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Overview What are Heuristics?

Recap: How to come up with heuristics in a domain-independent way?
m Perform a problem relaxation.

m Solve the relaxed problem.
What's a heuristic in planning? = Use the relaxation’s solution cost as approximation (i.e., heuristic)
= The same as in search! (See respective lecture.) of the actual (original, non-relaxed) problem.

So. what's covered here? What is a problem relaxation?
’ ' = Sometimes special cases of planning problems (e.g., ignore all

m We discuss planning-specific problem relaxations. delete lists)

m We investigate some of the easiest/most fundamental heuristics

: _ m Sometimes specialized calculations (that might, however, still be
for classical and POCL planning.

interpreted as special cases of standard planning problems).
m They should be easier than the original problem: either in terms
of computational complexity or in the problem size.
m Ordinarily safe (cf. search: unsolvable in relaxation implies
unsolvable in original).
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Problem Relaxations for Planning

How to relax a STRIPS planning problem?
m Ignore the delete effects. — Delete-relaxation heuristics.
m Ignore an entire set of state variables. — Abstraction heuristics.

m Compute and exploit state variables (or actions) that have to be
part of (or are contained in) any solution at some point.
— Landmark-based heuristics.

m Estimate plan length by making relaxed assumptions on when a
set of variables is regarded reachable. — Critical path heuristics.

= And many more!

Further reading: Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What'’s the Difference Anyway?” In: Proc. of the 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2009). AAAI
Press, 2009, pp. 162—169
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Introduction

Motivation

m The planning graph is a relaxed representation of the state and
action space.

m It exists with varying degrees of constraints (mutexes,
representing which state variables may be true at the same time)
making it more or less informed.

= Here, we only cover the most relaxed form, which can be
computed in polynomial time.
= Its main purpose today:
m Use it to ground a domain (covered later).
m Used for relaxed reachability analysis (“Given a state s, is there
(maybe) a course of actions that enables the application of action
a afterwards?”)
m Basis for heuristics. — Both for classical and POCL planning!

Winter Term 2018/2019

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher

Sawan
6/35

oe

Introduction

Historical Remarks

The planning graph is a data structure that was invented for a planning
system called GraphPlan.

That planning system is not relevant for this course.

Note:

Do not think of a pink elephant right now!

Rephrased: Please do not confuse GraphPlan with the planning graph!
The first is a planning system — the latter a data structure.

Further reading: Avrim L. Blum and Merrick L. Furst. “Fast Planning Through
Planning Graph Analysis”. In: Artificial Intelligence 90 (1997), pp. 281-300.
DOI: 10.1016/30004-3702(96)00047-1
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Delete Relaxation

Definitions, Delete Relaxation

Definition (Delete-free and -relaxed Planning Problems)

Let P = (V, A, s;,g) be a STRIPS planning problem.
m Itis called delete-free if for all a € A, del(a) = 0.

= lts delete-relaxation is the (delete-free) problem (V, A’ s/, g),
where A" = {(pre, add, 0, ¢) | (pre, add, del, c) € A}.

— PT refers to the delete-relaxation of P and
— hT refers to the perfect heuristic (h*) for PT.
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Delete Relaxation and the rPG
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Delete Relaxation

Definitions, Delete Relaxation

What'’s the core idea behind delete relaxation?
— What'’s true once stays true!

Consider Sokoban: ...after moving left, down, right...

These positions are
~~ also free! (Since they
were free before or
have become so.)

— acrate

|:| = a goal position

= the figure

i
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Relaxed Planning Graph

Definitions, Relaxed Planning Graph

Definition (Relaxed Planning Graph)

Let (V, A, s/, g) be a (delete-free) planning problem.
Then, a relaxed planning graph (rPG) is a graph (\7, Z\) consisting of:
m V=V0. . V" V' CV,0< i< n,asequence of variable layers.
m A=A"... A", A C A 1<i< n,asequence of action layers.
m V0=s,.
m A={acA|pre(a) CV'},1<i<n
w V=V U, add(a), 1 <i<n
m Choose n = i, such that V'~! = V/ holds.

Questions:
m Why is “delete-free” in the problem description put in parentheses?
m Why is nchosen as is? Is there a bound on n?
= What happens if we choose n = i, such that V' = V/'*' holds?
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Relaxed Planning Graph

Definitions, Relaxed Planning Graph, cont'd

We can extend this definition of rPGs to add information about
reachability, i.e.,

m Which variable(s) enable which action precondition?
= Which variable(s) get added by which action(s)?

= How variables “remain valid” (due to the absence of deletions).
(That is, all variables v in V/ and V/*' share an edge)

Formal definition thereof:
Exercise!
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Relaxed Planning Graph
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Example — Exercise!
Draw the rPG with edges for the Cranes in the Harbor domain.
si: { CrateAtLoc1, TruckAtLoc2}  g: { CratelnTruck, TruckAtLoc2}
take put
pre:  {CrateAtLoc1} pre:  {HoldCrate}
add: {HoldCrate} add: {CrateAtLoc1}
del:  {CrateAtLoc1} del:  {HoldCrate}
movelLeft moveRight
pre:  {TruckAtLoc2} pre:  {TruckAtLoc1}
add:  {TruckAtLoc1} add: {TruckAtLoc2}
del:  {TruckAtLoc2} del:  {TruckAtLoc1}
load unload
pre:  {HoldCrate, TruckAtLoc1} pre: {CrateInTruck, TruckAtLoc1}
add: {CrateInTruck} add: {HoldCrate}
del:  {HoldCrate} del:  {CratelnTruck}

Do
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Relaxed Planning Graph

Example — Exercise! cont'd

Solution:
Vo A1 V1 A2 Vg A3 V3 A4 V4
e ) L) X
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Example — Exercise!

Calculate h™® for the Cranes in the Harbor domain.

Vo A Vi A Vs As Vs As Vs

[eonuap |

1,

3
H
E

s; = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck, TruckAtLoc2} @

A
TS

o8
&

hmax(sl) =2 h*(S/) =4 h;knakespan(sl) =3
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h™® for Classical Planning

Let P = (V, A, s;,g) be a STRIPS planning problem and G = (V, A)
its rPG.
m h™(s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P to make
the hardest variable in g true (starting in some s € S, e.g., s)).
m Formally, h'™® can be calculated as follows:

action vertex The cost of an action vertex a € A’ is 1 plus the maximum of the
predecessor vertex costs.
® The cost of a variable vertex vis 0 if v € V°.
m Forallv € V', i > 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).
vertex set For a set of state variables v C V, the cost equals the most
expensive variable in v.
heuristic For a state s € S, h™(s) equals the cost of g.

variable vertex
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Admissibility

Is K™ admissible?

Yes. (trivial)
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h?% for Classical Planning

Let P = (V, A, s;,g) be a STRIPS planning problem and G = (V, A)
its rPG.

m h?¥(s) calculates the cost reaching g from s € S via adding the
costs of the actions’ preconditions. Implicit assumption: “subgoal
independence”.

= Formally, h® can be calculated as follows:

action vertex The cost of an action vertex a € A’ is c¢(a) plus the sum of the
predecessor vertex costs.

m The cost of a variable vertex vis 0 if v € V°.

m Forallv e V', i> 0, the cost of v equals the minimum cost of all
predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v C V, the cost equals the sum of
costs of the variables in v.
heuristic For a state s € S, h%(s) equals the cost of g. 4

variable vertex
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Admissibility

Is %% admissible? No.
Heuristic assumes subgoal independence, which is normally not given:

Vo A Vi Ax Vo

si;=0 g={d,e} h¥(s)=7 h*(s)=5
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Example — Exercise!

Calculate h2% for the Cranes in the Harbor domain.
Vo Aq V4 Ax Vo As V3 Ay Vy

[eonuap! [

ST

s; = {CrateAtLoc1, TruckAtLoc2} g = {CratelnTruck, TruckAtLoc2} @
ha%(s) =3 h*(s) =4 -

Chapter: Heuristics for (Non-Hierarchical) Planning Problems by Dr. Pascal Bercher

HFF
@000

hfF for Classical Planning
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Let P = (V, A, s;,g) be a STRIPS planning problem and G = (V, A)
its rPG.

= hfF calculates some (delete-relaxed) plan for P.
= Formally, hF is defined as follows:
m Compute rPG until the goals are reached.
m For making a set of state variables true (starting with the goals),
select a set of actions that achieve them.
m For each selected action, repeat the process for their
preconditions.
Tie-Breaking Always select an “easy” action first — easy meaning small
>_vepre(a) Min{/ | v is in fact layer i} value.
heuristic For a state s € S, hFF(s) equals the cost of the extracted plan
(selected actions).
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Example — Exercise!

Calculate hF for the Cranes in the Harbor domain.

A v, Vs As Vs

2
L)
T

[eanusp! jie

ST

s; = {CrateAtLoc1, TruckAtLoc2} g = {CratelnTruck, TruckAtLoc2} @
hF(s)) =3 h*(s) =4 oy
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Hardness of Solving P™ Optimally

Theorem
Computing ht is NP-complete.

Membership Proof:

m Each action needs to be applied at most once.

m Thus, the maximum required plan length (to achieve any goal
description) is bounded by b < |A|.

m Now, guess a sequence of b actions and verify in linear time whether
it's applicable.

m Return true or false (depending on whether all goals hold in the final
state).
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Admissibility

Is hFF admissible? No (except for the practice).

If the original planning problem P happens to be delete-free already, it
might (easily) happen that a suboptimal set of actions is selected.

Computing h' is NP-complete.
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Hardness of Solving P™ Optimally

Computing h' is NP-complete.

Hardness Proof: Reduction from CNF-SAT:
m Letp = {C1,...,Cn}, Cj = {gah,...,gojk},and V= {X1,...,Xm}.
—r — —

clauses literals variables
m For each boolean variable x; € V add two actions to A:
xi—T1 xi—L
Xi+— T [x—set Xi— L [xi—set

m For each positive p; = x; or negative p; = —x; add

X __I_ “in — T” CI_T or in —J_ u)(ji — J_” C_T

Cj =T Cj =T
mg= {x,-—setl 1< < m} U {Cj—T | 1 S] < n} P
m ( is satisfiable if and only if a plan of size n + m exists. @

Winter Term 2018/2019
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Literature so Far

Classical Heuristics, Literature

Heuristics h2% and planner HSP:

m Blai Bonet and Heéctor Geffner. “Planning as Heuristic Search: New Results”. In:
Proc. of the 5th Europ. Conf. on Planning: Recent Advances in Al Planning
(ECP 1999). Springer, 1999, pp. 360-372

m Patrik Haslum and Héctor Geffner. “Admissible Heuristics for Optimal Planning”.
In: Proc. of the 5th Int. Conf. on Artificial Intelligence Planning Systems (AIPS
2000). AAAI Press, 2000, pp. 140-149

Heuristics ™, A™ (not shown here), h?% (recap)

m Patrik Haslum and Héctor Geffner. “Admissible Heuristics for Optimal Planning”.
In: Proc. of the 5th Int. Conf. on Artificial Intelligence Planning Systems (AIPS
2000). AAAI Press, 2000, pp. 140-149

Heuristic hFF, planner FF, and relaxed planning graph:

m Jorg Hoffmann and Berhard Nebel. “The FF Planning System: Fast Plan
Generation Through Heuristic Search”. In: Journal of Artificial Intelligence
Research (JAIR) 14 (2001), pp. 253-302
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Literature so Far

Classical vs. POCL Heuristics

Reminder Classical Planning:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description (it might be
satisfied already). Instead, what do we have? — Flaws!

CrateAtLoct

TruckAtLoc2
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TruckAtLoc2 TruckAtLoc\/—\{ HoldCrate CratelnTruck
movelLeft ‘ﬁTruckAtLotk\)\JckAtLom load | “HoldCrate CratelnTruck
TruckAtLoc2 / ————,JruckAtLoc2

TruckAlloct moveFilght —TruckAtLoc
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Literature so Far

Classical vs. POCL Heuristics

Reminder Classical Planning:

Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description (it might be
satisfied already). Instead, what do we have? — Flaws!

CrateAtLoct

TruckAtLoc2

kALoot - TruckAtl oc2
3 moveRight | TruckatLoct
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Literature so Far

POCL Heuristics

So, how to compute heuristics for partial plans?

m Count all flaws.

m Count a subset of all flaws, e.g. the open preconditions — called
the OC heuristic (see Nguyen and Kambhampati).
m Via compilation:

m Translate each search node into a linear program (see Bylander).
m Translate each search node into a (new/altered) classical problem
and use standard classical heuristics (see Bercher et al.).

m Directly adapt heuristics for classical planning:

m FF heuristic — Relax heuristic (see Nguyen and Kambhampati).
= Add heuristic — Add heuristic for POCL planning (see Younes
and Simmons).
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ruckAtLoc2 TruckAtLoc1 o HoldCrate CratelnTruck
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Literature so Far

POCL Heuristics, Literature

Nguyen and Kambhampati XuanLong Nguyen and Subbarao Kambhampati. “Reviving Partial
Order Planning”. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001). Morgan Kaufmann, 2001, pp. 459-466

Bercher et al. Pascal Bercher et al. “Using State-Based Planning Heuristics for
Partial-Order Causal-Link Planning”. In: Advances in Artificial
Intelligence, Proc. of the 36th German Conf. on Artificial Intelligence
(KI2013). Springer, 2013, pp. 1-12

Bylander Tom Bylander. “A Linear Programming Heuristic for Optimal Planning”.
In: Proc. of the 14th National Conf. on Atrtificial Intelligence (AAAI
1997). AAAI Press, 1997, pp. 694—699

Younes and Simmons Hakan L. S. Younes and Reid G. Simmons. “VHPOP: Versatile
heuristic partial order planner”. In: Journal of Artificial Intelligence
Research (JAIR) 20 (2003), pp. 405-430
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Literature so Far

Adapting Classical Heuristics for POCL Planning, cont'd

Using classical heuristics in POCL planning:
m Use the partial plan’s initial state as initial state of heuristic.
m Use the the open (i.e., unprotected) preconditions as goal state.

TruckAtLoc2 TruckAtLoct HoldCrate CratelnTruck
CrateAtLoc1 4‘“ moveleft ‘ —TruckAtLoc2 TruckAtLoc1 load —HoldCrate CratelnTruck
TruckAtLoc2 TeckALoct TruckAtLoc2 TruckAtLoc2
u .
moveRight | _truckatLoct

What problems could arise from doing this?

m This ignores negative effects and the causal links’ pruning power.
= We get unreachable goals: { TruckAtLoc1, TruckAtLoc2}
Why — or more precisely: when — does this work?

ST

m We only use heuristics that rely on (full) delete relaxation!
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Literature so Far

Adapting Classical Heuristics for POCL Planning

Again:
Classical planning heuristics take the current state as input and
estimate the goal distance to some goal state.

POCL Planning:

Here, there is neither a current state nor a goal description — but a
partial plan with flaws.

Now what?
= What do we do? How to bring both worlds together?

— Use the partial plan’s initial state as initial state of heuristic.
— Use the the open (i.e., unprotected) preconditions as goal state.
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Add Heuristic for POCL Planning

Let (V, A, s;, g) be a STRIPS planning problem.

m Then, let h3%(s) be the classical Add heuristic estimating the
goal distance from some state s € S to the goals g.

(In contrast to the last section, we now made the goals g explicit
in the sub script.)

m Then, with h2%%, (P) we refer to the Add Heuristic for POCL
Planning that estimates the goal distance from some current
partial plan P to some solution plan. It is defined as h2%(s)),
where G is the set of open preconditions of P.
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Add Heuristic for POCL Planning, Example

At oc2 TruckAtLoc1
TruckAtloc2
JuHALoSt | moveRight | —fyckatLoct
For h2%, (P), we use:

m s, = {CrateAtLoc1, TruckAtLoc2}
m G = {TruckAtLoc1, TruckAtLoc2, HoldCrate}

CrateAtLoc1

TruckAtLoc2

Winter Term 2018/2019
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Add Heuristic for POCL Planning Reusing Actions

Let (V, A, s;, g) be a STRIPS planning problem.

= Then, let h3%(s) be the classical Add heuristic estimating the
goal distance from some state s € S to the goals g.
(In contrast to the last section, we now made the goals g explicit
in the sub script.)

= Then, with 3% "(P), P = (PS, <, CL), we refer to the Add
Heuristic for POCL Planning Reusing Actions that estimates the
goal distance from some current partial plan P to some solution
plan. It is defined as h3(s;), where G is a subset of open
preconditions of P, i.e., G = {v | (v, ps) is an open precondition
of P and there is no plan step ps’ € PS with v € add(ps’) such
that < U{(ps’, ps)} is a strict partial order}.
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I HoldCrate CratelnTruck
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Accounting for Positive Interactions

Estimating the goal distance to all open preconditions might be too

pessimistic:
TruckAtLoc2 TruckAtLoc1 HoldCrate CratelnTruck
moveLeft ‘ﬁTruckAtLocz TruckAtLoct load —HoldCrate CratelnTruck
TruckAtLoct TruckAtLoc2 o TruckAtloc2 |
ruckAtLoc p
moveR/ght —TruckAtLoc1

Here, the precondition TrackAtfLoc2 might be accomplished by using
the effect of moveRight.

CrateAtLoct

TruckAtLoc2

Another example: Consider a (large) “solution” plan in which (almost)
all causal links are missing. h2%%, (P) would be highly inaccurate.
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Relax Heuristic

The FF heuristic for POCL planning — called Relax heuristic or hf5q, —
transfers the ideas of h2%%, to the FF heuristic:

m It relies on a rPG. (This is not perfectly true, but for the sake of
simplicity we assume this here.)

m As goal state we consider the set of open preconditions

i add
—just as hip5, does.

m We than extract a plan from the rPG in the same way the FF
heuristic does. However, the cost of an action a, ¢(a) in that
relaxed solution plan is only accounted for if a does not occur in
the input plan P.
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Summary

= Many heuristics base upon the relaxed planning graph (or an
relaxed action model).

m h™# is admissible and can be computed in P.
® h? is inadmissible and can be computed in PP.

= hfF is inadmissible (in theory, but often admissible in practice)
and can be computed in P.

= h' is admissible and NP-complete to compute.
m All these heuristics take the current state as input and estimate
the goal distance to some goal state.

m But since they are delete-relaxed, they can be used for POCL
planning as well.
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