE
- PLANEX "is" NP-"complete" for *ℓ*-length bounded planning if *ℓ* is encoded unary.

Theoretical Background ●○○○○		Compactifying Decomposition Trees		
Bridging the Gap betwee	n NP and PSPACE			

- PLANEX is PSPACE
- PLANEX "is" NP-"complete" for *l*-length bounded planning if *l* is encoded unary.
- For full PLANEX: theoretical limit $2^{|V|}$.

Theoretical Background ●○○○○		Compactifying Decomposition Trees		
Bridging the Gap betwee	n NP and PSPACE			

- PLANEX is PSPACE
- PLANEX "is" NP-"complete" for *l*-length bounded planning if *l* is encoded unary.
- For full PLANEX: theoretical limit $2^{|V|}$.
- Start with a small ℓ and increase until a solution is found.

Theoretical Background o●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Theoretical Background ○●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Theoretical Background o●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Theoretical Background o●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Theoretical Background ○●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Theoretical Background ○●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Theoretical Background o●○○○		Compactifying Decomposition Trees		
Bridging the Gap betweer	NP and PSPACE			

Why not do the same for HTN planning?

Start with a small length bound ℓ and increase until a solution is found.

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length
 - totally-ordered: maximum decomposable length with depth $\left(2^{|V|}\right)^2 |C|$

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length
 - totally-ordered: maximum decomposable length with depth $(2^{|V|})^2 |C|$
 - regular: exercise

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length
 - totally-ordered: maximum decomposable length with depth $(2^{|V|})^2 |C|$
 - regular: exercise
 - tail-recursive: more complex, use stratification

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length
 - totally-ordered: maximum decomposable length with depth $(2^{|V|})^2 |C|$
 - regular: exercise
 - tail-recursive: more complex, use stratification
 - \blacksquare general: ∞

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length
 - totally-ordered: maximum decomposable length with depth $(2^{|V|})^2 |C|$
 - regular: exercise
 - tail-recursive: more complex, use stratification
 - \blacksquare general: ∞
- For general HTNs we can only construct algorithm that terminates on success but not (always) on failure.

Why not do the same for HTN planning?

- Start with a small length bound ℓ and increase until a solution is found.
- For full PLANEX: upper bound depends on the problem!
 - acyclic: maximum decomposable length
 - totally-ordered: maximum decomposable length with depth $(2^{|V|})^2 |C|$
 - regular: exercise
 - tail-recursive: more complex, use stratification
 - \blacksquare general: ∞
- For general HTNs we can only construct algorithm that terminates on success but not (always) on failure.

■ "Is" PLANEX NP-"complete" for *ℓ*-length bounded HTN planning if *ℓ* is encoded unary?

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betwee	n \mathbb{NP} and Undecidability			
Idea for Transf	maina LITNI Diana	ling		

Is plan length a good bound for HTN planning?

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betwee	n \mathbb{NP} and Undecidability			
11 C T C				

Is plan length a good bound for HTN planning?

Not really.

A length bound follows easily from a depth bound, but not the other way around.

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betwee	n \mathbb{NP} and Undecidability			
11 C T C				

Is plan length a good bound for HTN planning?

Not really.

A length bound follows easily from a depth bound, but not the other way around.

We use *decomposition depth* instead.

"Is" PLANEX \mathbb{NP} -"complete" for *K*-depth bounded HTN planning if *K* is encoded unary?

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betwee	n \mathbb{NP} and Undecidability			
11 C T C				

Is plan length a good bound for HTN planning?

Not really.

A length bound follows easily from a depth bound, but not the other way around.

We use *decomposition depth* instead.

"Is" PLANEX \mathbb{NP} -"complete" for *K*-depth bounded HTN planning if *K* is encoded unary?

Issue?

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betwee	n \mathbb{NP} and Undecidability			
11 C T C				

Is plan length a good bound for HTN planning?

Not really.

A length bound follows easily from a depth bound, but not the other way around.

We use *decomposition depth* instead.

"Is" PLANEX \mathbb{NP} -"complete" for *K*-depth bounded HTN planning if *K* is encoded unary?

Issue? We loose optimality!

Theoretical Background ○○○○●		Compactifying Decomposition Trees		
Bridging the Gap between	\mathbb{NP} and Undecidability			

Theoretical Background ○○○○●		Compactifying Decomposition Trees		
Bridging the Gap betweer	\mathbb{NP} and Undecidability			

Theoretical Background ○○○○●		Compactifying Decomposition Trees		
Bridging the Gap betweer	\mathbb{NP} and Undecidability			

Theoretical Background ○○○○●		Compactifying Decomposition Trees		
Bridging the Gap betweer	$\mathbb{N}\mathbb{P}$ and Undecidability			

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betweer	\mathbb{NP} and Undecidability			

Theoretical Background		Compactifying Decomposition Trees		
Bridging the Gap betweer	\mathbb{NP} and Undecidability			

Theoretical Background ○○○○●		Compactifying Decomposition Trees		
Bridging the Gap betweer	$\mathbb{N}\mathbb{P}$ and Undecidability			

Our Objective

Given an HTN planning problem \mathcal{P} and a depth bound K, construct a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution whose decomposition depth is $\leq K$

What are we looking for? ●○	Compactifying Decomposition Trees		

Our Objective

Given an HTN planning problem \mathcal{P} and a depth bound K, construct a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution whose decomposition depth is $\leq K$

A satisfying valuation β of \mathcal{F} should represent a solution to \mathcal{P} .

What are we looking for? ○●	Compactifying Decomposition Trees		

Solutions in HTN Planning

	What are we looking for? ○●	Compactifying Decomposition Trees		
0 I V I I I				Î

Solutions in HTN Planning

	What are we looking for? ○●	Compactifying Decomposition Trees		
Solutions in HT	N Planning			

	What are we looking for? ○●	Compactifying Decomposition Trees		
Solutions in HT	N Planning			

	What are we looking for? ○●	Compactifying Decomposition Trees		
Solutions in HT	N Planning			

	What are we looking for? ○●	Compactifying Decomposition Trees		
Solutions in HT	N Planning			

 β should represent a *Decomposition Tree*.

		Compactifying Decomposition Trees				
Representing Decomposition Trees Compactly						

• There are doubly-exponentially many trees of depth $\leq K$

- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$

- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$
- \Rightarrow Construct a super-tree of all possible Decomposition Trees

- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$
- \Rightarrow Construct a super-tree of all possible Decomposition Trees

- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$
- \Rightarrow Construct a super-tree of all possible Decomposition Trees

- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$
- \Rightarrow Construct a super-tree of all possible Decomposition Trees

- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$
- \Rightarrow Construct a super-tree of all possible Decomposition Trees

First, we assume *totally-ordered* planning problems.

	Compactifying Decomposition Trees		

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

	Compactifying Decomposition Trees		

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

	Compactifying Decomposition Trees ○●○○○		

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

\Rightarrow Compute super-tree by step-wise local expansion

0 CI

	Compactifying Decomposition Trees		

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

\Rightarrow Compute super-tree by step-wise local expansion

0 CI

$c_{l} ightarrow ABC$ and $c_{l} ightarrow CBp$ and $c_{l} ightarrow Ar$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ & \{A,C\} \quad \{B\} \quad \{C,p,r\} \end{aligned}$$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$\begin{array}{c} \textit{c}_{\textit{l}} \rightarrow \textit{ABC} \text{ and } \textit{c}_{\textit{l}} \rightarrow \textit{CBp} \text{ and } \textit{c}_{\textit{l}} \rightarrow \textit{Ar} \\ \textit{\{A, C\}} \quad \textit{\{B\}} \quad \textit{\{C, p, r\}} \end{array}$$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$c_l
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ \{A, C\} \quad \{B\} \quad \{C, p, r\}$$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$c_l
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ \{A, C\} \quad \{B\} \quad \{C, p, r\}$$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$egin{array}{lll} c_l
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ \{A,C\} \quad \{B\} \quad \{C,p,r\} \end{array}$$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$egin{array}{lll} c_l
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ \{A,C\} & \{B\} & \{C,p,r\} \end{array}$$

It's infeasable to compute **all** Decomposition Trees and **then** to merge them

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

	Compactifying Decomposition Trees		

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

	Compactifying Decomposition Trees		

$$egin{array}{lll} c_l
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ \{A,C\} \quad \{B\} \quad \{C,p,r\} \end{array}$$

	Compactifying Decomposition Trees		

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

What about methods containing partial order?

Guess a linearization and check order later (tree encoding)

	Compactifying Decomposition Trees		

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

- Guess a linearization and check order later (tree encoding)
- 2 Merge task-labeled DAGs instead of task sequences

	Compactifying Decomposition Trees		

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

- Guess a linearization and check order later (tree encoding)
- 2 Merge task-labeled DAGs instead of task sequences

	Compactifying Decomposition Trees		

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

- Guess a linearization and check order later (tree encoding)
- 2 Merge task-labeled DAGs instead of task sequences

	Compactifying Decomposition Trees		

Path Decomposition Trees with Partial Order

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

What about methods containing partial order?

- Guess a linearization and check order later (tree encoding)
- 2 Merge task-labeled DAGs instead of task sequences

	Compactifying Decomposition Trees		

Path Decomposition Trees with Partial Order

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l &
ightarrow CBp ext{ and } c_l &
ightarrow Ar \ & \{A,C\} & \{B\} & \{C,p,r\} \end{aligned}$$

What about methods containing partial order?

- Guess a linearization and check order later (tree encoding)
- 2 Merge task-labeled DAGs instead of task sequences

	Compactifying Decomposition Trees		

Path Decomposition Trees with Partial Order

$$egin{aligned} c_l &
ightarrow ABC ext{ and } c_l
ightarrow CBp ext{ and } c_l
ightarrow Ar \ & \{A,C\} \quad \{B\} \quad \{C,p,r\} \end{aligned}$$

What about methods containing partial order?

- Guess a linearization and check order later (tree encoding)
- 2 Merge task-labeled DAGs instead of task sequences

What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

	Compactifying Decomposition Trees		

Merging Methods

Given a family G_i of vertex-labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

 Resulting ordering of leafs is called Solution Order Graph S

	Compactifying Decomposition Trees		

Merging Methods

- Resulting ordering of leafs is called Solution Order Graph S
- Any task network derivable via decomposition is an induced subgraph of S

	Compactifying Decomposition Trees		

Merging Methods

- Resulting ordering of leafs is called Solution Order Graph S
- Any task network derivable via decomposition is an induced subgraph of S
- When checking executability, we only have to consider the ordering in S, which is fixed – independent of selected methods

What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	

Merging Methods

What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	

Merging Methods

Given a family G_i of-vertex labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

Difficult question: How does an optimal PDT look like?

What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	

Merging Methods

Given a family G_i of-vertex labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

Difficult question: How does an optimal PDT look like?

- Fewer leafs?
- Fewer tasks per leaf?
- Fewer tasks per inner node?
- Fewer edges in the Solution Order Graph?

What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	

Merging Methods

Given a family G_i of-vertex labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

Difficult question: How does an optimal PDT look like?

- Fewer leafs?
- Fewer tasks per leaf?
- Fewer tasks per inner node?
- Fewer edges in the Solution Order Graph?
- \Rightarrow Optimising number of children does not lead to global minimum!

What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	

Merging Methods

Given a family G_i of-vertex labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

Difficult question: How does an optimal PDT look like?

- Fewer leafs?
- Fewer tasks per leaf?
- Fewer tasks per inner node?
- Fewer edges in the Solution Order Graph?
- \Rightarrow Optimising number of children does not lead to global minimum!

Theorem

Even minimising the size of G^* is \mathbb{NP} -complete.

	Compactifying Decomposition Trees	SAT Encoding	
Decomposition			

A PDT contains every Decomposition Tree of height ≤ K as a rooted sub-tree

	Compactifying Decomposition Trees	SAT Encoding ●00000000000	
Decomposition			

- A PDT contains every Decomposition Tree of height ≤ K as a rooted sub-tree
- Let the valuation β of F describe such a tree

	Compactifying Decomposition Trees	SAT Encoding	
Decomposition			

- A PDT contains every Decomposition Tree of height ≤ K as a rooted sub-tree
- Let the valuation β of F describe such a tree
- The formula then asserts that it is a valid DT

	Compactifying Decomposition Trees	SAT Encoding ●00000000000	
Decomposition			

- A PDT contains every Decomposition Tree of height ≤ K as a rooted sub-tree
- Let the valuation β of F describe such a tree
- The formula then asserts that it is a valid DT
- Two types of decision variables:

	Compactifying Decomposition Trees	SAT Encoding	
Decomposition			

- A PDT contains every Decomposition Tree of height ≤ K as a rooted sub-tree
- Let the valuation β of F describe such a tree
- The formula then asserts that it is a valid DT
- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^v method m is applied to the task in node v

		Compactifying Decomposition Trees	SAT Encoding	
Decomposition				
Encodina — Ov	erview			

- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*

- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
- We then have to ensure the following properties for each node v:

		Compactifying Decomposition Trees	SAT Encoding	
Decomposition				
Encoding – Ov	erview			

- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
- We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$

		Compactifying Decomposition Trees	SAT Encoding	
Decomposition				
Encoding – Ov	erview			

- - Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
 - We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$
 - 2 if a^v is true and $a \in P$ or all a^v are false, then $\bigwedge_{m \in M} \neg m^v$

		Compactifying Decomposition Trees	SAT Encoding		
Decomposition					l
	a mulanni				

Encoding – Overview

- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
- We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$
 - 2 if a^v is true and $a \in P$ or all a^v are false, then $\bigwedge_{m \in M} \neg m^v$
 - if m^v is true, the children assigned by the PDT contain the correct tasks

		Compactifying Decomposition Trees	SAT Encoding		
Decomposition					
Encodinar Or	a mulan n				

- Encoding Overview
 - Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
 - We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$
 - 2 if a^v is true and $a \in P$ or all a^v are false, then $\bigwedge_{m \in M} \neg m^v$

- if m^v is true, the children assigned by the PDT contain the correct tasks
- 4 if all m^{v} are false, all $a^{v'}$ are false for all children v'

		Compactifying Decomposition Trees	SAT Encoding ○●○○○○○○○○○	
Decomposition				
Encoding – Ov	erview			

- 0
 - Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
 - We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$
 - 2 if a^v is true and $a \in P$ or all a^v are false, then $\bigwedge_{m \in M} \neg m^v$
 - 3 if $m^{\overline{v}}$ is true, the children assigned by the PDT contain the correct tasks
 - 4 if all m^{v} are false, all $a^{v'}$ are false for all children v'
 - 5 at most one a^v and m^v is true

		Compactifying Decomposition Trees	SAT Encoding O●OOOOOOOOO	
Decomposition				
Encoding – Ov	erview			

- - Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
 - We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$
 - 2 if a^v is true and $a \in P$ or all a^v are false, then $\bigwedge_{m \in M} \neg m^v$

- if m^v is true, the children assigned by the PDT contain the correct tasks
- 4 if all m^{v} are false, all $a^{v'}$ are false for all children v'
- 5 at most one *a^v* and *m^v* is true
- 6 c_l^r is true

	Compactifying Decomposition Trees	SAT Encoding		
Decomposition				l

Encoding – Overview

- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - m^{v} method *m* is applied to the task in node *v*
- We then have to ensure the following properties for each node v:
 - 1 if a^v is true and $a \in C$, then $\bigvee_{m=(a,tn)\in M} m^v$
 - 2 if a^v is true and $a \in P$ or all a^v are false, then $\bigwedge_{m \in M} \neg m^v$

- 4 if all m^{v} are false, all $a^{v'}$ are false for all children v'
- 5 at most one a^{v} and m^{v} is true *Really*?
- 6 c_l^r is true

		Compactifying Decomposition Trees	SAT Encoding	
Decomposition				
Encoding PDTs	3			

$$\mathcal{F} = \mathcal{F}(r) \wedge c_l^r$$

(6)

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.

		Compactifying Decomposition Trees	SAT Encoding	
Decomposition				
Encoding PDTs	6			

$$\mathcal{F} = \mathcal{F}(r) \wedge c_{l}^{r}$$

$$\mathcal{F}(v) = \mathbb{M}(\{t^{v} \mid t \in \alpha(v)\}) \wedge \mathbb{M}(\{m^{v} \mid M(\alpha(v) \cap C)\}) \wedge selectedMethod(v)$$

$$\wedge applyMethod(v) \wedge nonePresent(v)$$
(5)

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.
	Compactifying Decomposition Trees	SAT Encoding	
Decomposition			

$$\mathcal{F} = \mathcal{F}(r) \wedge c_l^r \tag{6}$$

$$\mathcal{F}(v) = \mathbb{M}(\{t^v \mid t \in \alpha(v)\}) \wedge \mathbb{M}(\{m^v \mid M(\alpha(v) \cap C)\}) \wedge selectedMethod(v)$$

$$\wedge applyMethod(v) \wedge nonePresent(v) \tag{5}$$

$$selectedMethod(v) = \left[\bigwedge_{m \in \mathcal{M}(\alpha(v) \cap C)} (m^v \to t^v)\right] \wedge \left[\bigwedge_{t \in \alpha(v) \cap C} (t^v \to \bigvee_{m \in \mathcal{M}(t)} m^v)\right] \tag{1\&2\&4}$$

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.

	Compactifying Decomposition Trees	SAT Encoding	
Decomposition			

$$\mathcal{F} = \mathcal{F}(r) \wedge c_{l}^{r} \tag{6}$$

$$\mathcal{F}(v) = \mathbb{M}(\{t^{v} \mid t \in \alpha(v)\}) \wedge \mathbb{M}(\{m^{v} \mid M(\alpha(v) \cap C)\}) \wedge selectedMethod(v) \qquad (5)$$

$$\wedge applyMethod(v) \wedge nonePresent(v) \qquad (5)$$

$$selectedMethod(v) = \left[\bigwedge_{m \in M(\alpha(v) \cap C)} (m^{v} \to t^{v})\right] \wedge \left[\bigwedge_{t \in \alpha(v) \cap C} (t^{v} \to \bigvee_{m \in M(t)} m^{v})\right] \qquad (1\&2\&4)$$

$$applyMethod(v) = \bigwedge_{m = (t,m) \in M(\alpha(v))} \left[m^{v} \to \left(\bigwedge_{i=1}^{|m|} t_{i,i}^{v} \wedge \bigwedge_{v_{i} \in E(v) \setminus \{v_{1},...,v_{|m|}\}} t_{i} \in \alpha(v)} \neg t_{*}^{v_{i}}\right)\right] \qquad (3)$$

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.

Winter Term 2018/2019

	Compactifying Decomposition Trees	SAT Encoding	
Decomposition			

$$\mathcal{F} = \mathcal{F}(r) \land c_{l}^{r} \tag{6}$$

$$\mathcal{F}(v) = \mathbb{M}(\{t^{v} \mid t \in \alpha(v)\}) \land \mathbb{M}(\{m^{v} \mid M(\alpha(v) \cap C)\}) \land selectedMethod(v) \tag{6}$$

$$\land applyMethod(v) \land nonePresent(v) \tag{5}$$

$$selectedMethod(v) = \left[\bigwedge_{m \in M(\alpha(v) \cap C)} (m^{v} \to t^{v})\right] \land \left[\bigwedge_{t \in \alpha(v) \cap C} (t^{v} \to \bigvee_{m \in M(t)} m^{v})\right] \tag{1\&2\&4}$$

$$applyMethod(v) = \bigwedge_{m = (t,m) \in M(\alpha(v))} \left[m^{v} \to \left(\bigwedge_{i=1}^{|tn|} t_{in,i}^{v} \land \bigwedge_{v_{i} \in E(v) \setminus \{v_{1},...,v_{|m|}\}} \bigwedge_{t_{i} \in \alpha(v)} \neg t_{*}^{v_{i}}\right)\right] \tag{3}$$

$$nonePresent(v) = \left(\bigwedge_{t \in \alpha(v)} \neg t^{v}\right) \to \left(\bigwedge_{v_{i} \in E(v)} \bigcap_{t \in C \cup P} \neg t^{v_{i}}\right) \land \bigwedge_{t \in \alpha(v) \cap P} \left(t^{v} \to \bigwedge_{v_{i} \in E(v)} \bigcap_{t \in C \cup P} \neg t^{v_{i}}\right) \tag{4\&2}$$

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.

	Compactifying Decomposition Trees	SAT Encoding	
Executability			
What now?			

We have a formula \mathcal{F} that is satisfiable iff it represents a valid Decomposition Tree T.

	Compactifying Decomposition Trees	SAT Encoding	
Executability			
What now?			

We have a formula \mathcal{F} that is satisfiable iff it represents a valid Decomposition Tree T.

To ensure that it is a solution, we have to check whether the leafs of T are executable in s_l in a valid linearization.

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

Where are the leafs of T?

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

Where are the leafs of *T*?

A leaf of T could be any vertex of the PDT ...

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

Where are the leafs of *T*?

A leaf of *T* could be any vertex of the PDT ... "inherit" them towards the leafs!

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

$$\mathcal{F} = \mathcal{F}(r) \land c_{l}^{r} \tag{6}$$

$$\mathcal{F}(v) = \mathbb{M}(\{t^{v} \mid t \in \alpha(v)\}) \land \mathbb{M}(\{m^{v} \mid M(\alpha(v) \cap C)\}) \land \text{selectedMethod}(v) \tag{5}$$

$$\land applyMethod(v) \land nonePresent(v) \tag{5}$$

$$selectedMethod(v) = \left[\bigwedge_{m \in M(\alpha(v) \cap C)} (m^{v} \to t^{v})\right] \land \left[\bigwedge_{t \in \alpha(v) \cap C} (t^{v} \to \bigvee_{m \in M(t)} m^{v})\right] \tag{1\&2\&4}$$

$$applyMethod(v) = \bigwedge_{m = (t,m) \in M(\alpha(v))} \left[m^{v} \to \left(\bigwedge_{i=1}^{|tn|} t_{in,i}^{v_{i}} \land \bigwedge_{v_{i} \in E(v) \setminus \{v_{1},...,v_{|m|}\}} t_{i} \in \alpha(v)} \neg t_{i}^{v_{i}}\right)\right] \tag{3}$$

$$nonePresent(v) = \left(\bigwedge_{t \in \alpha(v)} \neg t^{v}\right) \to \left(\bigwedge_{v_{i} \in E(v)} \tau e^{-v_{i}}\right) \land \bigwedge_{t \in \alpha(v) \cap P} (t^{v} \to \bigwedge_{v_{i} \in E(v)} \tau e^{-v_{i}}) \tag{4\&2}$$

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

$$\mathcal{F} = \mathcal{F}(t) \land c_t^r \tag{6}$$

$$\mathcal{F}(v) = \mathbb{M}(\{t^v \mid t \in \alpha(v)\}) \land \mathbb{M}(\{m^v \mid M(\alpha(v) \cap C)\}) \land selectedMethod(v) \tag{6}$$

$$\land applyMethod(v) \land nonePresent(v) \land inheritPrimitive(v) \tag{5}$$

$$selectedMethod(v) = \left[\bigwedge_{m \in M(\alpha(v) \cap C)} (m^v \to t^v)\right] \land \left[\bigwedge_{t \in \alpha(v) \cap C} (t^v \to \bigvee_{m \in M(t)} m^v)\right] \tag{1&22&4}$$

$$applyMethod(v) = \bigwedge_{m=(t,m) \in M(\alpha(v))} \left[m^v \to \left(\bigwedge_{i=1}^{|m|} t_{n,i}^v \land \bigwedge_{v_i \in E(v) \setminus \{v_1, \dots, v_{|m|}\}} t_{e} \in \alpha(v)} \neg t_e^{v_i}\right)\right] \tag{3}$$

$$nonePresent(v) = \left(\bigwedge_{t \in \alpha(v)} \neg t^v\right) \to \left(\bigwedge_{v_i \in E(v) \setminus t \in C \cup P} \neg t^{v_i}\right) \tag{4&2}$$

$$inheritPrimitive(v) = \bigwedge_{p \in \alpha(v) \cap P} \left[p^v \to \left(p^{v_1} \land \bigwedge_{v_i \in E(v) \setminus \{v_1\}} \bigwedge_{k \in \alpha(v)} \neg k^{v_i}\right)\right]$$

 $\alpha(v)$ is the set of labels of each vertex of the PDT.

E(v) are the children of v in the PDT.

For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned.

 $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.

	Compactifying Decomposition Trees	SAT Encoding ○○○○○○●○○○○	
Executability			

 β assigns primitive tasks to some leafs of the PDT

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

- β assigns primitive tasks to some leafs of the PDT
- A solution is an executable linearization of these tasks

	Compactifying Decomposition Trees	SAT Encoding ○○○○○○●○○○○	
Executability			

- β assigns primitive tasks to some leafs of the PDT
- A solution is an executable linearization of these tasks
- Linearization has to be compatible with the ordering represented by the SOG

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

- β assigns primitive tasks to some leafs of the PDT
- A solution is an executable linearization of these tasks
- Linearization has to be compatible with the ordering represented by the SOG
- We represent a matching of the leafs to a sequence of timesteps and assert the correct order

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

- β assigns primitive tasks to some leafs of the PDT
- A solution is an executable linearization of these tasks
- Linearization has to be compatible with the ordering represented by the SOG
- We represent a matching of the leafs to a sequence of timesteps and assert the correct order
- We can use any classical encoding of executability!

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

Reminder: SAT Planning for Classical Problems – Decision Variables

Two types of decision variables!

- 1 t@i Action t is executed at time i.
- 2 v@i State variable v is true at time i.

- $\overline{\ell i}$ the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

 $\mathcal{F}_{exe} = F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5 \wedge F_6$

- $\overline{\ell i}$ the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

- $\overline{\ell i}$ the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

- $\overline{\ell i}$ the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

- $\overline{\ell i}$ the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

- $\overline{\ell i}$ the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

- **\overline{\ell i}** the leaf ℓ is matched to timestep *i*
- a^{ℓ} the leaf ℓ is active, i.e. a task is assigned to it

£ is the set of leafs of the PDT.

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

So far, the matching does not check the order imposed by the methods.

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

- So far, the matching does not check the order imposed by the methods.
- Since SOG S is fixed: If leaf / is matched to time t, all successors of / must be matched to time after t, i.e. cannot be matched to times before t

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

- So far, the matching does not check the order imposed by the methods.
- Since SOG S is fixed: If leaf / is matched to time t, all successors of / must be matched to time after t, i.e. cannot be matched to times before t
- Using this property, we can reduce to $\mathcal{O}(n^3)$ clauses

	Compactifying Decomposition Trees	SAT Encoding	
Executability			

- So far, the matching does not check the order imposed by the methods.
- Since SOG S is fixed: If leaf / is matched to time t, all successors of / must be matched to time after t, i.e. cannot be matched to times before t
- Using this property, we can reduce to $\mathcal{O}(n^3)$ clauses
- Often degenerates to O(n²)

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N^{+}_{G}(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$

$$F_{6} = \bigwedge_{\ell \in \mathfrak{L}} \bigwedge_{1 \leq i \leq |\mathfrak{L}|} f_{1}(\ell, i) \wedge f_{2}(\ell, i) \wedge f_{3}(\ell, i) \wedge f_{4}(\ell, i)$$

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N^{+}_{G}(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$

$$F_{6} = \bigwedge_{\ell \in \mathfrak{L}} \bigwedge_{1 \le i \le |\mathfrak{L}|} f_{1}(\ell, i) \wedge f_{2}(\ell, i) \wedge f_{3}(\ell, i) \wedge f_{4}(\ell, i)$$
$$(\ell, i) = \text{if } i = 1 \text{ then } true \text{ else } \bigwedge_{\substack{\ell' \in N_{\mathfrak{L}}^{*}(\ell)}} \overline{\ell i} \to f_{i-1}^{\ell'}$$

 f_1

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N^{+}_{G}(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$

$$F_{6} = \bigwedge_{\ell \in \mathfrak{L}} \bigwedge_{1 \le i \le |\mathfrak{L}|} f_{1}(\ell, i) \land f_{2}(\ell, i) \land f_{3}(\ell, i) \land f_{4}(\ell, i)$$

$$f_{1}(\ell, i) = \text{if } i = 1 \text{ then } true \text{ else } \bigwedge_{\ell' \in N_{\mathcal{S}}^{+}(\ell)} \overline{\ell_{i}} \to f_{i-1}^{\ell'}$$

$$f_{2}(\ell, i) = \bigwedge_{\ell' \in N_{\mathcal{S}}^{+}(\ell)} f_{i}^{\ell} \to f_{i}^{\ell'}$$

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N^+_G(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$

$$\begin{split} F_6 &= \bigwedge_{\ell \in \mathfrak{L}} \bigwedge_{1 \leq i \leq |\mathfrak{L}|} f_1(\ell, i) \wedge f_2(\ell, i) \wedge f_3(\ell, i) \wedge f_4(\ell, i) \\ f_1(\ell, i) &= \text{if } i = 1 \text{ then } true \text{ else } \bigwedge_{\substack{\ell' \in \mathcal{N}_{\mathcal{S}}^+(\ell)}} \overline{\ell i} \to f_{i-1}^{\ell'} \\ f_2(\ell, i) &= \bigwedge_{\ell' \in \mathcal{N}_{\mathcal{S}}^+(\ell)} f_i^{\ell} \to f_i^{\ell'} \\ f_3(\ell, i) &= \text{if } i = 1 \text{ then } true \text{ else } f_i^{\ell} \to f_{i-1}^{\ell} \end{split}$$

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N^+_G(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$

$$F_{6} = \bigwedge_{\ell \in \mathfrak{L}} \bigwedge_{1 \le i \le |\mathfrak{L}|} f_{1}(\ell, i) \land f_{2}(\ell, i) \land f_{3}(\ell, i) \land f_{4}(\ell, i)$$
$$f_{1}(\ell, i) = \text{if } i = 1 \text{ then } true \text{ else } \bigwedge_{\substack{\ell' \in N_{a}^{+}(\ell)}} \overline{\ell i} \to f_{i-1}^{\ell'}$$

$$f_2(\ell,i) = \bigwedge_{\ell' \in N_S^+(\ell)} f_i^\ell \to f_i^{\ell'}$$

 $f_3(\ell,i) = ext{if } i = 1$ then true else $f_i^\ell o f_{i-1}^\ell$

 $f_4(\ell, i) = f_i^\ell \to \neg \overline{\ell} i$

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N_G^+(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$

Compactifying Decomposition Trees

SAT Encoding

Evaluation S

۲

Summary 00

Evaluation – Partially-Ordered Problems [Behnke, Hller, Biundo, 2019]

securitari hevios	1. 11 11 8 6 4 2	40- 20- 00- 60- 60- 20-		-2	A A A A A A A A A A A A A A A A A A A	-5		20		50 onds	-100	200	5	600		- SA - SA - SA - SA - PA - PA - HT - SH - FA	T-F T-tre NDA NDA NDS IOP2 PE	∃-st Kau ee K Apro A TE STR 2	ep e tz& -ste autt Im- IG-r IPS	exp Seli p c 2&S cut n jas	MC mar rypt Selm	n cry tomi nan	ypto inisa cry	omir at ptor	nisa	t				
			SA	T-F			SA	F			SAT-	tree			SAT	-tree		PAN	NDA	oro	PAN	IDA	F	HTN	2STI	RIPS	5	Т		
			∃-s	tep	ŧ	Ka	autz&S	Selma	an 🛫		∃-s	tep	t				ŧ									g				
	#instances	expMC	MapleLCM	CaDiCaL	cryptominisa	expMC	MapleLCM	CaDiCaL	cryptominisa	expMC	MapleLCM	CaDiCaL	cryptominisa	expMC	MapleLCM	CaDiCaL	cryptominisa	Im-cut	ΕF	ADD	TDG-m	TDG-c	jasper	FD-SS 2018	Saarplan	LAPKT-BFW	MpC	SHOP2	FAPE	
UM-TRANSLOG	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	19	17	17	17	6	22	-	
WOODWORKING	20	25	25	25	25	24	24	25	25	25	25	25	25	25	25	25	25	10	24 Q	23	25	21	23	19	14	12	4	22	22	
SMARTPHONE	7	7	7	7	7	7	7	6	7	6	6	7	7	6	6	6	7	5	5	5	5	.0	6	6	5	5	4	4	-	
PCP	17	12	12	12	12	12	12	12	12	12	12	11	12	11	12	11	12	9	10	11	9	8	3	3	3	3	o	0	-	
ENTERTAINMENT	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	11	12	9	9	5	5	5	4	4	5	-	
ROVER	20	10	11	9	8	5	6	4	4	4	4	4	6	4	4	4	5	4	3	4	2	2	5	5	4	4	4	з	3	
TRANSPORT	30	22	20	20	20	15	14	15	17	22	20	19	21	15	15	15	18	9	11	7	1	1	19	17	13	13	3	0	-	
total	144	121	120	118	117	108	108	107	110	114	112	111	116	106	107	106	112	95	95	93	81	78	85	77	66	63	25	64	25/56	

	Compactifying Decomposition Trees		Summary ●○

Even undecidable problems can be solved via a translation into SAT.

We have introduced

- Path Decomposition Trees (PDTs)
- Solution Order Graphs (SOGs)
- An encoding for PDTs and SOGs into propositional logic

	Compactifying Decomposition Trees		Summary ○●
References			

Behnke,Höller,Biundo, 2018	totSAT – Totally-ordered hierarchical planning through SAT
Behnke,Höller,Biundo, 2018	Tracking Branches in Trees – A Propositional Encoding for Solving Partially-Ordered HTN Planning Problems
Behnke,Höller,Biundo, 2019	Bringing order to chaos – A compact representation of partial order in SAT-based HTN planning

