

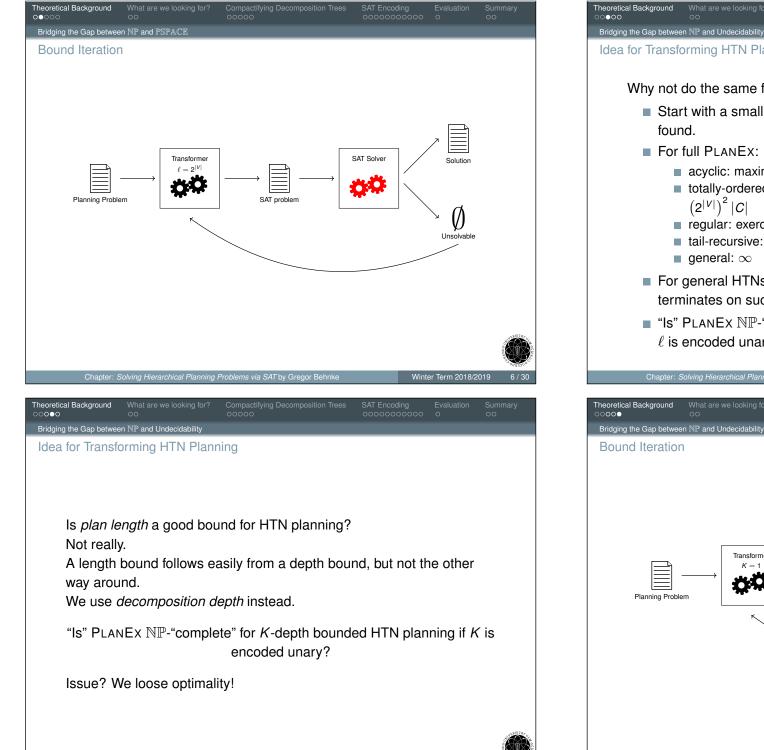
Solution

 \emptyset

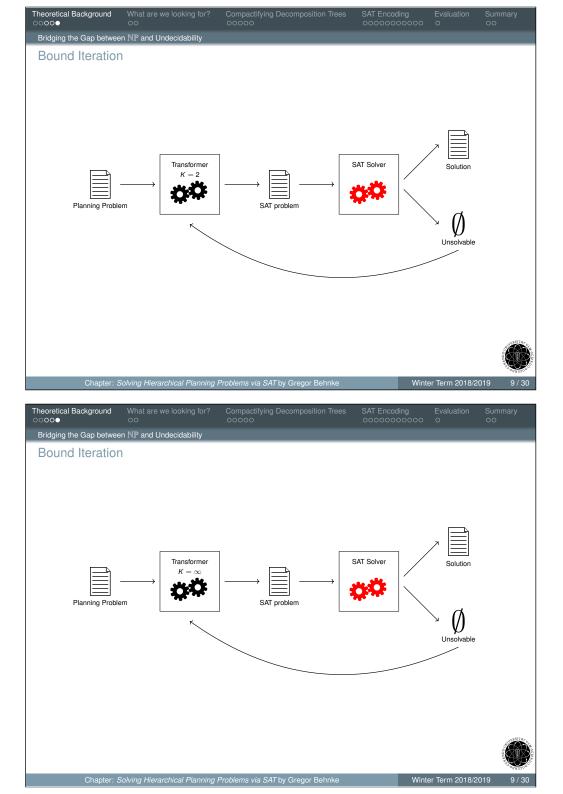
Unsolvable

Solution

V Unsolvable



Idea for Transforming HTN Planning Why not do the same for HTN planning? Start with a small length bound ℓ and increase until a solution is ■ For full PLANEX: upper bound depends on the problem! acyclic: maximum decomposable length totally-ordered: maximum decomposable length with depth $(2^{|V|})^2 |C|$ regular: exercise ■ tail-recursive: more complex, use stratification general: ∞ For general HTNs we can only construct algorithm that terminates on success but not (always) on failure. • "Is" PLANEX \mathbb{NP} -"complete" for ℓ -length bounded HTN planning if ℓ is encoded unary? Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 Bridging the Gap between \mathbb{NP} and Undecidability Transforme SAT Solver Solution K = 1103 SAT proble V Unsolvable

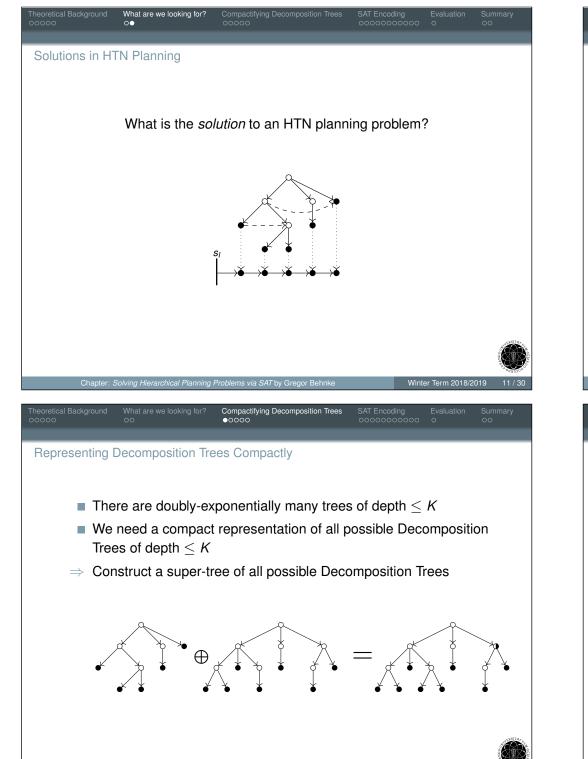


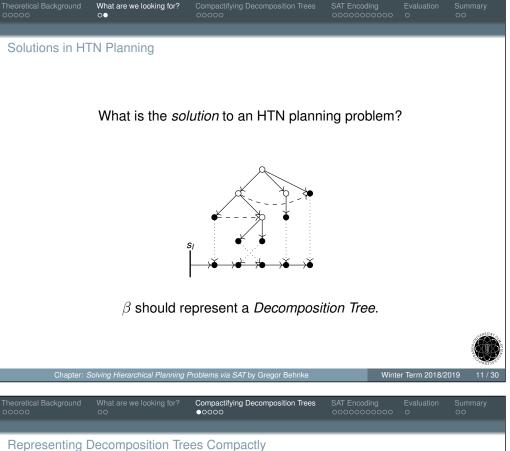
Theoretical Background ○○○○●	What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	Evaluation O	Summary 00
Bridging the Gap between	\mathbb{NP} and Undecidability				
Bound Iteration	$\xrightarrow{\text{Transformer}} K = \dots$	SAT problem	SAT Solver	Solution	
Chapter: Sc	olving Hierarchical Planning P	roblems via SAT by Gregor Behnke	Winte	er Term 2018/20	019 9/30
			0.17.5		_
Theoretical Background	What are we looking for? ●○	Compactifying Decomposition Trees			
Our Objective					

Given an HTN planning problem \mathcal{P} and a depth bound K, construct a CNF formula \mathcal{F} that is satisfiable iff \mathcal{P} has a solution whose decomposition depth is $\leq K$

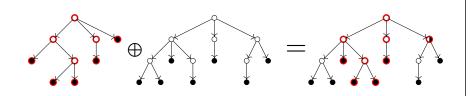
A satisfying valuation β of \mathcal{F} should represent a solution to \mathcal{P} .

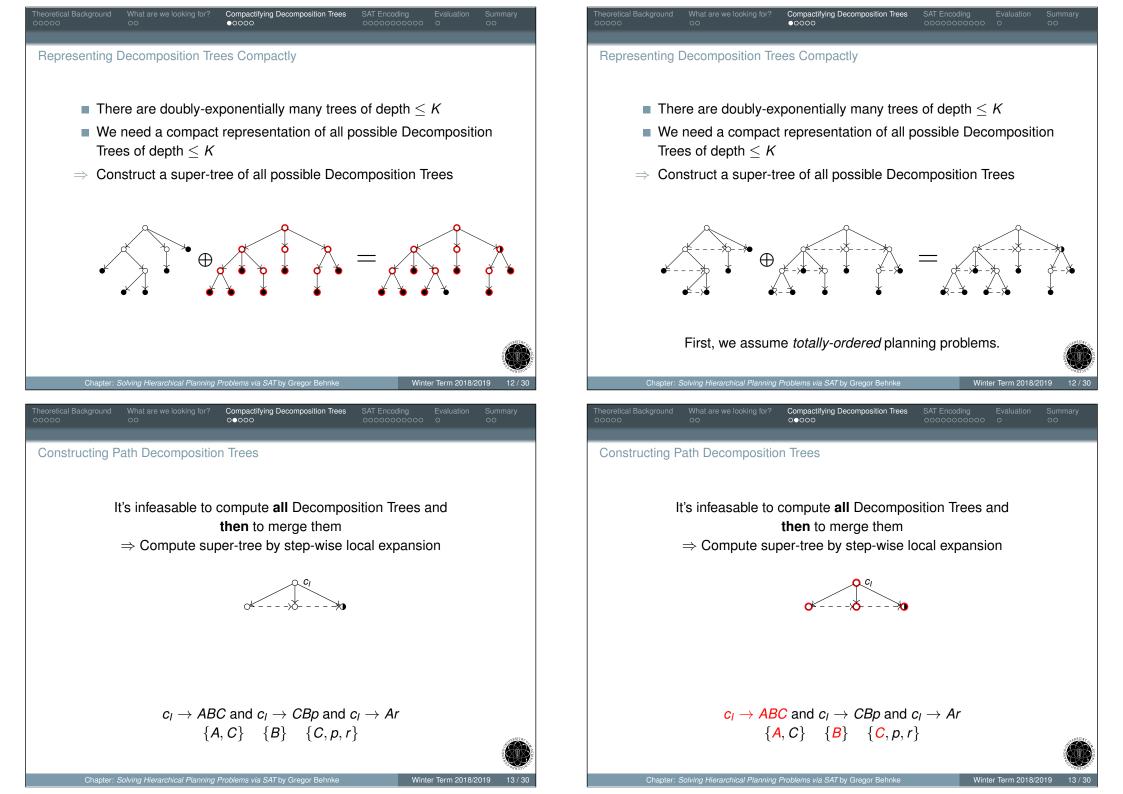
Winter Term 2018/2019 10

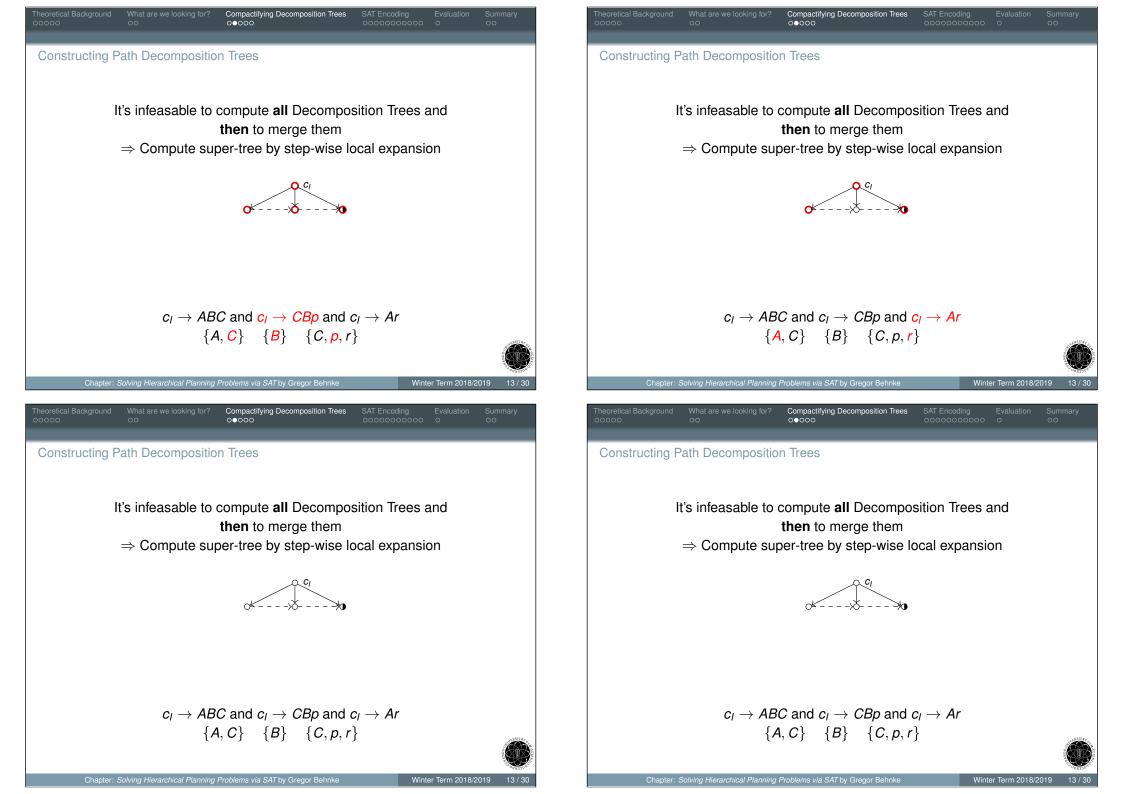


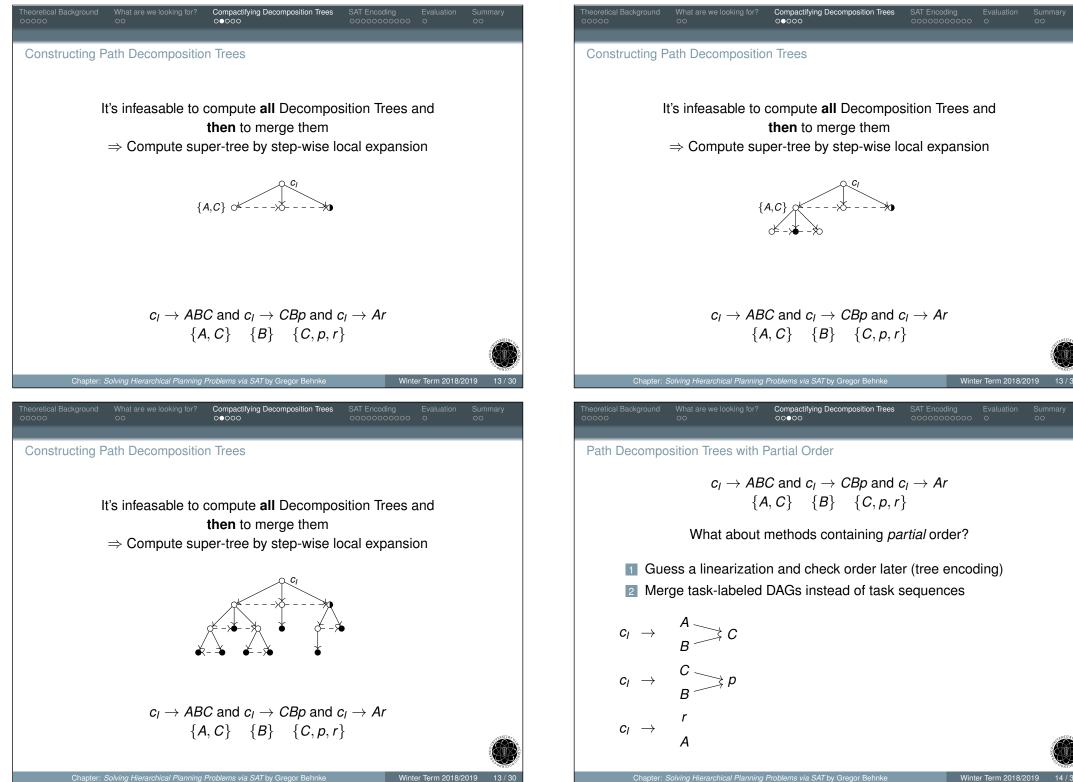


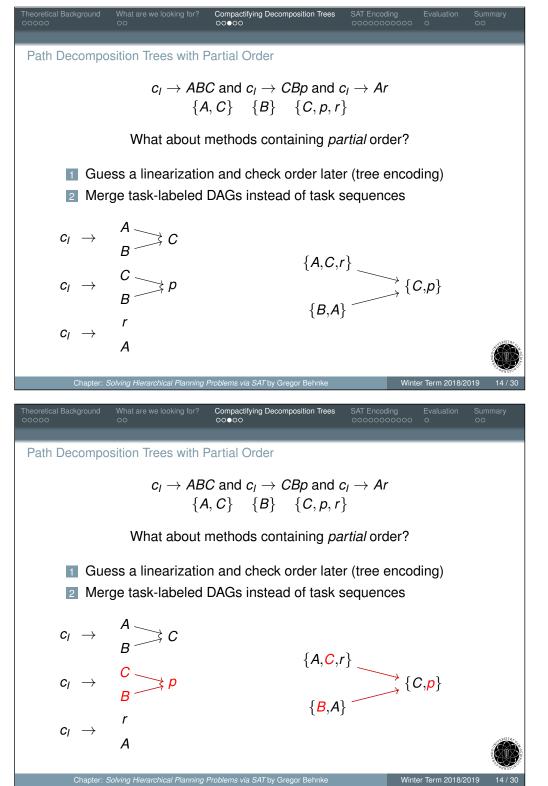
- There are doubly-exponentially many trees of depth $\leq K$
- We need a compact representation of all possible Decomposition Trees of depth $\leq K$
- \Rightarrow Construct a super-tree of all possible Decomposition Trees

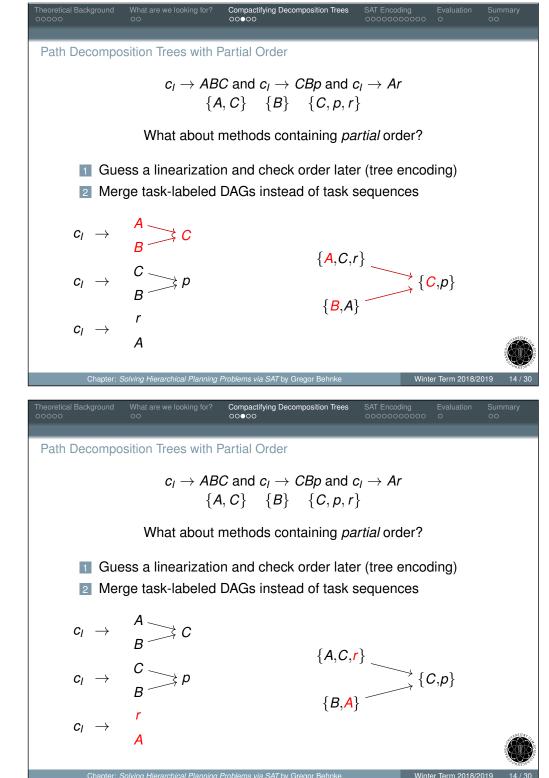




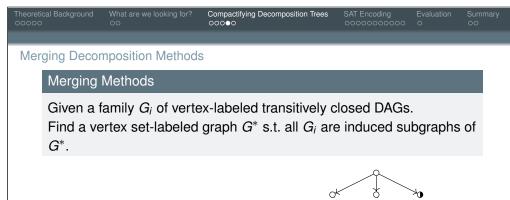


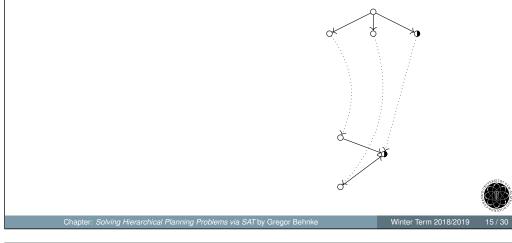






Winter Term 2018/2019





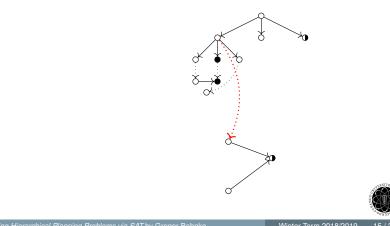
Merging Decomposition Methods

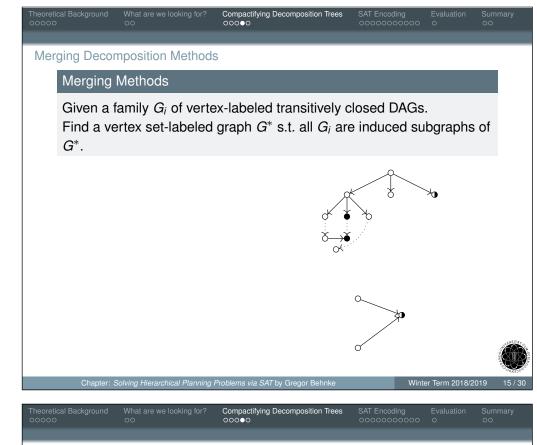
Merging Methods

Given a family G_i of vertex-labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

Compactifying Decomposition Trees

00000

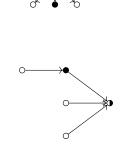




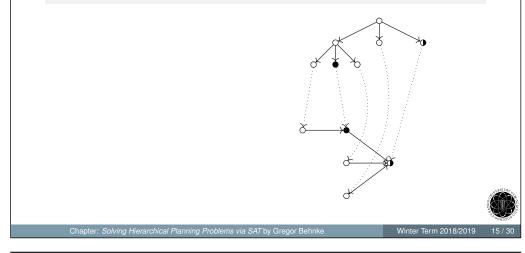
Merging Decomposition Methods

Merging Methods

Given a family G_i of vertex-labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .



Given a family G_i of vertex-labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .



Minimising the SOG

Merging Methods

Given a family G_i of-vertex labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

Compactifying Decomposition Trees

Difficult question: How does an optimal PDT look like?

- Fewer leafs?
- Fewer tasks per leaf?
- Fewer tasks per inner node?
- Fewer edges in the Solution Order Graph?
- \Rightarrow Optimising number of children does not lead to global minimum!

Theorem

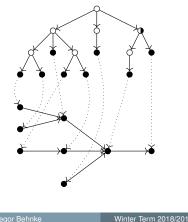
Even minimising the size of G^* is \mathbb{NP} -complete.

Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Encoding</t

Merging Methods

Given a family G_i of vertex-labeled transitively closed DAGs. Find a vertex set-labeled graph G^* s.t. all G_i are induced subgraphs of G^* .

- Resulting ordering of leafs is called Solution Order Graph S
- Any task network derivable via decomposition is an induced subgraph of S
- When checking executability, we only have to consider the ordering in S, which is fixed – independent of selected methods

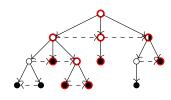


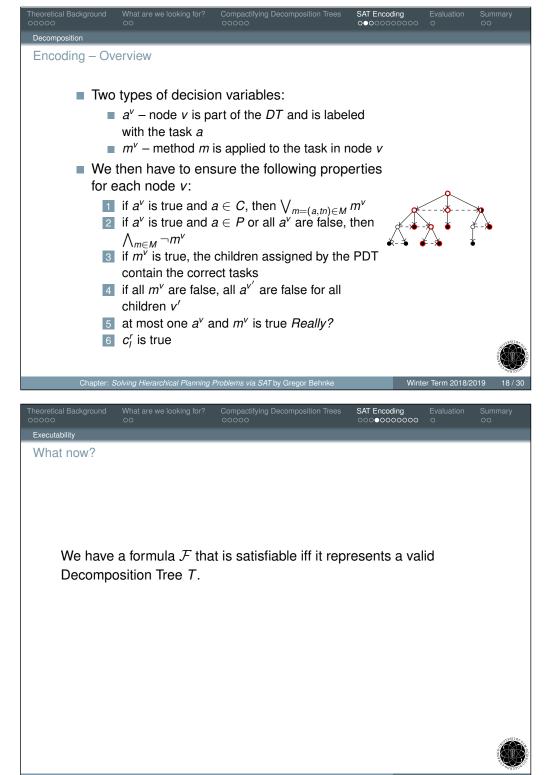
Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke

eoretical Background	What are we looking for?	Compactifying Decomposition Trees	SAT Encoding ●00000000000	
Decomposition				

What are PDTs Good for?

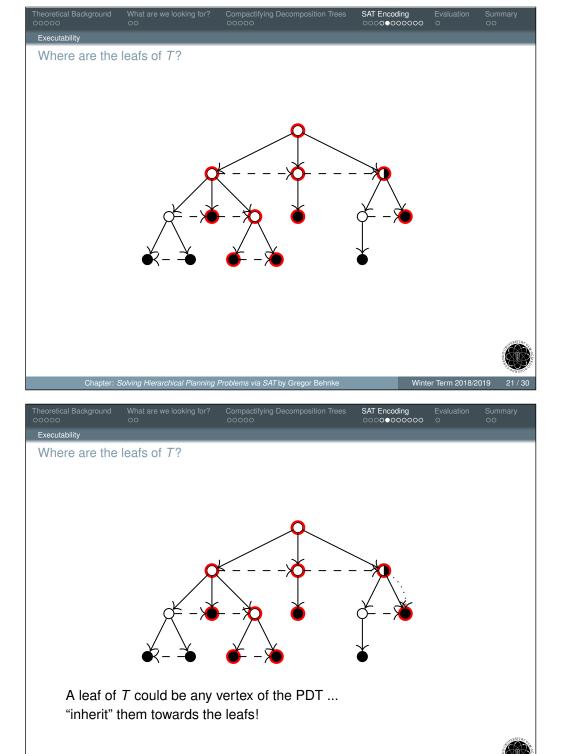
- A PDT contains every Decomposition Tree of height ≤ K as a rooted sub-tree
- Let the valuation β of F describe such a tree
- The formula then asserts that it is a valid DT
- Two types of decision variables:
 - a^v node v is part of the DT and is labeled with the task a
 - *m^v* method *m* is applied to the task in node *v*





00000 00 00000 0 000000 0 0000000 0	aluation Summary 00
Decomposition Encoding PDTs	
$\mathcal{F} = \mathcal{F}(r) \land c_{l}^{r} \land \mathcal{F}_{exe}$	(6)
$\mathcal{F}(v) = \mathbb{M}(\{t^{v} \mid t \in \alpha(v)\}) \land \mathbb{M}(\{m^{v} \mid M(\alpha(v) \cap C)\}) \land selectedMethod(v) \land applyMethod(v) \land nonePresent(v) \land inheritPrimitive(v)$) (5)
$selectedMethod(v) = \left[\bigwedge_{m \in M(\alpha(v) \cap C)} (m^v \to t^v)\right] \land \left[\bigwedge_{t \in \alpha(v) \cap C} \left(t^v \to \bigvee_{m \in M(t)} m^v\right)\right]$	(1&2&4)
$applyMethod(v) = \bigwedge_{m=(t,tn)\in M(\alpha(v))} \left[m^{v} \to \left(\bigwedge_{i=1}^{ tn } t_{in,i}^{v_{i}} \land \bigwedge_{v_{i}\in E(v)\setminus\{v_{1},,v_{ m }\}} \bigwedge_{t_{*}\in\alpha(v)} \neg t_{*}^{v_{i}} \right) \right]$	(3)
$nonePresent(v) = \left(\bigwedge_{t \in \alpha(v)} \neg t^{v}\right) \rightarrow \left(\bigwedge_{v_{i} \in E(v)} \bigwedge_{t \in C \cup P} \neg t^{v_{i}}\right) \land \bigwedge_{t \in \alpha(v) \cap P} \left(t^{v} \rightarrow \bigwedge_{v_{i} \in E(v)} \bigwedge_{t \in C \cup P} \neg t^{v_{i}}\right)$	$\left(4\&2\right)$ (4&2)
$\textit{inheritPrimitive}(v) = \bigwedge_{p \in \alpha(v) \cap P} \left[p^v \rightarrow \left(p^{v_1} \land \bigwedge_{v_i \in E(v) \setminus \{v_1\}} \bigwedge_{k \in \alpha(v)} \neg k^{v_i} \right) \right]$	
$\alpha(v)$ is the set of labels of each vertex of the PDT. E(v) are the children of v in the PDT. For every method $m = (c, tn)$, let v_i be the child to which the task $t_{tn,i}$ is assigned. $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A .	
Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Te	rm 2018/2019 19 / 30
Theoretical Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Events 00000 00 00000 00000000 0000000000 0000000000 Executability 000000000000000000000000000000000000	aluation Summary 00
What now?	
We have a formula \mathcal{F} that is satisfiable iff it represents a valid Decomposition Tree \mathcal{T} .	

To ensure that it is a solution, we have to check whether the leafs of T are executable in s_l in a valid linearization.



Theoretical Background	What are we looking for?	Compactifying Decomposition Trees	SAT Encoding	Evaluation O	Summary 00
Where are the	leafs of T?				
	~				
		\sim			
	g∕ - ≯	🏷 🍐	¢>•		
			\downarrow		
	● < `●	●>●	•		
A leaf of	T could be any v	vertex of the PDT			
Chapter: S	Solving Hierarchical Planning P	Problems via SAT by Gregor Behnke	Winte	er Term 2018/20	2 019 21 / 30
Theoretical Background	What are we looking for?	Compactifying Decomposition Trees	SAT Encoding		Summary 00
Executability					
Encoding PDT	S				
	T $T(z) \wedge z'$				
	$\mathcal{F} = \mathcal{F}(r) \wedge c_l^r$ $\mathcal{F}(v) = \mathbb{M}(\{t^v \mid t \in \mathcal{O}\})$	(u) $\land \mathbb{M}(\{m^{v} \mid M(\sigma(u) \cap C)\})$	A colocted Action	d(y)	(6)

$$\mathcal{F}(v) = \mathbb{M}(\{t^{v} \mid t \in \alpha(v)\}) \land \mathbb{M}(\{m^{v} \mid M(\alpha(v) \cap C)\}) \land selectedMethod(v) \land applyMethod(v) \land nonePresent(v)$$

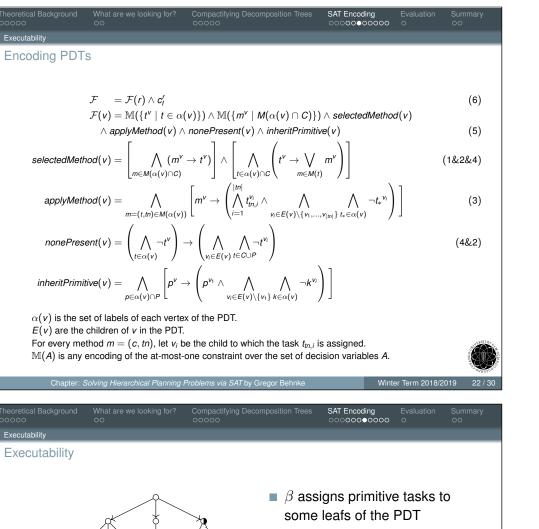
$$\begin{bmatrix} & & \\$$

$$selectedMethod(v) = \left[\bigwedge_{m \in M(\alpha(v) \cap C)} (m^{v} \to t^{v})\right] \land \left[\bigwedge_{t \in \alpha(v) \cap C} \left(t^{v} \to \bigvee_{m \in M(t)} m^{v}\right)\right]$$
(1&2&4)

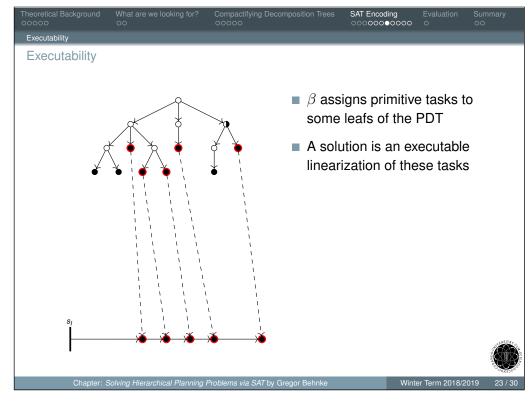
$$applyMethod(v) = \bigwedge_{m=(t,tn)\in M(\alpha(v))} \left[m^{v} \to \left(\bigwedge_{i=1}^{|tn|} t_{tn,i}^{v_{i}} \land \bigwedge_{v_{i}\in E(v)\setminus\{v_{1},\dots,v_{|m|}\}} \bigwedge_{t_{*}\in\alpha(v)} \neg t_{*}^{v_{i}} \right) \right]$$
(3)

$$nonePresent(v) = \left(\bigwedge_{t \in \alpha(v)} \neg t^{v}\right) \to \left(\bigwedge_{v_{l} \in E(v)} \bigwedge_{t \in \mathcal{O} \cup P} \neg t^{v_{l}}\right) \land \bigwedge_{t \in \alpha(v) \cap P} \left(t^{v} \to \bigwedge_{v_{l} \in E(v)} \bigwedge_{t \in \mathcal{O} \cup P} \neg t^{v_{l}}\right)$$
(4&2)

 $\alpha(v)$ is the set of labels of each vertex of the PDT. E(v) are the children of v in the PDT. For every method m = (c, tn), let v_i be the child to which the task $t_{tn,i}$ is assigned. $\mathbb{M}(A)$ is any encoding of the at-most-one constraint over the set of decision variables A.



- A solution linearization
 Linearization
 Linearization
 Compatible
 - A solution is an executable linearization of these tasks
 - Linearization has to be compatible with the ordering represented by the SOG

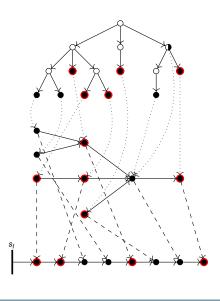


 Theoretical Background
 What are we looking for?
 Compactifying Decomposition Trees
 SAT Encoding
 Evaluation
 Summary

 0000
 00
 00000
 00000
 00
 00

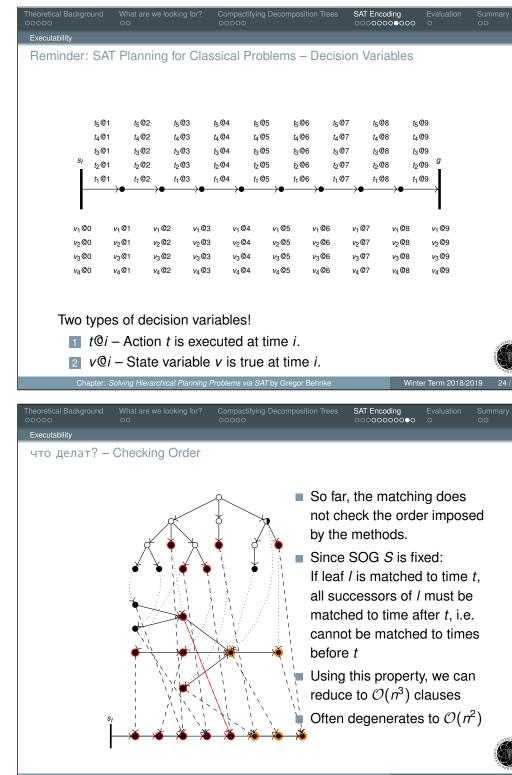
 Executability
 00000
 00000
 00
 00

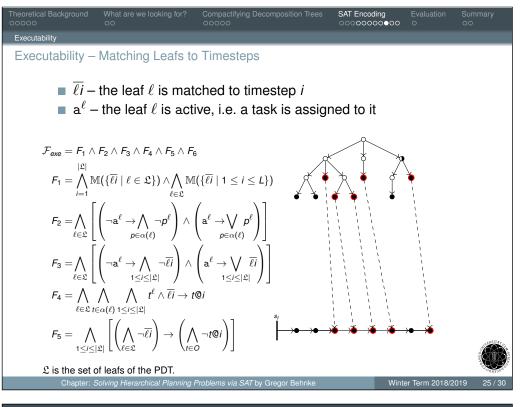
Executability



- β assigns primitive tasks to some leafs of the PDT
- A solution is an executable linearization of these tasks
- Linearization has to be compatible with the ordering represented by the SOG
- We represent a matching of the leafs to a sequence of timesteps and assert the correct order
- We can use any classical encoding of executability!

Winter Term 2018/2019 23 / 30





cal Background What are we looking for? Compactifying Decomposition Trees SAT Encoding Evaluation Su oc cococococo cococococo cococococo cococococo cococococo cococococo cocococococo cocococococo cococococococo co ability

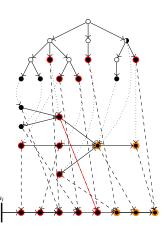
Executability

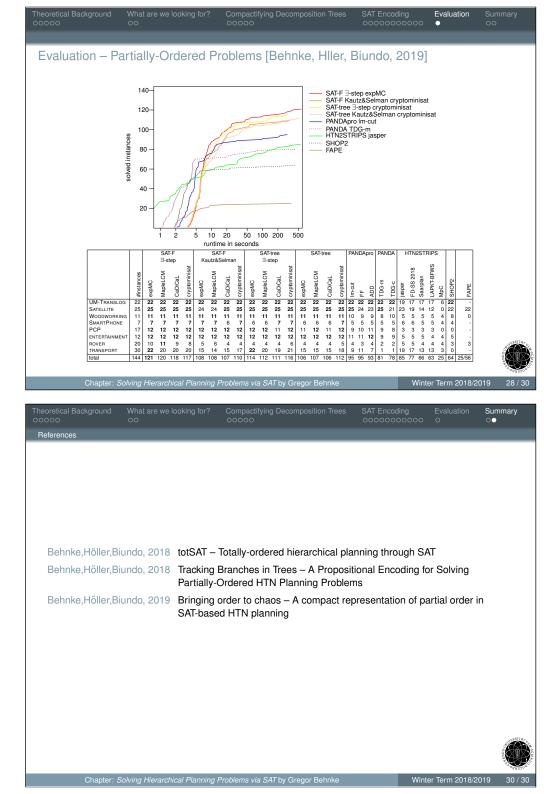
■ f_i^{ℓ} – matching the leaf ℓ to timestep *i* is forbidden (and implicitly also to any previous timestep)

$$\begin{split} F_6 &= \bigwedge_{\ell \in \mathfrak{L}} \bigwedge_{1 \leq i \leq |\mathfrak{L}|} f_1(\ell, i) \wedge f_2(\ell, i) \wedge f_3(\ell, i) \wedge f_4(\ell, i) \\ f_1(\ell, i) &= \text{if } i = 1 \text{ then } true \text{ else } \bigwedge_{\substack{\ell' \in \mathcal{N}_{\mathcal{S}}^+(\ell)}} \overline{\ell i} \to f_{i-1}^{\ell'} \\ f_2(\ell, i) &= \bigwedge_{\ell' \in \mathcal{N}_{\mathcal{S}}^+(\ell)} f_i^\ell \to f_i^{\ell'} \\ f_3(\ell, i) &= \text{if } i = 1 \text{ then } true \text{ else } f_i^\ell \to f_{i-1}^\ell \end{split}$$

 $f_4(\ell,i) = f_i^\ell \to \neg \overline{\ell}i$

$$\begin{split} \mathfrak{L} \text{ is the set of leafs of the PDT.} \\ \mathcal{S} \text{ is the Solution Order Graph.} \\ N_G^+(\ell) \text{ are the direct successors of vertex } \ell \text{ in the graph } G. \end{split}$$





Summary •c Even undecidable problems can be solved via a translation into SAT. We have introduced Path Decomposition Trees (PDTs) Solution Order Graphs (SOGs) An encoding for PDTs and SOGs into propositional logic Chapter: Solving Hierarchical Planning Problems via SAT by Gregor Behnke Winter Term 2018/2019 29/30