Lecture Hierarchical Planning

Chapter:

Complexity Results for Plan Existence

Dr. Pascal Bercher

Institute of Artificial Intelligence,
Ulm University, Germany

Winter Term 2018/2019
(Compiled on: February 20, 2019)

ulm university universitat

Introduction
[Je)

What are Complexity Studies?

Complexity analysis studies the computational hardness of a decision
problem. In this lecture we study:

m The plan existence problem:
How hard is it to decide whether a problem P has a solution?

m The plan verification problem:
How hard is it to decide whether a given plan is actually a
solution?

va'oau;')"'ya
Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 3/43

Overview:

Introduction

Recap on Complexity Theory
Problem Classes

Plan Existence

Classical

HTN

TIHTN
m TIHTN, General Case
m TO-TIHTN

TO-HTN
Acyclic

~JoRo)~ Jeo ol

Regular
Tail-Recursive

NEEAA

Summary

i
Winter Term 2018/2019 2/43

Introduction
oce

Why are we Interested in Complexity Studies?

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Benefits of complexity studies:
= We know how to design algorithms:

m If a problem is undecidable, any terminating algorithm must be
wrong. Similarly: if a problem is NIP-complete, it is not a good idea
to design a decision procedure that runs in polynomial time.

m If the complexity of a problem is not known, at which runtime
should we aim? P? EXPTIMIE?

m We can identify special cases to be exploited by algorithms.
Example: heuristics! (Most of them exploit special cases that can
be decided in P.)

m Insights may also allow for compilation techniques.

m Last, but not-at-all least: they help understanding the problem!
(Understanding the problem should always be the first step.)

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 4/43

Recap
e0

Decidability, Undecidability

m A problem is decidable if there is an algorithm that, for each
possible input, terminates after a finite time with the correct
solution (i.e., frue or false).

m More formally, a set of natural numbers N C N is called decidable
if the function xn : N — {0, 1} can be computed, where:
(n) 1 ifneN
n) =
N 0 otherwise

m A problem is called undecidable if it is not decidable.

ST

AP0,

@

&

> &
Tares

Canao0"

Winter Term 2018/2019 5/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Problem Classes
°

Introduction

Overview

Which properties make the plan existence problem easier?

m Task insertion.

m Total order of all task networks.
m Recursion. Methods are:
m acyclic: no recursion.
m regular. only one compound task, which is the last one.
m {fail-recursive: arbitrary many compound tasks, only the last one is
recursive.

. R
unrestrictive recursive

-

N
regular tail-recursive

non-hierarchical

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

acyclic

ST

2

-
-
.

.

100,
é
> &
Cirgros

2 <
Canzo0"

7/43

Winter Term 2018/2019

Recap
oe

Semi-decidability

m A problem is semi-decidable if there is an algorithm that, for each
possible input, terminates eventually in case the correct answer is
yes. For instance, breadth-first-search usually serves as proof for
the semi-decidability.

m More formally, a set of natural numbers N C N is called
semi-decidable if the function xn : N — {undef, 1} can be
computed, where:

1 ifneN

n) =
xw(n) undef otherwise

— Corollary: Each decidable problem is semi-decidable.

= Note: semi-decidable problems (sets) are also called, among
others, recursively enumerable.

ST

AP0,
D 0,
S
3
E
2
R &
> &
TTes

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 6/43

Problem Classes
°

Totally Ordered Problems

Totally Ordered Problems, Problem Definition

An HTN planning problem P is called totally ordered if:

m All decomposition methods are totally ordered, i.e., for each
m € M, m= (c, tn), tnis a totally ordered task network.

m In case P uses an initial task network tn, rather than an initial
task cy, then tn; needs to be totally ordered as well.

SRS

s &

1500,
@
> &
Cirgros

2 S
Canz00"

8/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

Problem Classes
°

Regular Problems

Regular Problems, Problem Definition

m Atask network tn = (T, <, «) is called regular if

m at most one task in T is compound and
m if € T is a compound task, then it is the last task in tn, i.e., all
other tasks t' € T are ordered before t.

= A method (c, tn) is called regular if tn is regular.

m A planning problem is called regular if all methods are regular.
Note: In case the planning problem features an initial task network, a
problem is defined as regular if this network is regular, too. (Although

this restriction in not necessary with regard to the results that base
upon it.)

Winter Term 2018/2019

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Problem Classes
0®0000

Tail-Recursive Problems

Stratifications

A stratification is defined as follows:

m Aset < C C x Cis called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

AR
8(»
> &

Rnead

100,
@
>
Ciros

ST

2y S
Canz00"

9/43

iy
SRS
SN

2 <
Canzo0"

11/43

Problem Classes
[Yelelelele}

Tail-Recursive Problems

Tail-Recursive Problems, Informal Problem Definition

Informally, tail-recursive problems look as follows:

m limited recursion for all tasks in all methods

m non-last tasks have a more restricted recursion

Formally, the restrictions on recursion are defined in terms of so-called
stratifications.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

Problem Classes
008000

Tail-Recursive Problems
Stratifications: Example
(Non-)Examples for Stratifications:

20

(b) Stratification <.

GF

(a) Relation <,. (c) Stratification <.

n <= {(A> B)7 (87 A)7 (Ca D)7 (D7 C), (E7 B)? (Ea C)}
m <, is not a stratification, as it is not total

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

RO,
eo
> &

TTes

1300,
@
> &
Cizros

ST

2
R

10/43

SRS

s &

2 <
Canz00"

12/43

Problem Classes
000000

Tail-Recursive Problems
Stratifications: Example
(Non-)Examples for Stratifications:

S CED
(=D
(&) s
s (&)
(a) Relation <.

(b) Stratification <. (c) Stratification <.

<= {('43£3)7(£33'4)’ (C:a[))7([)7(3)a (E;7£3)7 (E;aC:)}
m<,= {(A’ B)a (Ba A)? (Cv D)’ (D7 C)a (E’ B)? (Ev C)? (Ca A)}*
m<;,= {(A7 B)a (Ba A)? (07 D)7 (D7 C)’ (E7 B)’ (E7 C)? (A’ C)}*

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

Problem Classes
000000

Tail-Recursive Problems

Stratifications: Example
(Non-)Examples for Stratifications:

(a) Relation <. (b) Stratification <. (c) Stratification <.
m Sy ={E}, S ={A,B}, and S; = {C, D} are strata
m <, and <. have a height of 3.

= If we add, e.g., an edge from E to D in <, i.e., the tuple (D, E),
then we only have a single stratification with height 1.

Winter Term 2018/2019

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

1

Sawan
12/43

4/43

Problem Classes
000000

Tail-Recursive Problems

Stratifications

A stratification is defined as follows:

m Aset < C C x Cis called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

m We call any inclusion-maximal subset of C a stratum of < if for all
X,y € Cboth (x,y) € <and (y, x) € < hold.

m The height of a stratification is the number of its strata.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

Problem Classes
00000e

Tail-Recursive Problems

Tail-Recursive Problems,Problem Definition

An HTN problem P is called tail-recursive if there is a stratification <
on the compound tasks C of P with the following property:

For all methods (c, (T, <, «)) € M holds:

m If there is a lasttask t € T that is compound (i.e., «(t) € C and
forall t' # t holds (¢, t) € <), then («(t),c) € <.
This means: the last task (if one exists) is at most as hard as the
decomposed task c.

m For any non-last task t € T with «(t) € C it holds («(t),c) € <
and (c,a(t)) ¢ <.
This means: any non-last task is easier (on a lower stratum) than
the decomposed task c.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

aN300
13/43

Do
15/43

Problem Classes
°

Problem Classes — Recap

Overview of Problem Classes

unrestrictive recursive

g . .
regular tail-recursive

acyclic

[non-hierarchical

- J

Notes:
= Do not confuse these problem classes with the language classes!

m Totally ordered problems are not shown because this restriction is
independent of all the ones depicted.

S

s00.,

e ",

> &
R

R

Winter Term 2018/2019 16/43

Classical
®00

Complexity of the General Case, Membership

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Theorem

Let P be a classical planning problem. Deciding whether P has a solution
is PSPACE-complete.

Proof, Membership:

= Maximal plan length that needs to be considered: 2" with n = | V/|.
m But we still only need polynomial space:

m For all states sy, sp, we want to know whether there is a plan from s;
to s,. This is done via asking:
m Is there a plan of length < n from s; to s’ and another from s’ to s,?
m (This reduces the hardness of the plan existence problem of length 2n
to two problems of length n each.)
m By iterating over all states, this requires polynomial space.

&

11D0.

@

> &
Cirares

2 <
Canzo0"

Winter Term 2018/2019 18/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Plan Existence
°

Problem Definition

m Decision problem: given a planning problem P, does P possess a
solution?

m For which problems do we already know their complexities?

m STRIPS with positive preconditions and effects: in P.

= as before, but k-length: NIP-complete.

m STRIPS with arbitrary preconditions and positive effects: NIP-complete.
m So, what's still missing?

m STRIPS with arbitrary effects. Will show: PSPPACE-complete.

m HTN planning under several restrictions (cf. problem classes).
m TIHTN planning.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 17/43

Classical
e o)

Complexity of the General Case, Hardness

Theorem

Let P be a classical planning problem. Deciding whether P has a solution
is PSPACE-complete.

Proof, Hardness:

= We encode a space-bounded Turing-machine into a STRIPS
problem.

m An operator checks the current state and tape content.
m The operators’ effects encode the successor state and tape changes.

= Number of operators is proportional to number of transitions times
tape squares.

iry
sy
>

1500,
@
>
Oirgros

2 <
Canz00"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 19/43

Classical
ooe

More Complexity Results

There are several further cases that can be studied, e.g.:

m Take the number of preconditions/effects into account (special
cases are often revealed via looking into the reductions).

m Perform a fixed parameter study.

m Perform partial relaxations by ignoring only some parts (e.g.,
delete effects) of the model.

m Take dependencies between actions into account (they can be
represented as graphs, the properties of which can be exploited).

T
Winter Term 2018/2019 20/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

HTN
(o] Yelole}

Undecidability Proof, cont'd — by Example

Proof idea by example:

non-terminal terminal production start
symbols symbols rules symbol
- - — = =~
LetG:(r:{Ha Q},Z:{a,b}, R , H)

and G = (I" = {D, F},¥' = {a, b}, R, D) be formal grammars.

Production rules R: ~ H +— aQb Q—aQ|bQlalb
Productionrules R: D+ aFD|ab Frsalb

HTN
@0000

Undecidability Proof

HTN planning is undedicable.

Proof:
Reduction from the language intersection problem of two context-free gram-
mars: given G and G, is there a word w in both languages L(G) N L(G')?

m Construct an HTN planning problem P that has a solution if and only if
the correct answer is yes.

m Translate the production rules to decomposition methods. That way
only words in L(G) and L(G') can be produced.

m Any solution fn contains the word w — encoded as action sequence —
twice: once produced by G and once produced by G'. The action
encodings ensure that no other task networks are executable.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 21/43

HTN
00000

Undecidability Proof, cont'd — by Example

Proof idea by example:

Contructed HTN problem with desired solution set:
C /F: initial state goal description
- ~ ~ T — —
P = (V7 {Ha Qa Da F}a {aa b7 a, b }7 57 Ma {Vturn:G}a tn/7 {Vturn:G})
V= {Vturn:G: Vturn:G’} U {Va: Vb}
0= {(aa ({Vturn:G}; {Vturn:G’a Va}» {Vturn:G}))7
(b7 ({V[UFHZG}7 {Vturn:G’a Vb}a {Vturn:G}))a
(a/7 ({Vturn:G’a Va}7 {Vturn:G}a {Vturn:G’a Va}))7
(b/: ({Vturn:G’a Vb}7 {Vturn:G}; {Vturn:G’a Vb}))}
M = M(G) U M(G') (translated production rules of G’ and G')

tn) = (&/t/_};v &a {(t7 H)> (t/> D)})

oa"’au;')oop
Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 23/43

HTN
000e0

Implications of Undecidability

So, HTN planning is undecidable... What does it mean?

m There cannot be a single algorithm that terminates with the correct
“answer” (i.e., a solution or fail, meaning that no solution exists) for
every possible problem.

= But are there any termination guarantees?

m That is: could it be that an algorithm never terminates independent of
whether there is a solution?

m In principle, according to the result shown so far: yes.

m However, for HTN planning: no! In case there is a solution we can
prove this eventually (we just never know when, i.e., whether this is
still going to happen).

m In other words: HTN planning is also(!) semi-decidable.
undecidable + semi-decidable is also called strictly semi-decidable.

ST

3
\;
s

D0,
jiéei:
>

Canao0"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 24/43

TIHTN
[Jolelo)

TIHTN, General Case

Influence of Task Insertion

tny (initial task network)
Recap: A task network is a
\Ldecomposilion:H . g s .
S| solution if .|t contains the same
word w twice.
decomposition:g/ {e‘composition: Q
e E R ER I
Iz (o]
decomposition: OJ,
e -] | ™
@]
decomposition: D’l
(BT)
(2]
decomposition: F’l
(EL e TR L
[O]
decomposition: D’l
e

Task network tng is a solution!

\l/decomposition: D

1300,
@
> &
Cirares

2 <
Canzo0"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 26/43

HTN
0000e

Semi-decidability Proof, cont'd

Theorem

HTN planning is semi-decidable.

Proof:

Reminder: We need to find a function xn : M — {undef, 1} with:
1 ifne N

xn(n) =

undef otherwise
(Here, M is the set of all HTN planning problems. N is its subset of
problems with a solution.)

Let n = P. Define xn as a BFS procedure (starting with the initial task
network) that returns 1 if and only if it discovered a solution to P (we
can also return undef in case it can prove it to be unsolvable). s

Nnow
SO,
"
5
b/
Ingras T

Canao0"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 25/43

TIHTN
[Tolelo)

TIHTN, General Case

Influence of Task Insertion

tny (initial task network)
Recap: A task network is a
Ldecomposilion:H . g s .
= solution if .|t contains the same
word w twice.
decc:mposition:‘?/ ge‘composi(ion: Q
e G| ™
(2] (o]
decomposition: OJ,
e G- | ™
@] Carla ()
decomposition: D’l 4 b
Crra-e) ™ =
(2]
decomposition: F’l
[EL e TR L
[O]
decomposition: D’l
"

Task network tng is no solution!

\l/decomposition: D

1500,
@
> &
Oirzros

2
Canzo0"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 26/43

TIHTN, General Case

Influence of Task Insertion

tny (initial task network)
\Ldecomposition: H
Gk | ™
decomposition:y {e‘composition: Q
e E L ER
1z (o]
decompositon: Q. Jdecomposiion: of
G- ™ RG] | ™
2]
decomposition: D’l ‘
[EL e R TR
(D]
decomposition: F’l task insertion: '
b.d b\
Cerlorlar(p]|™
[O]
decomposition: D’l v
R |™ _ |G ae)
(v (&)

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

TIHTN, General Case

Complexity of TIHTN Planning (Membership)

decomposition: H \L

EIE

GE-arE |

D

decomposition: O\I/

decomposition: O\I/

decomposition: D'\L

deco

decomposition: D’\L

CCeak(e] | ™

B e T

G e] | ™
[F-[0]

B

mposition: F’\L

e
o]

B

3

oE
g

tng

[)
&[]
[(=)
&)

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

TIHTN
@000

Recap: A task network is a
solution if it contains the same
word w twice.

Influence of task insertion:

CaCa(B] ™

ST

AP0,

@

&

> &
TTes

Canan0"

Winter Term 2018/2019 26/43

TIHTN
0®00

Theorem: TIHTN planning is in NEXPTIME

Idea: Restrict to acyclic decompositions, fill the rest with
task insertion, and verify.

Winter Term 2018/2019 27143

TIHTN, General Case

Influence of Task Insertion

tny (initial task network)
Ldecomposi(ion: H
Gk | ™
decamposition:‘y \'e‘composi(ion: Q
e EN L ER R
(2] (o]
decomposition: Q) Jdecompostion: of
CErrEE ™ B E T
2]
decomposition: D’l ‘
G- |™
(D]
decomposition: F’l task insertion: '
b.d,b
CaploPla(b]|™
-]
decomposition: D’J, v
GOl |™ _ | GErae)
(v (&)

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

TIHTN, General Case

Complexity of TIHTN Planning (Membership)

decomposition:

E-@-E |

T
[&l = B

decomposition: O\I'

decomposition: O\I/

decomposition: D’\I/

decol

decomposition: D'|

e ak(a] | ™

- ™

B e
@HFHr]

mposition: F’l

e
@E-r]

Gk ™
Y]

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

TIHTN
[le]ele}

Recap: A task network is a
solution if it contains the same
word w twice.

Observation:

In TIHTN planning, recursion is
not required.

ST

<xNDO,
B s,
S,
3
R
S
o &
TTos

a0

Winter Term 2018/2019 26/43

TIHTN
0®00

Theorem: TIHTN planning is in NEXPTIME

1. Step: Guess an acyclic decomposition:

The guessed decomposition tree describes at most

bl€l+1 decompositions.

(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(bl€I*1) whether the tree describes a correct
sequence of decompositions.

SRS

4ANDO.,,
B 0,
19
A
o S
> &
Oirzros

Winter Term 2018/2019

[e] Jele]

TIHTN, General Case

Complexity of TIHTN Planning (Membership)

tny

(=]

decomposition: H\L

decomposition: Q
e
decomposition: O\I/
@-ErE-E | ™ _ y)

Between each two actions, at most 2Vl actions need to

decomposition: D'\I/ . . g
inser hieve the next precondition.
eIl be inserted to achieve the next preconditio

@ FHE]
decomposition: F’\l/
-] | ™
@rEro]
decomposition: D'[
Crer(ak(e) (™
('))

Theorem: TIHTN planning is in NEXPTIME

@ |

[[

2. Step: Guess the actions and orderings to be inserted.

The (guessed) decomposition tree results into a task
network with at most < bl¢I*1 tasks.

(| V| = number of state variables)

Winter Term 2018/2019

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

[e]e]e] }

TIHTN, General Case

Implications of TIHTN Results

m Recursive models are equivalent to their non-recursive versions.

= None of the restrictions of the hierarchy matters for TIHTN
problems.

m TIHTN problems are less expressive than HTN problems (also cf.
language results).

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

1300,
@
>
Cirares

TIHTN

ST

ANRO,
go
> &

TTes

2 S
R

27143

TIHTN

iy
SRS
SN

2 <
Canzo0"

29/43

TIHTN
ooeo

TIHTN, General Case

Complexity of TIHTN Planning (Hardness)

m We can show that the previous bound is tight, i.e., TIHTN
planning is NEXPTIMIE-complete.

m To show hardness, we reduce a non-deterministic
(exponential)time-bounded Turing Machine to TIHTN planning.
m The proof is not provided in this lecture.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019

TIHTN
o

TO-TIHTN

Complexity of Totally Ordered TIHTN Planning

Theorem

Deciding whether a totally ordered TIHTN planning problem has a
solution is NEXPTIMIE-complete.

Proof, Membership:
Like before, but now, we need to guess less (the order is already
given).

Proof, Hardness:
The previous reduction already used a totally ordered TIHTN problem.

Winter Term 2018/2019

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

1500,

@

S

> &
Cigros

ST

RO,
eo
> &

TTes

2
R

28/43

SRS

2 <
Canz00"

30/43

TO-HTN
[Jele)

Complexity of Totally Ordered HTN Planning

Theorem

Deciding whether a totally ordered HTN planning problem has a
solution is EXPTIMIE-complete.

Intuition of Membership:

m Since plans are totally ordered, the only means of choosing the
right refinement for a given compound task is to produce a
suitable successor state.

}—>D—>.—/,>@—>C)—>.—>
P -7 - ’// : ’
L - 3
| —8—8 v N
% . - set of totally ordered
’ a—e—e . .
w primitive refinements

m There are only finitely many states that can be produced by the
refinements of a given compound task.

e
Winter Term 2018/2019 31/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

TO-HTN
ooe

Complexity of Totally Ordered HTN Planning (Hardness)

Deciding whether a totally ordered HTN planning problem has a
solution is EXPTIMIE-complete.

Proof, Hardness:

m We reduce from a 2-player game, which is EXPTIMIE-complete.
m The proof is not provided in this lecture.

E g
va'oau;')"&a
Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 33/43

TO-HTN
oeo

Complexity of Totally Ordered HTN Planning (Memberhsip)

Deciding whether a totally ordered HTN planning problem has a
solution is EXPTIMIE-complete.

Proof, Membership:

m Create atable 2V x (CUP) x 2" x {T, L, ?} to store:

m s,p, s, xwith x € {T, L} to express whether the primitive task p
is applicable in s creating a state satisfying s’.

m s,c, s, xwith x € {T, L} to express whether the compound task
¢ has a primitive refinement that is applicable in s creating a state
satisfying s’.

m Algorithm:

= Initialize the table (with all states and tasks) with value ?.

m Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement.

m Continue as long as at least one value ? is changed.

g H
) =
030"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 32/43

Acyclic
[1e)

Complexity of Acyclic HTN Planning (Membership)

Deciding whether an acyclic HTN planning problem has a solution is
NEXPTIMIE-complete.

Proof, Membership:
Do the same as for TIHTN problems, but without the task insertion part:

m Guess at most bl°I*! decompositions.
(C = set of compound tasks.)
(b = size of largest task network in the model.)

= Verify in O(b!CI+1) whether the decompositions can be applied in
sequence.

m Guess a linearization of the resulting task network.
= Verify applicability of resulting linearization in O(bICI+1).

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 34/43

Acyclic
oe

Complexity of Acyclic HTN Planning (Hardness)

Theorem

Deciding whether an acyclic HTN planning problem has a solution is
NEXPTIMIE-complete.

Proof, Hardness:

m Almost the same proof as to TIHTN planning: We reduce from a
non-deterministic turing machine, but now don’t allow task insertion.

m The proof is not provided in this lecture.

ST

D0,

@

&

0 &
Rnead

2 S
R

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 35/43

Regular
(<] 1o}

Recap and Example: HTN Progression Search

S s
A B CJB
C 3 C
O O

m Always progress tasks that are a possibly first task in the network.

m Here, these are the tasks Aand C.
m In case the chosen task to progress next is:
= primitive: apply it and progress the state.

iy
SRS
SN

100,
@
>
Cires

2 <
Canzo0"

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 37/43

Regular
€00

Complexity of Regular HTN Planning (Membership)

Theorem

Deciding whether a regular HTN planning problem has a solution is
PSPPACE-complete.

Proof, Membership:

= Rely on progression search.

m Until the compound task gets decomposed, all primitive tasks
have been “progressed away”.

m That way, the size of any task network is bounded by the size of
the largest task network in the model.

ST

RO
Go
> &

TTes

2 S
R

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 36/43

Regular
000

Recap and Example: HTN Progression Search

o—m
S S
g B
.A—>©B _t O .A—>©
C/// -)
R -
a

m Always progress tasks that are a possibly first task in the network.

m Here, these are the tasks A and C.
m In case the chosen task to progress next is:

= primitive: apply it and progress the state.
m compound: decompose it.

SRS

4ANDO.,,
B 0,
S
A
o S
> &
Oirgros

Winter Term 2018/2019

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Regular
000

Recap and Example: HTN Progression Search

—-
S A B | .- S A B
e | O A
CCJ: @) e
- = =0 .>(
-

m Always progress tasks that are a possibly first task in the network.

m Here, these are the tasks A and C.
m In case the chosen task to progress next is:

= primitive: apply it and progress the state.
m compound: decompose it.

T
Winter Term 2018/2019 37/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Tail-Recursive
@00

Complexity of Tail-Recursive HTN Planning (Membership)

Deciding whether a tail-recursive HTN planning problem has a solution
is EXPSPACE-complete.

Proof, Membership:

= Again, rely on progression search. Until the last task gets decom-
posed, all tasks ordered before it have been “progressed away”.

m Only the decomposition of a last task might let the current
stratification height unchanged.

m The decomposition of non-last tasks results into tasks of strictly
lower stratum.

m From this, we can calculate a progression bound — a maximal
size of task network created under progression.

= We get progression bound k - m", with k size of initial task
network, m size of the largest method, and h stratification height.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 39/43

Regular
ooe

Complexity of Regular HTN Planning (Hardness)

Theorem

Deciding whether a regular HTN planning problem has a solution is
PSPPACE-complete.

Proof, Hardness: Every STRIPS problem Pgsrgrips can be canonically
expressed by a totally ordered regular HTN problem P:

m The actions in Pgsrrips are primitive tasks in P.

m There is just one compound task X generating all possible action
sequences: for all p € P, we have a method mapping X to p
followed by X.

m For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description.

m The initial task is X.

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 38/43

Tail-Recursive
000

Recap and Example: Progression Search with Tail-Recursive HTNs

Consider the following initial task network of size 3:

. CJL.O
0 5 | 1 2 0 5
A (.
s S ' e
"""" [.)D:J -

m Using a method without last task increases the size,

m but “such decompositions” can only occur finitely often (limited by
the stratification height).

Winter Term 2018/2019 40/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Tail-Recursive
000

Recap and Example: Progression Search with Tail-Recursive HTNs

Consider the following initial task network of size 3:

3 0
0 N (- 0
e |7 w o0
C‘JE’// o 4) 2(1J>CJ4
N R (=
a’

m Using a method with last task increases the size,
m and a task with the same stratification height remains(!),

= but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

ST

<xNDO,
B s,

S,

3

R
3 S
o &

TTes

30

Winter Term 2018/2019 40/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Summary
°

Summary

m We studied the computational complexity of the plan existence
problem.
m It ranges from P up to undecidable:

= In HTN planning, structural properties have a large impact on the
computational complexity.

= In TIHTN planning, they do not: Task insertion eliminates the need
for recursion.

m Complexity results give raise to specialized algorithms, to
heuristics, and to translations to other problem classes.

ST

1300,

@

S

> &
Cirgres

2 <
Canzo0"

Winter Term 2018/2019 43/43

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher

Tail-Recursive
ooe

Complexity of Tail-Recursive HTN Planning (Hardness)

Deciding whether a tail-recursive HTN planning problem has a solution
is EXIPSPACE-complete.

Proof, Hardness:

m To show hardness, we reduce a (exponential)space-bounded
Turing Machine to HTN planning.

m The proof is not provided in this lecture.

ST

AR,
eo
> &

TTos

2
R

Chapter: Complexity Results for Plan Existence by Dr. Pascal Bercher Winter Term 2018/2019 42 /43

	Introduction
	Recap on Complexity Theory
	Problem Classes
	Introduction
	Totally Ordered Problems
	Regular Problems
	Tail-Recursive Problems
	Problem Classes – Recap

	Plan Existence
	Classical
	HTN
	TIHTN
	TIHTN, General Case
	TO-TIHTN

	TO-HTN
	Acyclic
	Regular
	Tail-Recursive
	Summary

