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Problem Solving

Idea: Problem Transformation

Planning Problem

Planner

Plan
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SAT

SAT

Definition (SAT)

Given a propositional formula F , decide whether F has a satisfying
valuation.

Definition (CNF-SAT)

Given a propositional formula F in conjunctive normal form, decide
whether F has a satisfying valuation.

A valuation is an assignment of decision variables to {⊤,⊥}.

CNF:
F =

∧
C∈C

∨
ℓ∈C

ℓ

(C is the set of clauses; C is a clause, a set of literals.)
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SAT Solvers

SAT Solvers

SAT solvers are programs that determine whether a satisfying
valuation exists and if so output it.

A lot of research in recent years
(annual competitions since 2002).

Usable OSes have minisat in their package manager.

Standardised input format DIMACS:

p cnf 5 3

1 -5 4 0

-1 5 3 4 0

-3 -4 0

≡

CNF with 5 vars and 3 clauses:
(v1 ∨ ¬v5 ∨ v4) ∧
(¬v1 ∨ v5 ∨ v3 ∨ v4) ∧
(¬v3 ∨ ¬v4)
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Modelling Example

Colouring

Definition

Given a graph G = (V ,E) and a number k .
Is there an assignment of k colours to the vertices of G, such that all
adjacent vertices have different colours?

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd
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Modelling Example

Colouring

Variables for choosing the colour of each node

colouri
v where v ∈ V and i ∈ {1, . . . , k}

If a node has a colour, all adjacent nodes have a different colour

colouri
v → ¬colouri

w ∀(v ,w) ∈ E

¬colouri
v ∨ ¬colouri

w ∀(v ,w) ∈ E

Every node has a colour
k∨

i=1

colouri
v ∀v ∈ V

Every node has at most one colour

k∧
i=1

colouri
v →

k∧
j=1,i ̸=j

¬colourj
v

 ∀v ∈ V
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Complexity

Computational Complexity

Definition (PLANEX)

Given a planning problem P .
Is there a solution π of P .

Theorem (Bylander’94)

PLANEX is PSPACE-complete.

Theorem (Bylander’94)

PLANEX with bounded plan length k is PSPACE-complete.

PSPACE with NP calculus?
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Bridging the Gap between NP and PSPACE

Transformation Idea

Bounded plan length assumes binary encoding of k .

What if we assume k in unary encoding?

PLANEX “becomes” NP-“complete”.
For full PLANEX: how to choose the plan length?

Theoretical limit: 2|V |.
Practical limit: usually smaller (sometimes polynomially bounded).

Start with a small k and increase until a solution is found.
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Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
k = 1

SAT problem

SAT Solver Solution

∅
Unsolvable

Chapter: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 10 / 43

SAT Modelling Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step Summary

Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
k = 2

SAT problem

SAT Solver Solution

∅
Unsolvable
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Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
k = 3

SAT problem

SAT Solver Solution

∅
Unsolvable
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Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer
k = . . .

SAT problem

SAT Solver Solution

∅
Unsolvable
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Bridging the Gap between NP and PSPACE

Bound Iteration

Planning Problem

Transformer

k = 2|V |

SAT problem

SAT Solver Solution

∅
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Classical Planning via SAT [Kautz&Selman’92]

sI g

s1 s2 s3 s4 s5 s6 s7 s8 s9sI = s0

a1 a2 a3 a4 a5 a6 a7 a8 a9

A (classical) plan is just a sequence of state transitions.

“Mechanics” is identical in all timesteps.

Just model one timestep and copy’n’paste.

Edge constraints!

Chapter: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 11 / 43

SAT Modelling Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step Summary

Decision Variables

sI g
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We only need two types of decision variables!

1 at
i – Action i is executed at time t .

2 v t
i – State variable i is true at time t .
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Overall Formula

sI g
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Constraints to check:
Correctly applying actions at each time step (τ ).
sI and g must be respected.

F =
k−1∧
t=0

τ(t) ∧
∧

vi∈sI

v0
i ∧

∧
vi∈V\sI

¬v0
i ∧

∧
vi∈g

vk
i here: k = 9
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Classical Planning via SAT

s s′
a

Constraints to check by τ(t):

F1 Preconditions must hold (in s).

F2 Effects must occur (in s′).

F3 Unaffected state variables stay unchanged.

F4 At most one action per timestep.

F5 At least one action per timestep. Necessary? No.
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Classical Planning via SAT

Preconditions must hold:

F1 =
∧
a∈A

at+1 →
∧

v∈pre(a)

v t


Effects must occur:

F2 =

∧
a∈A

at+1 →
∧

v∈add(a)

v t+1

 ∧

∧
a∈A

at+1 →
∧

v∈del(a)

¬v t+1
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Classical Planning via SAT

Variables not affected by the executed action must stay the same.

→ Frame Problem!

F3 =
∧
v∈V

(¬v t ∧ v t+1) →
∨

a∈A with v∈add(a)

at+1

∧

∧
v∈V

(v t ∧ ¬v t+1) →
∨

a∈A with v∈del(a)

at+1


Only one action at a time:

F4 = at-most-one({at | a ∈ A})
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At-most-one

At-most-one

Given a set of decision variables X = {x1, . . . , x|X |}. Find a set of
clauses that, if satisfied, will ensure that at most one x ∈ X is true.

Naive encoding: ∧
x1∈X

∧
x2∈X\{x1}

¬x1 ∨ ¬x2︸ ︷︷ ︸
(x1 ⇒ ¬x2) ∧
(x2 ⇒ ¬x1)
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At-most-one

At-most-one

Idea: Introduce new variables!

fi – from index i on all xi will be false

i.e. it is forbidden to use any xi after i

Sequential encoding:

|X |−1∧
i=1

¬xi ∨ fi︸ ︷︷ ︸
xi⇒fi

|X |−1∧
i=2

¬fi−1 ∨ fi︸ ︷︷ ︸
fi−1⇒fi

|X |∧
i=1

¬xi ∨ ¬fi−1︸ ︷︷ ︸
(xi ⇒ ¬fi−1) ∧
(fi−1 ⇒ ¬xi)
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At-most-one

At-most-one

Maybe this is a bit much ...

ni – bit i (0-index) of a ⌈log(|X |)⌉-digit binary number if one

Binary encoding:

¬xi ∨ nj if
i
2j mod 2 = 1

¬xi ∨ ¬nj if
i
2j mod 2 = 0
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At-most-one

Different AMO Implementations1

encoding #clauses #new variables

binomial n2 0
binary n log n log n
sequential 3n n
commander 7

2 n n
2

product 2(n + n
1

m+1 ) 2n
1
2

where n is the number of atoms, i.e., |X |

1Frisch and Giannaros; SAT Encodings of the At-Most-k Constraint – Some Old,
Some New, Some Fast, Some Slow; 2010
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At-most-one

Bound Iteration

Planning Problem

Transformer
k = 1k = 2k = 3k = . . .k = 2|V |

SAT problem

SAT Solver Solution

∅
Unsolvable
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At-most-one

Classical Planning via SAT

There are a lot of improvements to this formula.

Invariants.

∀-step semantics.

∃-step semantics.
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What are Invariants?

Is there anything we know about states in a planning problem?

Definition (Invariant)

An invariant I is a formula over the state variables such that for all
states s reachable from sI it holds s |= I.
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What are Invariants?

Predicates:

on(x , y) – x lies directly on y .

free(x) – x has no block above it.

Actions:

pickup(x) – pick up x , if it is free.

putdown(x , y) – put x on y , if y is
free (table is always free).

Are the following formulae invariants?

1 ∀b ∈ Block : (∃b′ ∈ Block : on(b′, b)) ∨ free(b) — No.

2 ∀b ∈ Block : on(b, table) — No.

3 ∀b, b′ ∈ Block : ¬on(b′, b) ∨ ¬on(b, b′) — Yes.
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Invariants are Difficult

How hard is verifying an invariant?
As hard as planning.

Also there are too many invariants.

Compute an approximation of all invariants of a fixed form.

Restrict to binary-or invariants:

ℓ1 ∨ ℓ2
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Computing Invariants [Rintanen’98]

Note: Here we consider some action a = (pre, add , del) and denote with
eff = add(a) ∪ {¬v | v ∈ del(a)} its effects (as a literal set).

¬V = {¬v | v ∈ V} (ℓ ∈ V ∪ ¬V denotes a literal.)

U⟨pre,eff ⟩(I) gives all properties (positive or negative state variables)

that hold after the execution of an action a = ⟨pre, eff ⟩

U⟨pre,eff ⟩(I) = ({ℓ ∈ V ∪ ¬V | I ∪ pre |= ℓ} \
≡({¬v |v∈add}∪del)︷ ︸︸ ︷
{¬ℓ | ℓ ∈ eff} ) ∪ eff

F⟨pre,eff ⟩(I) is a filter for invariants, returning those that hold

after the execution of an action a = ⟨pre, eff ⟩

F⟨pre,eff ⟩(I) =


I if I ∪ pre |= ⊥ and otherwise:

{ℓ1 ∨ ℓ2 ∈ I |
(
¬ℓ1 ̸∈ eff or ℓ2 ∈ U⟨pre,eff ⟩(I)

)
and(

¬ℓ2 ̸∈ eff or ℓ1 ∈ U⟨pre,eff ⟩(I)
)
}
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Computing Invariants [Rintanen’98], cont’d

Call RA(I) := Fa1(Fa2(· · · Fan(I) · · · )) with initial invariant

Iinit = {v ∨ ℓ | v ∈ sI , ℓ ∈ V ∪ ¬V} ∪ {¬v ∨ ℓ | v ̸∈ sI , ℓ ∈ V ∪ ¬V}
and arbitrary linearization of action set A, a1, . . . , an,

until I does not change anymore.

R stands for “reduce invariant set”.
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How to Use Invariants

What to do with an invariant ℓ1 ∨ ℓ2?

Add it to every timestep t as ℓt
1 ∨ ℓt

2.
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Linear Plans are Bad!

Consider the following (single) planning problem:

C B ö

A4

F4 E

D ö

drive(A,B), load(B), drive(B,C), unload(C), drive(F ,D), load(D), drive(D,E), unload(E)

drive(A,B) load(B) drive(B,C) unload(C)
drive(F ,D) load(D) drive(D,E) unload(E)
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∀-step [Kautz&Selman’96]

Allow parallel execution of actions.
But when?

Let A be some set of actions.

Parallel execution of A is safe, if all (∀) linearisations of A are
executable. (Note the similarity to POCL planning.)
Necessary conditions:

All actions are executable in the previous state as all could be the first.
No action can have a delete-effect that is a precondition of another
action, i.e., ∀a1 ̸= a2 ∈ A : del(a1) ∩ prec(a2) = ∅, as a1 can occur
before a2.

Sufficient conditions: Necessary conditions are already sufficient.
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Encoding ∀-step

Remove the at-most-one constraints and add:

at
1 → ¬at

2 ∀a1, a2 ∈ A with del(a1) ∩ pre(a2) ̸= ∅
→ quadratic effort.

Is this the best we can do? No!
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Encoding Interference

Idea 1: switch from a action-centric to a state variable-centric view.
For every v ∈ V : if v ∈ add(a1) and v ∈ del(a2) add at

1 → ¬at
2

Idea 2: if one action with v ∈ del(a2) is forbidden, so are all others.
Idea 3: express this with additional variables!
The only problem is that an operation must not disable itself.

Arrange the actions with v ∈ pre(a) ∪ del(a) as a sequence S.

a1 a2 a3 a4 a5 a6 a7 a8 a9

E E E E E E
R R R R R R R

Ev – subsequence of S with v ∈ del(a) (Erasing)

Rv – subsequence of S with v ∈ pre(a) (Requiring)
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Chains

E E E E E E

R R R R R R R

a1 a2 a3 a4 a5 a6 a7 a8 a9

chain(S,E ,R) =∧
{ai → fj | i < j, ai ∈ E , aj ∈ R, {ai+1, . . . , aj−1} ∩ R = ∅} ∪

{fi → fj | i < j, {ai , aj} ∈ R, {ai+1, . . . , aj−1} ∩ R = ∅} ∪
{fi → ¬ai | v i ∈ R}

Two chains for every v ∈ V with fresh decision variables fi .
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Parallel Plans are (Still) Bad!

(Re-)Consider the following (single) planning problem:

C B ö

A4

F4 E

D ö

drive(A,B) load(B) drive(B,C) unload(C)
drive(F ,D) load(D) drive(D,E) unload(E)

drive(A,B) load(B) unload(C)
drive(B,C)

drive(F ,D) load(D) unload(E)
drive(D,E)
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What Kind of Parallelism do we Look for?

Absolutely safe parallelism.
All linearisations will always be executable and lead to the same
state.
∀-step.

(Sometimes) Safe parallelism.
At least one linearisation is executable and all executable
linearisations lead to the same state.
∃-step.
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∃-step Parallelism

Given a set of actions A. We call them ∃-step executable if a
linearisation exists that is executable and all executable
linearisations lead to the same state.

How difficult to determine? First part is NP-complete.

How to encode?

Results in the Kautz&Selman encoding ...

Chapter: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 36 / 43



SAT Modelling Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step Summary

Disabling Graph [Rintanen,Heljanko,Niemelä’06]

Approximate ∃-step semantics.

Analyse dependency between actions.
Similar to ∀-step:

If del(a) ∩ pre(a′) ̸= ∅, execute a′

before a.
Ignore if I ∪ pre(a) ∪ pre(a′) is
inconsistent.

a1

a2

a3

a4

a5
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∃-step [Rintanen,Heljanko,Niemelä’06]

Disabling Graph: a → b iff after
executing a it may not be possible to
execute b.

We can safely execute actions in reverse
topological order.

DG may not be acyclic.

Guess an order in every SCC and order
SCCs in reverse topological order.

If executed in parallel, we will always
execute actions in this order.

a1

a2

a3

a4

a5

a5, a4, a2, a3, a1

(a5), (a2, a3, a4), (a1)

Chapter: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 38 / 43

SAT Modelling Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step Summary

∃-step [Rintanen,Heljanko,Niemelä’06]

Disabling Graph: a → b iff after
executing a it may not be possible to
execute b.

We can safely execute actions in reverse
topological order.

DG may not be acyclic.

Guess an order in every SCC and order
SCCs in reverse topological order.

If executed in parallel, we will always
execute actions in this order.

a1

a2

a3

a4

a5

a5, a4, a2, a3, a1

(a5), (a2, a3, a4), (a1)

Chapter: Solving (Non-Hierarchical) Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 38 / 43

SAT Modelling Theoretical Background Sequential Classical Planning in SAT Invariants ∀-step ∃-step Summary

∃-step

What do we have to assert inside the propositional formula?

Parallel actions must result in a
consistent state. ✓
Parallel actions must be executable.

1 Actions must be applicable in the
previous state.

2 Reverse topological order of DG
ensures that later actions are still
applicable.

3 In SCCs there might be edges
opposite to the chosen order.

4 SCC can be treated separately.
5 If a2 is executed, then a4 must not.
6 Enforced via chaines.

a1

a2

a3

a4

a5

a5, a2, a3, a4, a1

(a5), (a2, a3, a4), (a1)
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Chains

We are given an SCC and an ordering of its vertices.

a1

a2

a5 a4

a3

π = (a5, a4, a3, a2, a1)

We want choose an acyclic subsequence of π.

Do not choose both ends of a forward edge.
Iterate over causes of these edges: v ∈ del(a1) ∩ pre(a2)

Ev – subsequence of π with v ∈ del(a) (Erasing)
Rv – subsequence of π with v ∈ pre(a) (Requiring)

Add chain(π,Ev ,Rv) – i.e. whenever an action erases v , we
forbid any requiring action after it in π.
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Further Improvements

Improvements for classical planning:

Extension to conditional effects [Rintanen,Heljanko,Niemelä’06].

Relaxed ∃-step [Wehrle&Rintanen’07].

Parallel SAT search [Rintanen’04] [Rintanen,Heljanko,Niemelä’06].

Specialised heuristics for SAT solvers [Rintanen’10a] [Rintanen’10b].

Improved memory management [Rintanen’12].

Incremental SAT-solving [Gocht&Balyo’17].

Extensions to non-classical planning:

LTL [Mattmüller&Rintanen’07] [Behnke&Biundo’18].

Partial Observability [Pandey&Rintanen’18].

Temporal Planning [Rintanen’17].

HTN Planning [Behnke,Höller,Biundo’17’18].

→ https://users.aalto.fi/~rintanj1/satplan.html
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Solving Problems via Translation into SAT:

Problem transformation is a general and important concept in
computer science.

SAT solvers are highly efficient and can be used to solve other
difficult problems via transformation, even those in higher
complexity classes with appropriate compilation.

Translating Classical planning into SAT:

Classical planning problems can be translated into SAT.
State-of-the-art improvements for this formula are based on:

State invariants.
Parallelism (∀-step, ∃-step).
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