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Motivation

General Questions Covered

• What are important/interesting properties of algorithms?

• What does it mean that one algorithm is better than another?
• How does one prove such properties? E.g., how does one show:

• termination?
• that one algorithm is better than another?

→ Illustrated with AI planning and planning heuristics.
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Why AI Planning? What is it?

Informal Description

Patrik Haslum

Planning is the art and practice of thinking before acting.

Jörg Hoffmann

Selecting a goal-leading course of action based on a high-level
description of the world.

Just a bit more formally...

Planning is the reasoning process required to generate a plan – a
sequence of action that transforms a given state of a system into a
desired one.
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Why AI Planning? What is it?

Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png

License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html

Copyright: Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS
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Why AI Planning? What is it?

Games, e.g., Sliding Tile Puzzle, 15 Puzzle, n2-1 Puzzle
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Why AI Planning? What is it?

Games, e.g., Sliding Tile Puzzle, 15 Puzzle, n2-1 Puzzle

Initial State Goal State
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Why AI Planning? What is it?

Blocksworld
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Start Configuration
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Standard Planning Benchmark in the International Planning Competition (IPC) and every planning lecture.
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Why AI Planning? What is it?

Cranes in a Harbor
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Title: Lecture Slides for Automated Planning

Source: http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf

License: Attribution-NonCommercial-ShareAlike 2.0 Generic
(https: // creativecommons. org/ licenses/ by-nc-sa/ 2. 0/ legalcode )

Copyright |Author: Dana S. Nau
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Why AI Planning? What is it?

Greenhouse

Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading: � Malte Helmert and Hauke Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”.
In: Proc. of the 20th Int. Conf. on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,
pp. 234–237

� The IPC Scanalizer Domain in PDDL (see paper above).
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Problem Definition

What is Classical Planning?

We focus on the “base case” of AI planning: Classical Planning

• Discrete (no time).

• Deterministic.

• Fully observable.

• Single-agent.

More formally, a classical planning problem consists of:

• A finite set of (deterministic and discrete) actions.

• A (fully known) initial state.

• A set of (fully known) goal states.

A solution (or plan) is any sequence of actions transforming the initial
state into a goal state.

Pascal Bercher 8.39
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Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• V is a finite set of state variables (also called: facts or

propositions).
move
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move move

copyright: see slide 6

V = {CrateAtLoc1, HoldCrate, TruckAtLoc1, TruckAtLoc2, CrateInTruck}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).

Pascal Bercher 9.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• V is a finite set of state variables (also called: facts or

propositions).
• States are collections of state variables.
• We assume the closed world assumption, i.e., all variables not

mentioned in a state s do not hold in that state (in contrast to: it’s
not known whether they hold or not).

• S = 2V is called the state space.

• sI ∈ S is the initial state (complete state description).

• g ⊆ V is the goal description (encodes a set of goal states).
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Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• A is a finite set of actions. Each action a ∈ A is a tuple

(pre, add , del, c) ∈ 2V × 2V × 2V × R+
0 consisting of a

precondition, add and delete list, and action costs. (We often only
give a 3-tuple if there are no action costs.)
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take pre: {CrateAtLoc1}
add: {HoldCrate}
del: {CrateAtLoc1}

put pre: {HoldCrate}
add: {CrateAtLoc1}
del: {HoldCrate}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).
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Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• A is a finite set of actions. Each action a ∈ A is a tuple

(pre, add , del, c) ∈ 2V × 2V × 2V × R+
0 consisting of a

precondition, add and delete list, and action costs. (We often only
give a 3-tuple if there are no action costs.)
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moveLeft pre: {TruckAtLoc2}
add: {TruckAtLoc1}
del: {TruckAtLoc2}

moveRight pre: {TruckAtLoc1}
add: {TruckAtLoc2}
del: {TruckAtLoc1}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).
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Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• A is a finite set of actions. Each action a ∈ A is a tuple

(pre, add , del, c) ∈ 2V × 2V × 2V × R+
0 consisting of a

precondition, add and delete list, and action costs. (We often only
give a 3-tuple if there are no action costs.)
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load pre: {HoldCrate, TruckAtLoc1}
add: {CrateInTruck}
del: {HoldCrate}

unload pre: {CrateInTruck, TruckAtLoc1}
add: {HoldCrate}
del: {CrateInTruck}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).
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Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:

• sI ∈ S is the initial state (complete state description).

• g ⊆ V is the goal description (encodes a set of goal states).
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sI = {CrateAtLoc1, TruckAtLoc2}
g = {CrateInTruck, TruckAtLoc2}
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Problem Definition

Formalism, cont’d I

Action application:

• An action a ∈ A is called applicable (or executable) in a state
s ∈ S if and only if pre(a) ⊆ s. Often, this is given by a function:
τ(a, s)⇔ pre(a) ⊆ s.

• If τ(a, s) holds, its application results into the successor state
γ(a, s) = (s \ del(a)) ∪ add(a). γ : A× S → S is called the
state transition function.

→ Example: The action

take pre: {CrateAtLoc1}
add: {HoldCrate}
del: {CrateAtLoc1}

is applicable in state {CrateAtLoc1, TruckAtLoc2} resulting into
{TruckAtLoc2,HoldCrate}.

Pascal Bercher 10.39
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Problem Definition

Formalism, cont’d II

Solution:
• An action sequence ā consisting of 0 or more actions is called a

plan or solution to a classical planning problem if and only if:
• ā is applicable in sI .
• ā results into a goal state, i.e., γ(ā, sI) ⊇ g.
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Solution: take, moveLeft, load, moveRight
Pascal Bercher 11.39
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State Transition Systems

Example

Every classical planning problem is a compact representation of a
state transition system, i.e., of how states are transformed into each
other.
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State Transition Systems

State Transition System

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T , I,G), where

• S is a finite set of states.

• L is a finite set of transition labels.

• c : L→ R+
0 is a cost function.

• T ⊆ S × L× S is the transition relation.

• I ∈ S is the initial state.

• G ⊆ S is the set of goal states.

Pascal Bercher 13.39
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State Transition Systems

Size Increase of the State Space in Blocks World

• n blocks, 1 gripper.
• A single action takes a top-most block with the

gripper and
• puts it immediately onto some other top-most block
• or onto the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

Pascal Bercher 14.39
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State Transition Systems

Notes

• Planning problems (very compactly!) define state transition
systems (cf. Blocks World).

• To solve a planning problem, we construct the underlying state
transition system.

• Each node in the search space corresponds to a state and a
sequence of actions within the state transition system.

Pascal Bercher 15.39
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Recap: A∗ Search

Tree Search and Graph Search

(graphic modified) copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Pascal Bercher 16.39
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Recap: A∗ Search

Node Selection Strategy

• Tree and graph search can realize various different search
strategies such as
• Uninformed search (like Breadth or Depth First Search, BFS/DFS)
• Informed search (like A∗)

• We will present the progression planning algorithm as instance of
tree search.

• In A∗ search, each search node n get’s an f value associated:
• f (n) = g(n) + h(n) with
• g(n) are the costs of n, e.g., number of actions leading to n
• h(n) is the heuristic value computed for n. Heuristic means an

estimate of the distance from n to a nearest solution.

• Always select a node from the fringe with lowest f value!

→ That’s all we need to execute A∗ (but we skipped all the theory
due to lack of time)

Pascal Bercher 17.39

https://aima.cs.berkeley.edu/


Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example

How to find a(n optimal/good) way from Arad to Bucharest?

(graphic modified) copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig
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Recap: A∗ Search

Example, cont’d

Arad

366=0+366

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39
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Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).
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Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).
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Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).
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Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).
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Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).
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Progression Algorithm

Classical Planning as Instance of Tree Search

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Pascal Bercher 20.39
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Progression Algorithm

Example

Pascal Bercher 21.39
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Progression Algorithm

Example
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Progression Algorithm

Example
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Progression Algorithm

Example
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Progression Algorithm

Example
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Progression Algorithm

Example
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Analyzing the Planning Algorithm

Properties

What are we interested in? Which properties are of interest?

• Does it always terminate? If not, can we make it so?

• How can we make the algorithm more efficient?

• What’s the runtime?

• Is it correct, i.e., is every plan it returns an actual solution?

• Is it complete, i.e., does it always find a solution if one exists?

• Is it optimal, i.e, does it always find the best solution?

Pascal Bercher 22.39
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Does it always terminate?

• No, due to cycles in state-space.

Pascal Bercher 23.39
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

How can we make it always terminate?

• Ensure that every search node (state) is explored only once.

• Check the current plan length. Discard nodes of a certain length.
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
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1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

If we made it terminate (by storing visited nodes), what’s the runtime?

• Worst case: Until all |2V | = 2|V | states are generated.

→ Exponential time and space requirement.
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

How can we make an algorithm more efficient?

• By including (and studying properties of) heuristics. See later.

• Much more! → I offer research projects and PhD theses!
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Is it correct, i.e., is every plan it returns an actual solution?

• Yes, which can be proved trivially (show that the properties of
returned plans match the solution criteria).
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Is it complete, i.e., does it always find a solution if one exists?

• This depends on the node selection strategy. And on the fact
whether duplicates are considered again.
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Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Is it optimal, i.e, does it always find the best solution?

• Yes, if used with A∗ and an admissible heuristic (see AI
lecture/handbook).
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Introduction

Search-Guidance in Classical Planning

Problems of progression search:

• Often very huge branching factor (many actions are applicable to
a state).

• The search space size increases exponential with search depth
(cf. blocks world!)

• Thus, how we implement the node selection (line 3) has a huge
impact on efficiency! (We rather explore the exact path from the
initial state to a goal state rather than the entire search space.)

• Which state to explore next is decided by heuristics!
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Introduction

Heuristic Example: Sliding Tile Puzzle

2 1 4 8

9 7 11 10

6 5 15 3

13 14 12

Initial State

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Goal State

How far are we still away?

• Number of misplaced tiles: 13

• “Distance” (horizontal and vertical distance) per tile to goal
position→ Manhatten distance: 1

+ ... + (2+1) + ...

• Ignore tiles and solve optimally: 10
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Introduction

Heuristic Example: Sliding Tile Puzzle
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Introduction

Planning Heuristic Construction

How to come up with heuristics in a domain-independent way?

• Perform a problem relaxation.

• Solve the relaxed problem.

• Use the cost of the solution in the relaxed problem as
approximation (i.e., heuristic) of the actual problem.

Example Sliding Tile Puzzle:

• Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.

• Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.

• Ignore tiles. Some tiles (i.e., state variables) do not exist.
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Formal Definitions and Properties of Heuristics

Definitions

Definition (Heuristic)

Given a state transition system ts = (S, L, c, T , I,G), a heuristic h is a
function h : S → R+ ∪ {∞}.

Definition (Perfect Heuristic)

A heuristic h∗ : S → R+ is called perfect, if for all states s ∈ S h∗(s)
is the cost of the cheapest transition from s to a goal s′ ∈ G. Further,
h∗(s) =∞ for all states s for which no goal state can be reached.
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Formal Definitions and Properties of Heuristics

Definitions, cont’d I

Definition (Safe Heuristic)

A heuristic h is called safe, if for all states s ∈ S h(s) =∞ implies
h∗(s) =∞.

Definition (Goal-aware Heuristic)

A heuristic h is called goal-aware, if all goal states, i.e., sG ∈ G holds
h(sG) = 0.
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Formal Definitions and Properties of Heuristics

Definitions, cont’d II

Definition (Admissible Heuristics)

A heuristic h is called admissible, if for all states s ∈ S, it holds
h(s) ≤ h∗(s).

Definition (Dominance)

A heuristic h1 is said to dominate another heuristic h2 if for all states
s ∈ S, h1(s) ≥ h2(s).

Pascal Bercher 29.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Formal Definitions and Properties of Heuristics

Analysis of Properties

Why analyzing these properties?

• Because they tell us how “good” (well-informed) they are, and
whether one heuristic is better than another.

• The more accurate heuristic estimates, the smaller the explored
search space!

• Better-informed heuristics might be harder to compute, so smaller
search space does not imply better runtime.

• Every well-informed heuristic should be goal-aware.

• Admissibility guarantees optimality when used with tree search.

• If h1 and h2 are admissible, and h1 dominates h2, then h1 is more
accurate than h2 and should create smaller search spaces.

→ We will analyze these properties for heuristics in the assignments.
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Delete Relaxation

Simplifying the Planning Problem

One way to design a heuristic is to ignore delete effects:

Definition (Delete-free and -relaxed Planning Problems)

Let P = 〈V ,A, sI , g〉 be a STRIPS planning problem.

• It is called delete-free if for all a ∈ A, del(a) = ∅.
• Its delete-relaxation is the (delete-free) problem 〈V ,A′, sI , g〉,

where A′ = {(pre, add , ∅, c) | (pre, add , del, c) ∈ A}.
→ P+ refers to the delete-relaxation of P .

→ h+ refers to the perfect heuristic (h∗) for P+.
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Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→What’s true once stays true!

Consider Sokoban after: moving left,

down, right...

.
. $

$
@

.
. $

$
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position
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Delete Relaxation

Heuristic(s) based on Delete-Relaxation

Why delete-relaxation and how to exploit it?

• Solving delete-free planning problems can be done in polynomial
time!

• (Whereas solving arbitrary planning problems normally requires
exponential space and time.)
• Many heuristics are based on delete-relaxation:

• hmax (shown next!)
• hAdd (improves hmax by incorporating all preconditions)
• hFF (compute a plan for the delete-relaxation)
→ hAdd and hFF might be covered in the assignments.
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Delete Relaxation

Relaxed Planning Graph: Definition

Definition (Relaxed Planning Graph)

Let 〈V ,A, sI , g〉 be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph 〈V̄ , Ā〉 consisting of:
• V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

• Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

• V 0 = sI .

• Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

• V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

• Choose n = i , such that V i−1 = V i holds.

Questions:
• Why is “delete-free” in the problem description put in parentheses?
• Why is n chosen as is? Is there a bound on n?
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Delete Relaxation

Relaxed Planning Graph: Example from the Crane in the Harbors Domain

V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical
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Delete Relaxation

The hmax Heuristic

Let P = 〈V ,A, sI , g〉 be a classical planning problem and G = 〈V̄ , Ā〉
its rPG.

• hmax (s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
• Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex • The cost of a variable vertex v is 0 if v ∈ V 0.
• For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all

predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax (s) equals the cost of g.
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Delete Relaxation

The hmax Heuristic: Example

Calculate hmax for the Cranes in the Harbor domain.
V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

0

0

0

0

1

1

0

0

1

1

2

0

0

1

1

2

1

1

1

1

2

2

2

1

1

2

2

2

3

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}
hmax (sI) = 2 h∗(sI) = 4 h∗makespan(sI) = 3
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Delete Relaxation

The hmax Heuristic: Properties

Properties of hmax (proofs (trivial) given in lecture talk)

• Perfect?

→ No.

• Safe?

→ Yes.

• Goal-aware?

→ Yes.

• Admissible?

→ Yes.

• “Well-informed”?

→ Not at all. Almost all other heuristics dominate that one.
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Theoretical Research Methods ... Illustrated in AI Planning

In this lecture, we ...
• Analyzed (planning) search algorithms, i.e., we ...

• investigated runtime behavior,
• investigated space requirements,
• analyzed heuristics to improve performance, and
→ learned that heuristics base on special cases that are

computationally easier to compute (we aim at poly-computable
heuristics, whereas most planning problems – practically – require
exponential time and space)

• Possible outlook: computational investigation of (planning)
problems and heuristics. We normally investigate
• complexity of a problem (with/without relaxation)
• runtime of algorithms/heuristics
→ Literature and material: see Wattle! (soon)

→ Thank you for your attention!
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