

AT Modelling ●○○○○	Theoretical Background	Sequential Classical Planning in SAT	Invariants 000000	∀-step ooooo	∃-step oooooooo	Summary
Problem Solving						
Idea: Prof	anning Problem	Transformer	problem		SAT Solver	
Chap	ter: Solving (Non-Hierarchica	al) Planning Problems via SAT by Gregor E	Behnke	Wi	nter Term 2018/2	019 3/43
SAT Modelling	Theoretical Background	Sequential Classical Planning in SAT	Invariants 000000	∀-step ooooo	∃-step oooooooo	Summary 00

SAT Solvers

SAT Solvers

- SAT solvers are programs that determine whether a satisfying valuation exists and if so output it.
- A lot of research in recent years (annual competitions since 2002).
- Usable OSes have minisat in their package manager.
- Standardised input format DIMACS:

SAT Modelling ○○○●○	Theoretical Background	Sequential Classical Planning in SAT	Invariants 000000	∀-step ooooo	∃-step 00000000	Summary 00
Modelling Exam	ple					
Colouring						

Definition

Given a graph G = (V, E) and a number k. Is there an assignment of k colours to the vertices of G, such that all adjacent vertices have different colours?

SAT Modelling Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step St 00000 Modelling Example

Colouring

Variables for choosing the colour of each node

colour^{*i*}_{*v*} where $v \in V$ and $i \in \{1, \ldots, k\}$

If a node has a colour, all adjacent nodes have a different colour

$$ext{colour}_{v}^{i}
ightarrow \neg ext{colour}_{w}^{i} \qquad orall (v,w) \in E$$
 $\neg ext{colour}_{v}^{i} \lor \neg ext{colour}_{w}^{i} \qquad orall (v,w) \in E$

Every node has a colour

$$\bigvee_{i=1}^k ext{colour}_v^i \qquad orall v \in V$$

Every node has at most one colour

$$\bigwedge_{i=1}^{k} \left[\operatorname{colour}_{v}^{i} \to \bigwedge_{j=1, i \neq j}^{k} \neg \operatorname{colour}_{v}^{j} \right] \qquad \forall v$$

 $\in V$

Definition

Given a graph G = (V, E) and a number k. Is there an assignment of k colours to the vertices of G, such that all adjacent vertices have different colours?

Given a planning problem \mathcal{P} . Is there a solution π of \mathcal{P} .

Theorem (Bylander'94)

PLANEX *is* **PSPACE**-complete.

Theorem (Bylander'94)

PLANEX with bounded plan length k is \mathbb{PSPACE} -complete.

 \mathbb{PSPACE} with \mathbb{NP} calculus?

Classical Planning via SAT

- Variables not affected by the executed action must stay the same.
 - \rightarrow Frame Problem!

$$F_{3} = \bigwedge_{v \in V} \left[(\neg v^{t} \land v^{t+1}) \to \bigvee_{a \in A \text{ with } v \in add(a)} a^{t+1} \right] \land$$
$$\bigwedge_{v \in V} \left[(v^{t} \land \neg v^{t+1}) \to \bigvee_{a \in A \text{ with } v \in del(a)} a^{t+1} \right]$$

Only one action at a time:

$$F_4 =$$
at-most-one $(\{a^t \mid a \in A\})$

$$\neg x_i \lor n_j \qquad \text{if } \frac{i}{2^j} \mod 2 = 1$$

$$\neg x_i \lor \neg n_j \qquad \text{if } \frac{i}{2^j} \mod 2 = 0$$

where *n* is the number of atoms, i.e., |X|

¹Frisch and Giannaros; SAT Encodings of the At-Most-k Constraint – Some Old, Some New, Some Fast, Some Slow: 2010

SAT Modelling	Theoretical Bad	ckground	Sequential C	lassical Planni	ng in SAT	Invariants 000000	∀-step ooooo	∃-step 00000000	Summary 00
Computi	ng Invarian	ts [Rinta	inen'98]						
Note: I eff $= a$	Here we consider $\operatorname{Add}(a)\cup \overline{\mathcal{A}}$	onsider $\{\neg v \mid v$	some a $e \in del(a \in V)$	action <i>a</i> a)} its e (ℓ ⊂ V	= (<i>pre</i> ffects (a	, <i>add</i> , <i>de</i> as a liter	e/) and al set).	denote w	rith
$U_{\langle pre,e}$	$_{_{ff} angle}(\mathcal{I})$ give that	es all pr hold a	operties	(positiv executio	e or ne n of an	gative s action a	tate val $a = \langle pr$	riables) re, eff	
U/pro a	$\mathcal{J}_{\mathcal{H}}(\mathcal{I}) = ($	$\{\ell \in V$	$\cup \neg V$	$\mathcal{I} \cup$ pre	$\mathbf{e} \models \ell$	$= (\{\neg \nu \mid \\ \overline{\{\neg \ell \mid } \} $	$\ell \in el$	$\{f\} \cup ef$	f
$F_{(pre,e)}$	$_{_{eff} angle}(\mathcal{I})$ is a afte	<i>filter</i> fo r the ex	r invaria ecution	, nts, retu of an ac	urning ti	hose that $= \langle pre, \rangle$	at hold <i>eff</i> >	<i>,</i>	
$F_{\langle pre,e}$	$_{ m eff}({\cal I})=\langle$	$ \begin{cases} \mathcal{I} & \text{if } \mathcal{I} \\ \{\ell_1 \lor i \end{cases} $	$\mathcal{I} \cup \textit{pre}$ $\ell_2 \in \mathcal{I}$	⊨⊥ar (¬ ℓ_1 ∉	nd other	wise: $\ell_2 \in U_{\langle}$	pre,eff angle	$\mathcal{I}))$ and	
		l		(¬ℓ₂ ∉	<i>∉ eff</i> or	$\ell_1 \in U_0$	$\langle pre, eff \rangle$	$(\mathcal{I}))\}$	
									0000000
Cha	apter: <i>Solving (Nor</i>	n-Hierarchica	I) Planning Pro	blems via SAT	by Gregor B	ehnke	Wi	inter Term 2018/2	019 26 / 43
Cha SAT Modelling 00000	apter: <i>Solving (Nor</i> Theoretical Baa	n-Hierarchica. ckground	l) Planning Pro	blems via SAT lassical Planni	by Gregor B	ehnke Invariants ○○○○○●	∀-step ooooo	inter Term 2018/2 ∃-step ○○○○○○○○	2019 26 / 43 Summary OO
Cha SAT Modelling occoo How to L	npter: Solving (Nor Theoretical Bad OOO Jse Invariar	n-Hierarchica ckground hts	l) Planning Pro	blems via SAT lassical Planni 0000	⁻by Gregor B	ehnke Invariants ○○○○○●	∀-step ooooo	inter Term 2018/2 ∃-step ○○○○○○○○○	0019 26 / 43 Summary OO
Cha SAT Modelling OOOOO How to L	npter: <i>Solving (Nor</i> Theoretical Bad 000 Jse Invariar	n-Hierarchica ckground hts	l) Planning Pro	blems via SAT	[∼] by Gregor B	ehnke Invariants 00000	∀-step ooooo	inter Term 2018/2 ∃-step ○○○○○○○○	0019 26 / 43
Cha SAT Modelling Occooc	npter: <i>Solving (Nor</i> Theoretical Bad OOO	n-Hierarchica ckground hts	l) Planning Pro	Iblems via SAT	by Gregor B	ehnke Invariants ⊙⊙⊙⊙⊙●	∀-step ooooo	inter Term 2018/2 ∃-step ○○○○○○○○	0019 26 / 43
Cha SAT Modelling Ocococ How to U	npter: <i>Solving (Nor</i> Theoretical Bad Ooo	n-Hierarchica ckground hts	l) Planning Pro	Idassical Planni	by Gregor B	ehnke Invariants 00000	∀-step ooooo	inter Term 2018/2 ∃-step cccccccc	0019 26 / 43
Cha SAT Modelling Ococoo How to U	Theoretical Bad	n-Hierarchica ckground nts Wha) Planning Pro	blems via SAT	by Gregor B	hnke hnke holds have the formula of	vvi vooooo	inter Term 2018/2 ∃-step ○○○○○○○○○	0019 26 / 43
Cha SAT Modelling Occoor	upter: Solving (Nor Theoretical Bad OOO	n-Hierarchica ckground hts Wha Ado) Planning Pro	with an ery time	invariar	ehnke Invariants 00000	vv ∀-step 00000	inter Term 2018/2 ∃-step ○○○○○○○○○	019 26 / 43 Summary OO
Cha SAT Modelling Ocooo How to U	npter: <i>Solving (Nor</i> Theoretical Bad Oco	n-Hierarchica ckground nts Wha) Planning Pro	with an ery time	invariar	ehnke Invariants 00000	vv v - step v -	inter Term 2018/2 ∃-step ocooooooo	019 26/43
Cha SAT Modelling Ocococ How to U	apter: <i>Solving (Nor</i> Theoretical Bad Jse Invariar	n-Hierarchica ckground nts Wha Add) Planning Pro	with an ery time	invariar	hnke hvariants 00000	vi ∀-step 00000 2? 2?	inter Term 2018/2 ∃-step ccccccccc	Summary

	Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step Summary ooo ooooooooooooooooooooooooooooooooo
Parallel	ans are (Still) Bad!
(R	Consider the following (single) planning problem:
	$\begin{array}{lll} drive(A,B) & load(B) & drive(B,C) & unload(C) \\ drive(F,D) & load(D) & drive(D,E) & unload(E) \end{array}$
	$\begin{array}{lll} \text{drive}(A,B) & \text{load}(B) & \text{unload}(C) \\ & \text{drive}(B,C) \\ \text{drive}(F,D) & \text{load}(D) & \text{unload}(E) \\ & \text{drive}(D,E) \end{array}$
Cl	r: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 34 / 4
AT Modelling	Theoretical Background Sequential Classical Planning in SAT Invariants V-step 3-step Summary
00000	
∃-step F	allelism
∃-step F	allelism
∃-step F	allelism
∃-step F	allelism Given a set of actions \mathcal{A} . We call them \exists -step executable if a inearisation exists that is executable and all executable inearisations lead to the same state.
∃-step F	allelism Given a set of actions <i>A</i> . We call them ∃-step executable if a inearisation exists that is executable and all executable inearisations lead to the same state. How difficult to determine? First part is NP-complete.
ooooo	Given a set of actions <i>A</i> . We call them ∃-step executable if a inearisation exists that is executable and all executable inearisations lead to the same state. How difficult to determine? First part is NP-complete. How to encode?
∃-step F	Given a set of actions <i>A</i> . We call them ∃-step executable if a inearisation exists that is executable and all executable inearisations lead to the same state. How difficult to determine? First part is NP-complete. How to encode? Results in the Kautz&Selman encoding

SAT Modelling Theoretical Bac	kground Sequential Classical Pla	anning in SAT Inva OC	ariants	∀-step ooooo	∃-step oooooooo	Summary ○●	
References							
Bylande	er'94 The Computational C	omplexity of Prop	positiona	I STRIPS	Planning.		
Kautz&Selma	n'92 Planning as Satisfiabi	lity.					
Kautz&Selma	n'96 Pushing the Envelope	Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search.					
Rintanen'98 A Planning Algorithm not based on Directional Sear							
Rintane	n'04 Evaluation Strategies	for Planning as S	Satisfiabi	lity.			
Rintanen,Heljanko,Niemel	ä'06 Planning as Satisfiabi	lity: Parallel Plan	ns and Al	gorithms	for Plan Sea	rch.	
Wehrle&Rintane	n'07 Planning as Satisfiabi	lity with Relaxed	∃-Step F	Plans.			
Mattmüller&Rintane	n'07 Planning for Tempora	lly Extended Goa	als as Pro	oposition	al Satisfiabilit	у.	
Rintanen	'10a Heuristic Planning wit	h SAT: Beyond L	Jninforme	ed Depth	-First Search		
Rintanen	10b Heuristics for Planning	g with SAT.					
Gocht&Baly	o'17 Accelerating SAT Bas	ed Planning with	Increme	ental SAT	Solving.		
Rintane	n'17 Temporal Planning wi	th Clock-Based S	SMT Enc	odings.			
Behnke&Biund	o'18 X and more Parallelis Trajectory Constraints	m. Integrating LT while Allowing for	L-Next ir	nto SAT-b nore Para	ased Plannin allelism.	g with	
Randey&Rintane	n'18 Planning for Partial O	bservability by S	AT and G	araph Co	nstraints.		

Chapter: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke

Winter Term 2018/2019 43 / 43