
Lecture Hierarchical Planning

Chapter:
Planning Capabilities Motivated by Real World Applications

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 20, 2019)



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview:

1 Introduction

2 Plan Repair

3 Conveying Plans / Plan Linearization
Conveying Single Tasks
Plan Linearization

4 Plan Explanation

5 Example Integration

6 Summary

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 2 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast

: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast

: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast

: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast

: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast

: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.

Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?

In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Recap: Possible Applications of Planning:

Autonomous systems, like intelligent factories, robotics.

Assistance Systems.

Many more (cf. first lecture).

Issues in such real-world applications:

Plans need to be generated fast: Algorithms and heuristics! 3

Plans executed/pursued by humans may need to be recognized. 3

We need to be able to cope with execution errors.
Plans need to be communicated to a user:

How to convey the information? Use abstraction?
In which order to present the actions?

Plans should be explainable, i.e., we should be able to make clear
why actions are within plans.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 3 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).

Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.

An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.

Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.

Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).

The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Planning models have to abstract from many details of the real-world.

The execution of plans generated using these domains may fail due
to these abstractions (determinism and full observability are
examples for such abstractions).
Ordinarily, execution errors are assumed to be unanticipated state
changes. This can cover:

Some effects of an action did not apply.
An action had additional effects.
Some “unlikely” effects happened rather than the most likely ones.
Some previously unknown facts got known (i.e., something assumed
true (wrong) is revealed wrong (true)).
The environment unexpectedly changed without the agent causing it.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 4 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:

Re-Planning: Start again from the new current state.
Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:
Re-Planning: Start again from the new current state.

Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:
Re-Planning: Start again from the new current state.
Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:
Re-Planning: Start again from the new current state.
Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:
Re-Planning: Start again from the new current state.
Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:
Re-Planning: Start again from the new current state.
Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?
someTask(safe, . . . )

doWork(. . . )open(safe) close(safe)

Figure 2: A sketch of a domain containing a pair of actions
that have to be executed either both or none.

can be treated equal to cables or adapters and the hierarchy
enforces the signal flow. Other things, like which plug fits
into which port, or which port is free, can be represented in
state. Clearly, this hierarchy represents physics, not advice.

Now imagine a situation where two devices shall be con-
nected and re-planning is performed after half of the connec-
tions. Some cables have already been connected to ports and
thus both are occupied. When re-planning does not include
these circumstances, these cables are just treated as non-free
and new cables are used. That way, resources are wasted and
in worst case, no solution can be found.

Such situations might be considered during domain de-
sign. The domain might include an unplug action, or the re-
cursive connection model can consider plugged cables be-
tween devices. However, it has to be addressed somehow.

Consider another domain where, for a certain action that
causes a safety threat, a second action has to be performed
to make the situation safe again, e.g. an action for opening
a safe. Every safe that is opened must also be closed even-
tually. This can easily be modeled as an HTN domain. A
sketch for such a domain is given in Figure 2. Though the
given domain could also be modeled using some features in
classical planning (e.g. by introducing a closed state feature
and include it in the goal definition for every safe), please
be aware that this is not always the case: Consider e.g. that
one action needs to be done as many times as a second one.
Then, there is no way to ensure it via state, since the state in
planning is usually finite. It can, however, be modeled in the
more expressive HTN formalism (Höller et al. 2016).

As we have seen in our examples, the hierarchy assures
that certain properties hold in every plan and the domain
designer might rely on these properties. There are different
ways to ensure them:
• The responsibility can be shifted to the domain designer,

i.e., the domain must be created in a way that the planning
process can be started from any state of the real-world
system. This leads to a higher effort for the domain ex-
pert and it might also be more error-prone, because the
designer has to consider possible re-planning in every in-
termediate state of the real-world system.

• The reasoning system that triggers planning and provides
the planning problem is responsible to incorporate addi-
tional tasks to make the system safe again. This shifts the
problem to the creator of the execution system. This is
even worse, since this might not even be a domain expert,
and the execution system has to be domain-specific, i.e.,
the domain knowledge is split.

• The repair system generates a solution that has the prop-
erties assured by the hierarchy. This solution leads to a
single model containing the knowledge, the planning do-

main; and the domain designer does not need to consider
every intermediate state of the real system.

Since it represents a fully domain-independent approach, we
consider the last solution to be the best. This leads us to
a core requirement of a system that solves the plan repair
problem: regardless of whether it technically uses plan re-
pair or re-planning, it needs to generate solutions that start
with the same prefix of actions that have already been exe-
cuted. Otherwise, the system potentially discards “physics”
that have been modeled via the hierarchy. Therefore we de-
fine a solution to the plan repair problem as follows.

Definition 4 (Repaired Plan). Given a plan repair problem
Pr = (P , tns, dt , exe, F

+, F−) with P = (L, C, A, M,
s0, tnI , g, δ), tns = (T ,≺, α) and exe = (t0, t1, . . . tn), a
repaired plan is a plan that (1) can be executed in s0, (2) is
a refinement of tnI , and (3) has a linearization with a pre-
fix equal to (α(t0), α(t1), . . . α(tn)) followed by tasks exe-
cutable despite the unforeseen state change.

4 HTN Plan Repair: Related Work
Before we survey practical approaches on plan repair in
HTN planning, we recap the theoretical properties of the
task. Modifying existing HTN solutions (in a way so that the
resulting solution lies still in the decomposition hierarchy) is
undecidable even for quite simple modifications (Behnke et
al. 2016) and even deciding the question whether a given se-
quence of actions can be generated in a given HTN prob-
lem is NP-complete (Behnke, Höller, and Biundo 2015;
2017). Unsurprisingly, the task given here – finding a so-
lution that starts with a given sequence of actions – is indeed
undecidable (Behnke, Höller, and Biundo 2015).

We now summarize work concerned with plan repair or
re-planning in hierarchical planning in chronological order.

One of the first approaches dealing with execution er-
rors in hierarchical planning is given by Kambhampati and
Hendler (1992). It can be characterized as plan repair, since
they repair the already-found solution with the least num-
ber of changes. Though they assume a hierarchical model,
the task hierarchy is just advice, i.e., the planning goals are
not defined in terms of an initial task network, but as state-
based goal. Abstract tasks use preconditions and effects so
that they can be inserted as well. They do not base their work
upon an execution error, such as an unexpected change of a
current situation, but instead assume that the problem de-
scription changes, i.e., the initial state and goal description.

Drabble, Dalton, and Tate (1997) introduced algorithms
to repair plans in case of action execution failure as well as
unexpected world events by modifying the existing plan.

Boella and Damiano (2002) propose a technique that they
refer to as re-planning, but the work can be seen as plan
repair according to our classification. They propose a re-
pair algorithm for a reactive agent architecture. The original
problem is given in terms of an initial plan that needs to
be refined. Repair starts with a given primitive plan. They
take back performed refinements until finding a more ab-
stract plan that can be refined into a new primitive one with
an optimal expected utility.

Warfield et al. (2007) propose the RepairSHOP system,

Consider an execution error after opening the safe but before
closing it. What happens?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Deal with Execution Errors?

There are two mechanisms to deal with failed plans:
Re-Planning: Start again from the new current state.
Plan Repair: Reuse the previous solution and fix (i.e., repair) it
according to the unexpected execution problem.

Simple re-planning discards HTN constraints, i.e., in general it
return false witnesses, i.e., wrong results.

Example for such a wrong witness?
the state sl+1 the resulting state from the application. A se-
quence of actions (a0a1 . . . al) is a solution if and only if it
is applicable in the initial state s0 and results in a goal state.

An HTN planning problem P = (L, C, A, M, s0, tnI ,
g, δ) extends a classical planning problem by a set of ab-
stract (also called compound) task names C, a set of de-
composition methods M , and the tasks that need to be ac-
complished which are given in the so-called initial task net-
work tnI . The other elements are equivalent to the classical
case. The tasks that need to be done as well as their order-
ing relation are organized in task networks. A task network
tn = (T ,≺, α) consists of a set of identifiers T . An identi-
fier is just a unique element that is mapped to an actual task
by a function α : T → A∪C. This way, a single task can be
in a network more than once. ≺ : T ×T is a set of ordering
constraints between the task identifiers. Two task networks
are called to be isomorphic if they differ solely in their task
identifiers. An abstract task can by decomposed by using a
decomposition method. A method is a pair (c, tn) of an ab-
stract task c ∈ C that specifies to which task the method is
applicable and a task network tn , the method’s subnetwork.
When decomposing a task network tn1 = (T1,≺1, α1) that
includes a task t ∈ T1 with α1(t) = c using a method
(c, tn), we need an isomorphic copy of the method’s sub-
network tn ′ = (T ′,≺′, α′) with T1∩T ′ = ∅. The resulting
task network tn2 is then defined as follows.

tn2 =((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We will write tn →∗ tn ′ to denote that a task network tn
can be decomposed into a task network tn ′ by applying an
arbitrary number of methods in sequence.

A task network tn = (T ,≺, α) is a solution to a plan-
ning problem P if and only if (1) all tasks are primi-
tive, ∀t ∈ T : α(t) ∈ A, (2) it was obtained via de-
composing the initial task network, tnI →∗ tn , (3) there
is a sequence (t1t2 . . . tn) of the task identifiers in T in
line with the ordering constraints ≺, and the application of
(α(t1)α(t2) . . . α(tn)) in s0 results in a goal state.

2.2 Plan Repair Problem in HTN Planning
Next we specify the plan repair problem, i.e., the problem
occurring when plan execution fails (that could be solved by
plan repair or re-planning), please be aware the ambiguity
of this term. A plan repair problem consists of three core el-
ements: The original HTN planning problem P , its original
solution plus its already executed prefix, and the execution
error, i.e., the state deviation that occurred during executing
the prefix of the original solution.

Most HTN approaches that can cope with execution er-
rors do not just rely on the original solution, but also re-
quire the modifications that transformed the initial task net-
work into the failed solution. How these modifications look
like may depend on the underlying planning system, e.g.,
whether it is a progression-based system (Nau et al. 2003;
Höller et al. 2018a) or a plan-space planner (Bercher, Keen,

con(A,C )

con(A,B) con(B ,C )

(using intermediate device/s)

con(A,B)

plug(A,B ,PA,PB )

(direct)

Figure 1: Core methods of an entertainment domain (exam-
ple from Höller et al. 2018a).

and Biundo 2014; Dvor̆ák et al. 2014). To have a general
definition, we include the so-called decomposition tree (DT)
of a given solution tn . A DT is a tree-like representation of
performed decompositions. It forms a witness for a decom-
position leading to the solution (Geier and Bercher 2011). Its
nodes represent tasks; each abstract task is labeled with the
method used for decomposing it, the children in the tree cor-
respond to the subtasks of that specific method. All ordering
constraints are also represented, such that a DT dt yields the
solution tn it represents by restricting the elements of dt to
dt’s leaf nodes.

Definition 1 (Plan Repair Problem). A plan repair problem
can now be defined as a tuple Pr = (P , tns, dt , exe, F

+,
F−) with the following elements. P is the original planning
problem. tns = (T ,≺, α) is the failed solution for it, dt
the DT as a witness that tns is actually a refinement of the
original initial task network, and exe = (t0, t1, . . . tn) is
the sequence of already executed task identifiers, ti ∈ T .
Finally, the execution failure is represented by the two sets
F+ ⊆ L and F− ⊆ L indicating the state features that were
(not) holding contrary to the expected state after execution
the solution prefix exe .

Though they have been introduced before, we want to
make the terms re-planning and plan repair more precise.

Definition 2 (Re-Planning). The old plan is discarded, a
new plan is generated starting from the current state of the
system that caused the execution failure.

Definition 3 (Plan Repair). The system modifies the non-
executed part of the original solution such that it can cope
with the unforeseen state change.

3 About Re-Planning in HTN Planning
In classical planning, a prefix of a plan that has already been
executed does not imply any changes to the environment
apart from the actions’ effects. It is therefore fine to discard
the current plan and generate a new one from scratch from
the (updated) state of the system. HTN planning provides the
domain designer a second means of modeling: the hierarchy.
Like preconditions and effects, it can be used to model both
physics or advice. Figure 1 shows (core parts of) a domain
that models the task of assembling an entertainment system.
The signal flow is thereby modeled via the hierarchy without
using any state features. This can be done by the two given
methods. When two devices A and C have to be connected
(represented by the task con(A,C )), this can be done by us-
ing a third intermediate device B, or directly by performing
a plug action. That way, devices like a TV or DVD player

Here, the signal flow is modeled via the hierarchy, not the state.
What happens with replanning?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 5 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!

More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?

The unexpected state change.

We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.

For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?

The unexpected state change.

We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?

No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?

The unexpected state change.

We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!

Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?

The unexpected state change.

We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?

The unexpected state change.
We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?
The unexpected state change.

We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?
The unexpected state change.
We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?
The unexpected state change.
We add a novel action (and call it process) for which holds:

It is only executable once,

it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?
The unexpected state change.
We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,

it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair

Thus, in general, we need to take the already executed actions
into account!
More precisely, when the execution of a plan fails, find a new plan
that has the same prefix and can deal with the unexpected state
transition.
For this, we require specialized Plan Repair systems, right?
No! We can use almost exactly the same procedure as for plan
recognition!
Then, the observed actions (in the recognition setting)
correspond the the actions already executed. What’s missing?
The unexpected state change.
We add a novel action (and call it process) for which holds:

It is only executable once,
it will be executed exactly after the last executed action,
it produces exactly the unforeseen state changes.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 6 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair as Planning

tnI

. . .

. . .

a1 a2 a3 a4 a5 . . . am

. . .

a1, . . . , am is the solution found.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 7 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair as Planning

tnI

. . .

e1 . . . en an+1 . . . am

. . .

e1, . . . , en = a1, . . . , an are the action already executed before the failure.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 7 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair as Planning

tnI

. . .

e1 . . . en an+1 . . . am

. . .

p

p is the novel process action encoding the state space.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 7 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Repair as Planning

tnI

. . .

e1 . . . en an+1 . . . am

. . .

p

However, to keep it simpler, we do not represent the process p with a
novel action but instead add all its effects to the action an. Then, define

e1, . . . , en as the observed action from plan recognition and solve the plan
recognition problem with tn as the single possible goal (task) network.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 7 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conclusions

Using this compilation technique allows us:

to use off-the-shelf hierarchical planners for plan repair, i.e., we do
not need specialized systems for it and
to use existing standard heuristics without adapting them to the
repair setting.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 8 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conclusions

Using this compilation technique allows us:
to use off-the-shelf hierarchical planners for plan repair, i.e., we do
not need specialized systems for it and

to use existing standard heuristics without adapting them to the
repair setting.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 8 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conclusions

Using this compilation technique allows us:
to use off-the-shelf hierarchical planners for plan repair, i.e., we do
not need specialized systems for it and
to use existing standard heuristics without adapting them to the
repair setting.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 8 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Introduction

What issues arise when conveying a plan to a user?

How to convey the plan in general? Show the entire plan at once
or convey the actions one by one?

Only convey primitive actions (one at a time) or use abstract
actions as well?
If primitive actions should be conveyed,

How? I.e., how to create an adequate user interface from the
action’s formal description?
In which order to convey the actions? (→ Plan linearization, see
next section)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 9 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Introduction

What issues arise when conveying a plan to a user?

How to convey the plan in general? Show the entire plan at once
or convey the actions one by one?

Only convey primitive actions (one at a time) or use abstract
actions as well?
If primitive actions should be conveyed,

How? I.e., how to create an adequate user interface from the
action’s formal description?
In which order to convey the actions? (→ Plan linearization, see
next section)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 9 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Introduction

What issues arise when conveying a plan to a user?

How to convey the plan in general? Show the entire plan at once
or convey the actions one by one?

Only convey primitive actions (one at a time) or use abstract
actions as well?

If primitive actions should be conveyed,

How? I.e., how to create an adequate user interface from the
action’s formal description?
In which order to convey the actions? (→ Plan linearization, see
next section)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 9 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Introduction

What issues arise when conveying a plan to a user?

How to convey the plan in general? Show the entire plan at once
or convey the actions one by one?

Only convey primitive actions (one at a time) or use abstract
actions as well?
If primitive actions should be conveyed,

How? I.e., how to create an adequate user interface from the
action’s formal description?
In which order to convey the actions? (→ Plan linearization, see
next section)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 9 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Introduction

What issues arise when conveying a plan to a user?

How to convey the plan in general? Show the entire plan at once
or convey the actions one by one?

Only convey primitive actions (one at a time) or use abstract
actions as well?
If primitive actions should be conveyed,

How? I.e., how to create an adequate user interface from the
action’s formal description?

In which order to convey the actions? (→ Plan linearization, see
next section)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 9 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

Introduction

What issues arise when conveying a plan to a user?

How to convey the plan in general? Show the entire plan at once
or convey the actions one by one?

Only convey primitive actions (one at a time) or use abstract
actions as well?
If primitive actions should be conveyed,

How? I.e., how to create an adequate user interface from the
action’s formal description?
In which order to convey the actions? (→ Plan linearization, see
next section)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 9 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Problem Description

We now assume that the (original) input is given in a lifted fashion, e.g.:

describes a ground instance of a primitive action used to plugin a
CINCH cable in an AV-Receiver to establish an audio signal.

So, how to convey it to a user?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 10 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Problem Description

We now assume that the (original) input is given in a lifted fashion, e.g.:

describes a ground instance of a primitive action used to plugin a
CINCH cable in an AV-Receiver to establish an audio signal.

So, how to convey it to a user?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 10 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Solution

Use a template to generate natural language description, e.g.
“Plug the x end of the y cable into the z device.”

Use pictures and/or videos to illustrate the involved objects., e.g.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 11 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Solution

Use a template to generate natural language description, e.g.
“Plug the x end of the y cable into the z device.”

Use pictures and/or videos to illustrate the involved objects., e.g.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 11 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive vs. Abstract Tasks

This approach works both for primitive and abstract tasks.
However:

We could also use the primitive task’s effects to incorporate them
into the natural-language description.
There are extensions in which abstract tasks have effects as well,
see next lecture.
When we want to convey abstract tasks, we need to re-infer such
abstract tasks from the solution.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 12 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive vs. Abstract Tasks

This approach works both for primitive and abstract tasks.
However:

We could also use the primitive task’s effects to incorporate them
into the natural-language description.

There are extensions in which abstract tasks have effects as well,
see next lecture.
When we want to convey abstract tasks, we need to re-infer such
abstract tasks from the solution.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 12 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive vs. Abstract Tasks

This approach works both for primitive and abstract tasks.
However:

We could also use the primitive task’s effects to incorporate them
into the natural-language description.
There are extensions in which abstract tasks have effects as well,
see next lecture.

When we want to convey abstract tasks, we need to re-infer such
abstract tasks from the solution.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 12 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive vs. Abstract Tasks

This approach works both for primitive and abstract tasks.
However:

We could also use the primitive task’s effects to incorporate them
into the natural-language description.
There are extensions in which abstract tasks have effects as well,
see next lecture.
When we want to convey abstract tasks, we need to re-infer such
abstract tasks from the solution.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 12 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Abstract Tasks

Assume we want to convey plans via their abstract actions they
rely on.

Then we should convey them in a reasonable order.

More precisely: If we want to convey, for example, an abstract
task a1 followed by an abstract task a2, then the solution should
consist of the (primitive) refinement of a1 followed by the
(primitive) refinement of a2.

Example: Does it make sense to use the initial grammar symbols
of the grammar intersection problem to convey its solution?

It is obviously decidable whether such a linearization of abstract
tasks exists, because the decomposition tree is finite.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 13 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Abstract Tasks

Assume we want to convey plans via their abstract actions they
rely on.

Then we should convey them in a reasonable order.

More precisely: If we want to convey, for example, an abstract
task a1 followed by an abstract task a2, then the solution should
consist of the (primitive) refinement of a1 followed by the
(primitive) refinement of a2.

Example: Does it make sense to use the initial grammar symbols
of the grammar intersection problem to convey its solution?

It is obviously decidable whether such a linearization of abstract
tasks exists, because the decomposition tree is finite.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 13 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Abstract Tasks

Assume we want to convey plans via their abstract actions they
rely on.

Then we should convey them in a reasonable order.

More precisely: If we want to convey, for example, an abstract
task a1 followed by an abstract task a2, then the solution should
consist of the (primitive) refinement of a1 followed by the
(primitive) refinement of a2.

Example: Does it make sense to use the initial grammar symbols
of the grammar intersection problem to convey its solution?

It is obviously decidable whether such a linearization of abstract
tasks exists, because the decomposition tree is finite.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 13 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Abstract Tasks

Assume we want to convey plans via their abstract actions they
rely on.

Then we should convey them in a reasonable order.

More precisely: If we want to convey, for example, an abstract
task a1 followed by an abstract task a2, then the solution should
consist of the (primitive) refinement of a1 followed by the
(primitive) refinement of a2.

Example: Does it make sense to use the initial grammar symbols
of the grammar intersection problem to convey its solution?

It is obviously decidable whether such a linearization of abstract
tasks exists, because the decomposition tree is finite.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 13 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Abstract Tasks

Assume we want to convey plans via their abstract actions they
rely on.

Then we should convey them in a reasonable order.

More precisely: If we want to convey, for example, an abstract
task a1 followed by an abstract task a2, then the solution should
consist of the (primitive) refinement of a1 followed by the
(primitive) refinement of a2.

Example: Does it make sense to use the initial grammar symbols
of the grammar intersection problem to convey its solution?

It is obviously decidable whether such a linearization of abstract
tasks exists, because the decomposition tree is finite.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 13 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive Tasks

In general, (primitive) solutions are partially ordered.

Note: Even when a solution is given totally ordered (e.g., due to
using progression search), we can easily (i.e., in P) find a
partially ordered version of it.

If a partially ordered solution is given, we need to answer the
question in which order the actions should be conveyed to the
user. → Plan Linearization

Note: This question is also relevant in case we convey abstract
tasks.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 14 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive Tasks

In general, (primitive) solutions are partially ordered.

Note: Even when a solution is given totally ordered (e.g., due to
using progression search), we can easily (i.e., in P) find a
partially ordered version of it.

If a partially ordered solution is given, we need to answer the
question in which order the actions should be conveyed to the
user. → Plan Linearization

Note: This question is also relevant in case we convey abstract
tasks.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 14 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive Tasks

In general, (primitive) solutions are partially ordered.

Note: Even when a solution is given totally ordered (e.g., due to
using progression search), we can easily (i.e., in P) find a
partially ordered version of it.

If a partially ordered solution is given, we need to answer the
question in which order the actions should be conveyed to the
user. → Plan Linearization

Note: This question is also relevant in case we convey abstract
tasks.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 14 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Conveying Single Tasks

Conveying Primitive Tasks

In general, (primitive) solutions are partially ordered.

Note: Even when a solution is given totally ordered (e.g., due to
using progression search), we can easily (i.e., in P) find a
partially ordered version of it.

If a partially ordered solution is given, we need to answer the
question in which order the actions should be conveyed to the
user. → Plan Linearization

Note: This question is also relevant in case we convey abstract
tasks.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 14 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Plan Linearizations, Motivation

Which linearizations are well-suited for human users?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 15 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Plan Linearizations, Motivation

Which linearizations are well-suited for human users?

1: connect . . .
2: connect CINCH cable (one end) with Blu-ray player
3: connect . . .
4: connect CINCH cable (another end) with AV receiver
5: connect . . .

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 15 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Plan Linearizations, Motivation

Which linearizations are well-suited for human users?

1: connect CINCH cable (one end) with Blu-ray player
2: connect CINCH cable (another end) with AV receiver
3: connect . . .
4: connect . . .
5: connect . . .

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 15 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Plan Linearizations, Motivation

Which linearizations are well-suited for human users?

1: connect . . .
2: connect . . .
3: connect . . .
4: connect CINCH cable (one end) with Blu-ray player
5: connect CINCH cable (another end) with AV receiver

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 15 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Plan Linearizations, Motivation

Which linearizations are well-suited for human users?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 15 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Linearization Strategies

Information used for finding user-friendly plan linearizations:

The planning domain.

The solution to the given planning problem

We show three linearization strategies, based on:

Distance in the model’s task hierarchy:
Methods contain actions that “belong together”.

Number of identical constants:
Perform actions that involve the same objects.

Number of shared causal links:
Perform actions that are causally related to each other.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 16 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Linearization Strategies

Information used for finding user-friendly plan linearizations:

The planning domain.

The solution to the given planning problem

We show three linearization strategies, based on:

Distance in the model’s task hierarchy:
Methods contain actions that “belong together”.

Number of identical constants:
Perform actions that involve the same objects.

Number of shared causal links:
Perform actions that are causally related to each other.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 16 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Linearization Strategies

Information used for finding user-friendly plan linearizations:

The planning domain.

The solution to the given planning problem

We show three linearization strategies, based on:

Distance in the model’s task hierarchy:
Methods contain actions that “belong together”.

Number of identical constants:
Perform actions that involve the same objects.

Number of shared causal links:
Perform actions that are causally related to each other.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 16 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

User-Friendly Linearization Strategies

Information used for finding user-friendly plan linearizations:

The planning domain.

The solution to the given planning problem

We show three linearization strategies, based on:

Distance in the model’s task hierarchy:
Methods contain actions that “belong together”.

Number of identical constants:
Perform actions that involve the same objects.

Number of shared causal links:
Perform actions that are causally related to each other.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 16 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Parameter-based Linearization Strategy

Reasoning behind using parameters for linearization:

Actions represent activities to do.

Parameters introduce the items/objects/subjects to use.

→ execute actions involving the same parameters consecutively.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 17 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Parameter-based Linearization Strategy, Illustrating Example

Solution plan (schematically, with causal structure)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 18 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Parameter-based Linearization Strategy, Illustrating Example

Solution plan (ordering constraints, action schemata)

plugIn
(BR, HDMI)

plugIn
(HDMI, AMP)

plugIn
(BR, HDMI2DVI)

plugIn
(HDMI2DVI, DVI)

plugIn
(DVI, AMP)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 18 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Parameter-based Linearization Strategy, Illustrating Example

Solution plan (ordering constraints, action schemata)

plugIn
(BR, HDMI)

plugIn
(HDMI, AMP)

plugIn
(BR, HDMI2DVI)

plugIn
(HDMI2DVI, DVI)

plugIn
(DVI, AMP)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 18 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Parameter-based Linearization Strategy, Illustrating Example

Solution plan (ordering constraints, action schemata)

plugIn
(BR, HDMI)

plugIn
(HDMI, AMP)

plugIn
(BR, HDMI2DVI)

plugIn
(HDMI2DVI, DVI)

plugIn
(DVI, AMP)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 18 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Causal Link-based Linearization Strategy

Reasoning behind using causal links for linearization:

Causal links explicitly represent the causal dependencies
between actions.

Each link was introduced for a reason – all links are required.

→ Execute connected actions consecutively.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 19 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Task Hierarchy-based Linearization Strategy

Domain contains expert knowledge.

Tasks that are introduced by the same method implement the
same abstract task (→ they are semantically related).

We generalize this relationship to tasks that are not in the same
method (→ use the TDG).

→ Execute actions consecutively that are close to each other in the
TDG.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 20 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Task Hierarchy-based Linearization Strategy

Domain contains expert knowledge.

Tasks that are introduced by the same method implement the
same abstract task (→ they are semantically related).

We generalize this relationship to tasks that are not in the same
method (→ use the TDG).

→ Execute actions consecutively that are close to each other in the
TDG.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 20 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Task Hierarchy-based Linearization Strategy

Domain contains expert knowledge.

Tasks that are introduced by the same method implement the
same abstract task (→ they are semantically related).

We generalize this relationship to tasks that are not in the same
method (→ use the TDG).

→ Execute actions consecutively that are close to each other in the
TDG.

tinit

connect(AMP, TV)

plugIn(AMP,HDMI) plugIn(HDMI, TV)

connect(RECEIVER, AMP)

. . .

connect(BLURAY, AMP)

plugIn(DVI, BLURAY) . . .

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 20 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Task Hierarchy-based Linearization Strategy

Domain contains expert knowledge.

Tasks that are introduced by the same method implement the
same abstract task (→ they are semantically related).

We generalize this relationship to tasks that are not in the same
method (→ use the TDG).

→ Execute actions consecutively that are close to each other in the
TDG.

tinit

connect(AMP, TV)

plugIn(AMP,HDMI) plugIn(HDMI, TV)

connect(RECEIVER, AMP)

. . .

connect(BLURAY, AMP)

plugIn(DVI, BLURAY) . . .

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 20 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Task Hierarchy-based Linearization Strategy

Domain contains expert knowledge.

Tasks that are introduced by the same method implement the
same abstract task (→ they are semantically related).

We generalize this relationship to tasks that are not in the same
method (→ use the TDG).

→ Execute actions consecutively that are close to each other in the
TDG.

tinit

connect(AMP, TV)

plugIn(AMP,HDMI) plugIn(HDMI, TV)

connect(RECEIVER, AMP)

. . .

connect(BLURAY, AMP)

plugIn(DVI, BLURAY) . . .

How closely to instruct plugIn(AMP,HDMI) and plugIn(HDMI, TV) next to
each other?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 20 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Task Hierarchy-based Linearization Strategy

Domain contains expert knowledge.

Tasks that are introduced by the same method implement the
same abstract task (→ they are semantically related).

We generalize this relationship to tasks that are not in the same
method (→ use the TDG).

→ Execute actions consecutively that are close to each other in the
TDG.

tinit

connect(AMP, TV)

plugIn(AMP,HDMI) plugIn(HDMI, TV)

connect(RECEIVER, AMP)

. . .

connect(BLURAY, AMP)

plugIn(DVI, BLURAY) . . .

How closely to instruct plugIn(HDMI, TV) and plugIn(DVI, BLURAY) next
to each other?

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 20 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Linearization

Formal Descriptions of Linearization Criteria

Formal descriptions of these three optimization criteria can be found in
the following paper:

Daniel Höller et al. “Finding User-friendly Linearizations of Partially
Ordered Plans”. In: 28th PuK Workshop ”Planen, Scheduling und
Konfigurieren, Entwerfen” (PuK 2014). 2014

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 21 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.

More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”

Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”

Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?

Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

When plans get executed by human users, they might refuse to
do so – or at least wonder whether there are different options.
More precisely, a relevant example for a plan explanation
question is given by:

Given a plan step X : “Why do I have to perform X?”
Further possible questions are:

Why uses plan step X(ci1 , . . . , cin) object/constant cik as k -th
argument rather than object/constant c′?
Why is plan step X ordered before plan step Y?

→ All these questions can be posed as change requests, e.g.,
“Can I also remove the ordering constraint between X and Y?”

→ In general change requests are as hard as planning (even though
we already found a solution!).

→ Just asking for some justification why a certain property holds is
much easier!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 22 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Explanations – Overview

Both “explainable AI” and “explainable planning” became very prominent
lately. Still, only a few approaches exist for planning:

We focus on explaining properties of the given plan as mentioned
before, in particular on questions addressing the necessity of actions.

One approach considers Plan Explanations as Model Reconciliation.
In a nutshell:

There is a true model of the real world and
another model that the user has about the world.

→ The differences (i.e., wrong assumptions) are conveyed to the user.
That way, his model can be altered as well. (See the RADAR video on
https://yochan-lab.github.io/robots/ (from 5:10))

Another approach considers “excuses” for failed plans:
Given an unsolvable planning problem, it finds alternative initial
states that allow for a solution. The performed alterations to the
actual state are referred to as excuses.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 23 / 33

https://yochan-lab.github.io/robots/


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Explanations – Overview

Both “explainable AI” and “explainable planning” became very prominent
lately. Still, only a few approaches exist for planning:

We focus on explaining properties of the given plan as mentioned
before, in particular on questions addressing the necessity of actions.
One approach considers Plan Explanations as Model Reconciliation.
In a nutshell:

There is a true model of the real world and
another model that the user has about the world.

→ The differences (i.e., wrong assumptions) are conveyed to the user.
That way, his model can be altered as well. (See the RADAR video on
https://yochan-lab.github.io/robots/ (from 5:10))

Another approach considers “excuses” for failed plans:
Given an unsolvable planning problem, it finds alternative initial
states that allow for a solution. The performed alterations to the
actual state are referred to as excuses.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 23 / 33

https://yochan-lab.github.io/robots/


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Explanations – Overview

Both “explainable AI” and “explainable planning” became very prominent
lately. Still, only a few approaches exist for planning:

We focus on explaining properties of the given plan as mentioned
before, in particular on questions addressing the necessity of actions.
One approach considers Plan Explanations as Model Reconciliation.
In a nutshell:

There is a true model of the real world and

another model that the user has about the world.
→ The differences (i.e., wrong assumptions) are conveyed to the user.

That way, his model can be altered as well. (See the RADAR video on
https://yochan-lab.github.io/robots/ (from 5:10))

Another approach considers “excuses” for failed plans:
Given an unsolvable planning problem, it finds alternative initial
states that allow for a solution. The performed alterations to the
actual state are referred to as excuses.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 23 / 33

https://yochan-lab.github.io/robots/


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Explanations – Overview

Both “explainable AI” and “explainable planning” became very prominent
lately. Still, only a few approaches exist for planning:

We focus on explaining properties of the given plan as mentioned
before, in particular on questions addressing the necessity of actions.
One approach considers Plan Explanations as Model Reconciliation.
In a nutshell:

There is a true model of the real world and
another model that the user has about the world.

→ The differences (i.e., wrong assumptions) are conveyed to the user.
That way, his model can be altered as well. (See the RADAR video on
https://yochan-lab.github.io/robots/ (from 5:10))

Another approach considers “excuses” for failed plans:
Given an unsolvable planning problem, it finds alternative initial
states that allow for a solution. The performed alterations to the
actual state are referred to as excuses.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 23 / 33

https://yochan-lab.github.io/robots/


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Explanations – Overview

Both “explainable AI” and “explainable planning” became very prominent
lately. Still, only a few approaches exist for planning:

We focus on explaining properties of the given plan as mentioned
before, in particular on questions addressing the necessity of actions.
One approach considers Plan Explanations as Model Reconciliation.
In a nutshell:

There is a true model of the real world and
another model that the user has about the world.

→ The differences (i.e., wrong assumptions) are conveyed to the user.
That way, his model can be altered as well. (See the RADAR video on
https://yochan-lab.github.io/robots/ (from 5:10))

Another approach considers “excuses” for failed plans:
Given an unsolvable planning problem, it finds alternative initial
states that allow for a solution. The performed alterations to the
actual state are referred to as excuses.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 23 / 33

https://yochan-lab.github.io/robots/


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Explanations – Overview

Both “explainable AI” and “explainable planning” became very prominent
lately. Still, only a few approaches exist for planning:

We focus on explaining properties of the given plan as mentioned
before, in particular on questions addressing the necessity of actions.
One approach considers Plan Explanations as Model Reconciliation.
In a nutshell:

There is a true model of the real world and
another model that the user has about the world.

→ The differences (i.e., wrong assumptions) are conveyed to the user.
That way, his model can be altered as well. (See the RADAR video on
https://yochan-lab.github.io/robots/ (from 5:10))

Another approach considers “excuses” for failed plans:
Given an unsolvable planning problem, it finds alternative initial
states that allow for a solution. The performed alterations to the
actual state are referred to as excuses.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 23 / 33

https://yochan-lab.github.io/robots/


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Explanations for Plan Step Necessity

Question: Why should I perform action X?

Possible answers:

Exploit causality: X achieves effect x , which is necessary for
action Y , which in turn achieves ...

Exploit hierarchy: X is part of a (method) plan implementing
action Y , which in turn implements ...

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 24 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Explanations for Plan Step Necessity

Question: Why should I perform action X?

Possible answers:

Exploit causality: X achieves effect x , which is necessary for
action Y , which in turn achieves ...

Exploit hierarchy: X is part of a (method) plan implementing
action Y , which in turn implements ...

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 24 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.
Following the DT upwards.
A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.

Following the DT upwards.
A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.
Following the DT upwards.

A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.
Following the DT upwards.
A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.
Following the DT upwards.
A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.
Following the DT upwards.
A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

How to Compute Such Explanations?

Most canonical approach:
Simply perform DFS/A∗ (with suitable heuristic) via:

Following the causal links to the goal state.
Following the DT upwards.
A combination for both (essential for TIHTN planning without goal
state).

Another approach:

Translation of the above-mentioned arguments to logics.

→ Despite being more complicated, this is the only approach
published so far.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 25 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .

What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.

Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 1

We define various axioms:

Following the causal links to the goal state:
CR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Following the DT upwards:
DR(ps1, ps2) ∧ N(ps2) ⇒ N(ps1)

Follow links to a goal state:
N(goal), where goal is an artificial goal action like in POCL
planning.

Follow task hierarchy until initial task network:
N(ps) for all plan steps ps in initial task network tnI .
What about CR and DR?

Causal relations (CR) are given for all causal links.
Decompositional relations (DR) are computed from the DT.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 26 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 2

Now, to answer the question Why should I perform action X? ...

Collect all axioms (cf. previous slide) in a knowledge base KB.

Ask for a proof of KB |= N(X) given the current plan and its DT.

→ Its proof, a sequence of axiom applications, can be verbalized
using proof verbalization techniques.

An example will be provided in the next section.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 27 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 2

Now, to answer the question Why should I perform action X? ...

Collect all axioms (cf. previous slide) in a knowledge base KB.

Ask for a proof of KB |= N(X) given the current plan and its DT.

→ Its proof, a sequence of axiom applications, can be verbalized
using proof verbalization techniques.

An example will be provided in the next section.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 27 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 2

Now, to answer the question Why should I perform action X? ...

Collect all axioms (cf. previous slide) in a knowledge base KB.

Ask for a proof of KB |= N(X) given the current plan and its DT.

→ Its proof, a sequence of axiom applications, can be verbalized
using proof verbalization techniques.

An example will be provided in the next section.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 27 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Plan Step Necessity Explanations via Logic – Step 2

Now, to answer the question Why should I perform action X? ...

Collect all axioms (cf. previous slide) in a knowledge base KB.

Ask for a proof of KB |= N(X) given the current plan and its DT.

→ Its proof, a sequence of axiom applications, can be verbalized
using proof verbalization techniques.

An example will be provided in the next section.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 27 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

We integrated these various user-centered planning capabilities

plan generation,

plan execution/monitoring/linearization,

plan repair (though implemented differently), and

plan explanation

in a prototypical assistance system to assist in setting up a complex
home theater.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 28 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

We integrated these various user-centered planning capabilities

plan generation,

plan execution/monitoring/linearization,

plan repair (though implemented differently), and

plan explanation

in a prototypical assistance system to assist in setting up a complex
home theater.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 28 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

We integrated these various user-centered planning capabilities

plan generation,

plan execution/monitoring/linearization,

plan repair (though implemented differently), and

plan explanation

in a prototypical assistance system to assist in setting up a complex
home theater.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 28 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

We integrated these various user-centered planning capabilities

plan generation,

plan execution/monitoring/linearization,

plan repair (though implemented differently), and

plan explanation

in a prototypical assistance system to assist in setting up a complex
home theater.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 28 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

We integrated these various user-centered planning capabilities

plan generation,

plan execution/monitoring/linearization,

plan repair (though implemented differently), and

plan explanation

in a prototypical assistance system to assist in setting up a complex
home theater.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 28 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Introduction

We integrated these various user-centered planning capabilities

plan generation,

plan execution/monitoring/linearization,

plan repair (though implemented differently), and

plan explanation

in a prototypical assistance system to assist in setting up a complex
home theater.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 28 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Home Theater Assembly Assistant, Problem Setting

Four devices:

Television (requires video)

Blu-ray player

Satellite receiver

audio/video receiver
(requires audio)

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 29 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Home Theater Assembly Assistant, Complete Video

Video available at: https://www.youtube.com/watch?v=Q25bGmFFc4U

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 30 / 33

https://www.youtube.com/watch?v=Q25bGmFFc4U


Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.

Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.

Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.

Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.

Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.

Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.

Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.

Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.

And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Overview

Real-world applications require more (planning) capabilities than just
the generation of plans. These comprise:

Plan execution/monitoring and (user-friendly) plan linearization.
Plan repair.
Plan explanation.
Plan recognition.
Allowing change requests.

→ Many of them (and more capabilities stemming from other computer
science disciplines) were demonstrated in a prototypical assistance
system helping in setting up a home theater.
Many extensions to the underlying formalism would be beneficial as
well, such as being able to deal with:

Time.
Resources.
Uncertainty.
And more (cf. first lecture)!

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 31 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.

Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.

We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.

In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.

We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!

Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.

We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.

We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.

We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.

We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.

We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.
We showed how it can be done in a step-by-step (action-per-action)
fashion.

We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.
We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.

For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques

Plan repair.
Execution failures can be modeled as deviations from anticipated
states.
In hierarchical planning, we have to take the executed actions into
account as well!
Otherwise, when taking just the current state, we might get false
witnesses.
We introduced an approach (similar to plan recognition), which
reduces the plan repair problem to the plan existence problem.

Conveying plans.
We showed how it can be done in a step-by-step (action-per-action)
fashion.
We discussed issues when we want to convey abtract tasks as well.
For this step-by-step presentation, we need to commit to an ordering
(→ plan linearization).

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 32 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.

We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.
We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.

We showed how to derive explanations stating the necessity for a plan
step in a solution.
This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.
In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.
We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.

We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.

We showed how to derive explanations stating the necessity for a plan
step in a solution.
This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.
In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.
We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.
We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.

We showed how to derive explanations stating the necessity for a plan
step in a solution.
This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.
In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.
We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.
We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.

We showed how to derive explanations stating the necessity for a plan
step in a solution.
This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.
In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.
We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.
We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.
We showed how to derive explanations stating the necessity for a plan
step in a solution.

This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.
In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.
We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.
We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.
We showed how to derive explanations stating the necessity for a plan
step in a solution.
This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.

In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33



Introduction Plan Repair Conveying Plans / Plan Linearization Plan Explanation Example Integration Summary

Discussed Techniques, cont’d

User-friendly plan linearization.
We showed that different plan linearizations, though all being correct,
might be more or less intuitive or useful.
We sketched three techniques to obtain user-friendly (i.e., intuitive)
linearizations which take into account: task parameters, causal links,
or the task hierarchy.

Plan explanation.
We showed how to derive explanations stating the necessity for a plan
step in a solution.
This technique can be implemented as simple search or via
compilations, e.g., to predicate logics.
In any case, explanations essentially encode chains of causal links or
of hierarchical decompositions.

Chapter: Planning Capabilities Motivated by Real World Applications by Dr. Pascal Bercher Winter Term 2018/2019 33 / 33


	Introduction
	Plan Repair
	Conveying Plans / Plan Linearization
	Introduction
	Conveying Single Tasks
	Plan Linearization

	Plan Explanation
	Example Integration
	Summary

