
Theoretical Research Methods ... Illustrated in AI Planning

Pascal Bercher

Planning & Optimization
Research School of Computer Science

College of Engineering and Computer Science
the Australian National University

April 17, 2020

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Motivation

General Questions Covered

• What are important/interesting properties of algorithms?

• What does it mean that one algorithm is better than another?
• How does one prove such properties? E.g., how does one show:

• termination?
• that one algorithm is better than another?

→ Illustrated with AI planning and planning heuristics.

Pascal Bercher 1.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Informal Description

Patrik Haslum

Planning is the art and practice of thinking before acting.

Jörg Hoffmann

Selecting a goal-leading course of action based on a high-level
description of the world.

Just a bit more formally...

Planning is the reasoning process required to generate a plan – a
sequence of action that transforms a given state of a system into a
desired one.

Pascal Bercher 2.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png

License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html

Copyright: Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Pascal Bercher 3.39

https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png
https://www.gnu.org/licenses/gpl.html
https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Games, e.g., Sliding Tile Puzzle, 15 Puzzle, n2-1 Puzzle

2 1 4 8

9 7 11 10

6 5 15 3

13 14 12

Initial State

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Goal State

Pascal Bercher 4.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Games, e.g., Sliding Tile Puzzle, 15 Puzzle, n2-1 Puzzle

Initial State Goal State

Pascal Bercher 4.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Blocksworld

A

C

B

Start Configuration

C

B

A

Desired Configuration

Standard Planning Benchmark in the International Planning Competition (IPC) and every planning lecture.

Pascal Bercher 5.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Cranes in a Harbor

move

move

put take put take

move

move

unload

load

move move

Title: Lecture Slides for Automated Planning

Source: http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf

License: Attribution-NonCommercial-ShareAlike 2.0 Generic
(https: // creativecommons. org/ licenses/ by-nc-sa/ 2. 0/ legalcode)

Copyright |Author: Dana S. Nau

Pascal Bercher 6.39

http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf
https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Why AI Planning? What is it?

Greenhouse

Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading: � Malte Helmert and Hauke Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”.
In: Proc. of the 20th Int. Conf. on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,
pp. 234–237

� The IPC Scanalizer Domain in PDDL (see paper above).

Pascal Bercher 7.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

What is Classical Planning?

We focus on the “base case” of AI planning: Classical Planning

• Discrete (no time).

• Deterministic.

• Fully observable.

• Single-agent.

More formally, a classical planning problem consists of:

• A finite set of (deterministic and discrete) actions.

• A (fully known) initial state.

• A set of (fully known) goal states.

A solution (or plan) is any sequence of actions transforming the initial
state into a goal state.

Pascal Bercher 8.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• V is a finite set of state variables (also called: facts or

propositions).
move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

V = {CrateAtLoc1, HoldCrate, TruckAtLoc1, TruckAtLoc2, CrateInTruck}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).

Pascal Bercher 9.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• V is a finite set of state variables (also called: facts or

propositions).
• States are collections of state variables.
• We assume the closed world assumption, i.e., all variables not

mentioned in a state s do not hold in that state (in contrast to: it’s
not known whether they hold or not).

• S = 2V is called the state space.

• sI ∈ S is the initial state (complete state description).

• g ⊆ V is the goal description (encodes a set of goal states).

Pascal Bercher 9.39

https://www.lemnatec.com/

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• A is a finite set of actions. Each action a ∈ A is a tuple

(pre, add , del, c) ∈ 2V × 2V × 2V × R+
0 consisting of a

precondition, add and delete list, and action costs. (We often only
give a 3-tuple if there are no action costs.)

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

take pre: {CrateAtLoc1}
add: {HoldCrate}
del: {CrateAtLoc1}

put pre: {HoldCrate}
add: {CrateAtLoc1}
del: {HoldCrate}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).

Pascal Bercher 9.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• A is a finite set of actions. Each action a ∈ A is a tuple

(pre, add , del, c) ∈ 2V × 2V × 2V × R+
0 consisting of a

precondition, add and delete list, and action costs. (We often only
give a 3-tuple if there are no action costs.)

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

moveLeft pre: {TruckAtLoc2}
add: {TruckAtLoc1}
del: {TruckAtLoc2}

moveRight pre: {TruckAtLoc1}
add: {TruckAtLoc2}
del: {TruckAtLoc1}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).

Pascal Bercher 9.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
• A is a finite set of actions. Each action a ∈ A is a tuple

(pre, add , del, c) ∈ 2V × 2V × 2V × R+
0 consisting of a

precondition, add and delete list, and action costs. (We often only
give a 3-tuple if there are no action costs.)

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

load pre: {HoldCrate, TruckAtLoc1}
add: {CrateInTruck}
del: {HoldCrate}

unload pre: {CrateInTruck, TruckAtLoc1}
add: {HoldCrate}
del: {CrateInTruck}

• sI ∈ S is the initial state (complete state description).
• g ⊆ V is the goal description (encodes a set of goal states).

Pascal Bercher 9.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:

• sI ∈ S is the initial state (complete state description).

• g ⊆ V is the goal description (encodes a set of goal states).
move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

sI = {CrateAtLoc1, TruckAtLoc2}
g = {CrateInTruck, TruckAtLoc2}

Pascal Bercher 9.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism, cont’d I

Action application:

• An action a ∈ A is called applicable (or executable) in a state
s ∈ S if and only if pre(a) ⊆ s. Often, this is given by a function:
τ(a, s)⇔ pre(a) ⊆ s.

• If τ(a, s) holds, its application results into the successor state
γ(a, s) = (s \ del(a)) ∪ add(a). γ : A× S → S is called the
state transition function.

→ Example: The action

take pre: {CrateAtLoc1}
add: {HoldCrate}
del: {CrateAtLoc1}

is applicable in state {CrateAtLoc1, TruckAtLoc2} resulting into
{TruckAtLoc2,HoldCrate}.

Pascal Bercher 10.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Problem Definition

Formalism, cont’d II

Solution:
• An action sequence ā consisting of 0 or more actions is called a

plan or solution to a classical planning problem if and only if:
• ā is applicable in sI .
• ā results into a goal state, i.e., γ(ā, sI) ⊇ g.

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

Solution: take, moveLeft, load, moveRight
Pascal Bercher 11.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

State Transition Systems

Example

Every classical planning problem is a compact representation of a
state transition system, i.e., of how states are transformed into each
other.

move

move

put take put take

move

move

unload

load

move move

copyright: see slide 6

Pascal Bercher 12.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

State Transition Systems

State Transition System

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T , I,G), where

• S is a finite set of states.

• L is a finite set of transition labels.

• c : L→ R+
0 is a cost function.

• T ⊆ S × L× S is the transition relation.

• I ∈ S is the initial state.

• G ⊆ S is the set of goal states.

Pascal Bercher 13.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

State Transition Systems

Size Increase of the State Space in Blocks World

• n blocks, 1 gripper.
• A single action takes a top-most block with the

gripper and
• puts it immediately onto some other top-most block
• or onto the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

Pascal Bercher 14.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

State Transition Systems

Notes

• Planning problems (very compactly!) define state transition
systems (cf. Blocks World).

• To solve a planning problem, we construct the underlying state
transition system.

• Each node in the search space corresponds to a state and a
sequence of actions within the state transition system.

Pascal Bercher 15.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Tree Search and Graph Search

(graphic modified) copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Pascal Bercher 16.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Node Selection Strategy

• Tree and graph search can realize various different search
strategies such as
• Uninformed search (like Breadth or Depth First Search, BFS/DFS)
• Informed search (like A∗)

• We will present the progression planning algorithm as instance of
tree search.

• In A∗ search, each search node n get’s an f value associated:
• f (n) = g(n) + h(n) with
• g(n) are the costs of n, e.g., number of actions leading to n
• h(n) is the heuristic value computed for n. Heuristic means an

estimate of the distance from n to a nearest solution.

• Always select a node from the fringe with lowest f value!

→ That’s all we need to execute A∗ (but we skipped all the theory
due to lack of time)

Pascal Bercher 17.39

https://aima.cs.berkeley.edu/

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example

How to find a(n optimal/good) way from Arad to Bucharest?

(graphic modified) copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Pascal Bercher 18.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example, cont’d

Arad

366=0+366

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39

https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Recap: A∗ Search

Example, cont’d

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition)
Url: https://aima.cs.berkeley.edu/

Authors: Stuart Russel and Peter Norvig

Reminder:

• Always select a node with minimal f (n) = g(n) + h(n).

• Here, h is the linear distance (values see last slide).

Pascal Bercher 19.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Classical Planning as Instance of Tree Search

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Pascal Bercher 20.39

https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Example

Pascal Bercher 21.39

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 6 (graphic modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}
moveLeft

TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Example

Pascal Bercher 21.39

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 6 (graphic modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Example

Pascal Bercher 21.39

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 6 (graphic modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Example

Pascal Bercher 21.39

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 6 (graphic modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Example

Pascal Bercher 21.39

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 6 (graphic modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}

moveRight
TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Progression Algorithm

Example

Pascal Bercher 21.39

move

move

put take put take

move

move

unload

load

movemove

copyright: see slide 6 (graphic modified)

sI =

{
TruckAtLoc2,

CrateAtLoc1

}

take
HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc2,

HoldCrate

}

moveLeft
TruckAtLoc1

¬TruckAtLoc2
TruckAtLoc2

{
TruckAtLoc1,

CrateAtLoc1

}
take

HoldCrate

¬CrateAtLoc1
CrateAtLoc1

{
TruckAtLoc1,

HoldCrate

}

load
CrateInTruck

¬HoldCrate

HoldCrate

TruckAtLoc1

{
TruckAtLoc1,

CrateInTruck

}
moveRight

TruckAtLoc2

¬TruckAtLoc1
TruckAtLoc1

{
TruckAtLoc2,

CrateInTruck

}
⊇ g =

{
TruckAtLoc2,

CrateInTruck

}

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties

What are we interested in? Which properties are of interest?

• Does it always terminate? If not, can we make it so?

• How can we make the algorithm more efficient?

• What’s the runtime?

• Is it correct, i.e., is every plan it returns an actual solution?

• Is it complete, i.e., does it always find a solution if one exists?

• Is it optimal, i.e, does it always find the best solution?

Pascal Bercher 22.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Does it always terminate?

• No, due to cycles in state-space.

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

How can we make it always terminate?

• Ensure that every search node (state) is explored only once.

• Check the current plan length. Discard nodes of a certain length.

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

If we made it terminate (by storing visited nodes), what’s the runtime?

• Worst case: Until all |2V | = 2|V | states are generated.

→ Exponential time and space requirement.

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

How can we make an algorithm more efficient?

• By including (and studying properties of) heuristics. See later.

• Much more! → I offer research projects and PhD theses!

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Is it correct, i.e., is every plan it returns an actual solution?

• Yes, which can be proved trivially (show that the properties of
returned plans match the solution criteria).

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Is it complete, i.e., does it always find a solution if one exists?

• This depends on the node selection strategy. And on the fact
whether duplicates are considered again.

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Analyzing the Planning Algorithm

Properties: Proof Sketches

Algorithm: Progression State-based Search
Input: A classical planning problem 〈V ,A, sI , g〉
Output: A solution ā or fail if none exists

1 fringe← {(sI , ε)}
2 while fringe 6= ∅ do
3 (s, ā)← nodeSelectAndRemove(fringe)
4 if s ⊇ g then return ā
5 for a ∈ A do
6 if pre(a) ⊆ s then
7 s′ = (s \ del(a)) ∪ add(a)
8 fringe← fringe ∪ {(s′, ā ◦ a)}

9 return fail

Is it optimal, i.e, does it always find the best solution?

• Yes, if used with A∗ and an admissible heuristic (see AI
lecture/handbook).

Pascal Bercher 23.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Introduction

Search-Guidance in Classical Planning

Problems of progression search:

• Often very huge branching factor (many actions are applicable to
a state).

• The search space size increases exponential with search depth
(cf. blocks world!)

• Thus, how we implement the node selection (line 3) has a huge
impact on efficiency! (We rather explore the exact path from the
initial state to a goal state rather than the entire search space.)

• Which state to explore next is decided by heuristics!

Pascal Bercher 24.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Introduction

Heuristic Example: Sliding Tile Puzzle

2 1 4 8

9 7 11 10

6 5 15 3

13 14 12

Initial State

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Goal State

How far are we still away?

• Number of misplaced tiles: 13

• “Distance” (horizontal and vertical distance) per tile to goal
position→ Manhatten distance: 1

+ ... + (2+1) + ...

• Ignore tiles and solve optimally: 10

Pascal Bercher 25.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Introduction

Heuristic Example: Sliding Tile Puzzle

2 1 4 8

9 7 11 10

6 5 15 3

13 14 12

Initial State

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Goal State

How far are we still away?

• Number of misplaced tiles: 13

• “Distance” (horizontal and vertical distance) per tile to goal
position→ Manhatten distance: 1

+ ... + (2+1) + ...

• Ignore tiles and solve optimally: 10

Pascal Bercher 25.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Introduction

Heuristic Example: Sliding Tile Puzzle

2 1 4 8

9 7 11 10

6 5 15 3

13 14 12

Initial State

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Goal State

How far are we still away?

• Number of misplaced tiles: 13

• “Distance” (horizontal and vertical distance) per tile to goal
position→ Manhatten distance: 1 + ... + (2+1) + ...

• Ignore tiles and solve optimally: 10

Pascal Bercher 25.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Introduction

Heuristic Example: Sliding Tile Puzzle

4

9 10

5 15

13 12

Initial State

4

5

9 10 12

13 15

Goal State

How far are we still away?

• Number of misplaced tiles: 13

• “Distance” (horizontal and vertical distance) per tile to goal
position→ Manhatten distance: 1 + ... + (2+1) + ...

• Ignore tiles and solve optimally: 10

Pascal Bercher 25.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Introduction

Planning Heuristic Construction

How to come up with heuristics in a domain-independent way?

• Perform a problem relaxation.

• Solve the relaxed problem.

• Use the cost of the solution in the relaxed problem as
approximation (i.e., heuristic) of the actual problem.

Example Sliding Tile Puzzle:

• Number of misplaced tiles. Relaxation: We can always move tiles
to any location, i.e., ignore all preconditions.

• Manhatten distance. Relaxation: We can move a tile, even if the
neighbor tile is not free, i.e., ignore some preconditions.

• Ignore tiles. Some tiles (i.e., state variables) do not exist.

Pascal Bercher 26.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Formal Definitions and Properties of Heuristics

Definitions

Definition (Heuristic)

Given a state transition system ts = (S, L, c, T , I,G), a heuristic h is a
function h : S → R+ ∪ {∞}.

Definition (Perfect Heuristic)

A heuristic h∗ : S → R+ is called perfect, if for all states s ∈ S h∗(s)
is the cost of the cheapest transition from s to a goal s′ ∈ G. Further,
h∗(s) =∞ for all states s for which no goal state can be reached.

Pascal Bercher 27.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Formal Definitions and Properties of Heuristics

Definitions, cont’d I

Definition (Safe Heuristic)

A heuristic h is called safe, if for all states s ∈ S h(s) =∞ implies
h∗(s) =∞.

Definition (Goal-aware Heuristic)

A heuristic h is called goal-aware, if all goal states, i.e., sG ∈ G holds
h(sG) = 0.

Pascal Bercher 28.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Formal Definitions and Properties of Heuristics

Definitions, cont’d II

Definition (Admissible Heuristics)

A heuristic h is called admissible, if for all states s ∈ S, it holds
h(s) ≤ h∗(s).

Definition (Dominance)

A heuristic h1 is said to dominate another heuristic h2 if for all states
s ∈ S, h1(s) ≥ h2(s).

Pascal Bercher 29.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Formal Definitions and Properties of Heuristics

Analysis of Properties

Why analyzing these properties?

• Because they tell us how “good” (well-informed) they are, and
whether one heuristic is better than another.

• The more accurate heuristic estimates, the smaller the explored
search space!

• Better-informed heuristics might be harder to compute, so smaller
search space does not imply better runtime.

• Every well-informed heuristic should be goal-aware.

• Admissibility guarantees optimality when used with tree search.

• If h1 and h2 are admissible, and h1 dominates h2, then h1 is more
accurate than h2 and should create smaller search spaces.

→ We will analyze these properties for heuristics in the assignments.

Pascal Bercher 30.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Simplifying the Planning Problem

One way to design a heuristic is to ignore delete effects:

Definition (Delete-free and -relaxed Planning Problems)

Let P = 〈V ,A, sI , g〉 be a STRIPS planning problem.

• It is called delete-free if for all a ∈ A, del(a) = ∅.
• Its delete-relaxation is the (delete-free) problem 〈V ,A′, sI , g〉,

where A′ = {(pre, add , ∅, c) | (pre, add , del, c) ∈ A}.
→ P+ refers to the delete-relaxation of P .

→ h+ refers to the perfect heuristic (h∗) for P+.

Pascal Bercher 31.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→What’s true once stays true!

Consider Sokoban after: moving left,

down, right...

.
. $

$
@

.
. $

$
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Pascal Bercher 32.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→What’s true once stays true!

Consider Sokoban after: moving left, down,

right...

.
. $

$
@

.
. $

@ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Pascal Bercher 32.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Definitions, Delete Relaxation

What’s the core idea behind delete relaxation?
→What’s true once stays true!

Consider Sokoban after: moving left, down, right...

.
. $

$
@

.
. $

@ @$ $
@ @

These positions are
also free! (Since they
were free before or
have become so.)

@ = the figure $ = a crate . = a goal position

Pascal Bercher 32.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Heuristic(s) based on Delete-Relaxation

Why delete-relaxation and how to exploit it?

• Solving delete-free planning problems can be done in polynomial
time!

• (Whereas solving arbitrary planning problems normally requires
exponential space and time.)
• Many heuristics are based on delete-relaxation:

• hmax (shown next!)
• hAdd (improves hmax by incorporating all preconditions)
• hFF (compute a plan for the delete-relaxation)
→ hAdd and hFF might be covered in the assignments.

Pascal Bercher 33.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Relaxed Planning Graph: Definition

Definition (Relaxed Planning Graph)

Let 〈V ,A, sI , g〉 be a (delete-free) planning problem.

Then, a relaxed planning graph (rPG) is a graph 〈V̄ , Ā〉 consisting of:
• V̄ = V 0 . . .V n, V i ⊆ V , 0 ≤ i ≤ n, a sequence of variable layers.

• Ā = A1 . . .An, Ai ⊆ A, 1 ≤ i ≤ n, a sequence of action layers.

• V 0 = sI .

• Ai = {a ∈ A | pre(a) ⊆ V i−1}, 1 ≤ i ≤ n.

• V i = V i−1 ∪
⋃

a∈Ai add(a), 1 ≤ i ≤ n.

• Choose n = i , such that V i−1 = V i holds.

Questions:
• Why is “delete-free” in the problem description put in parentheses?
• Why is n chosen as is? Is there a bound on n?

Pascal Bercher 34.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

Relaxed Planning Graph: Example from the Crane in the Harbors Domain

V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

Pascal Bercher 35.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

The hmax Heuristic

Let P = 〈V ,A, sI , g〉 be a classical planning problem and G = 〈V̄ , Ā〉
its rPG.

• hmax (s) returns the first layer number in which all goal variables
hold. Meaning: Number of action layers required in P+ to make
the hardest variable in g true (starting in some s ∈ S, e.g., sI).
• Formally, hmax can be calculated as follows:

action vertex The cost of an action vertex a ∈ Ai is 1 plus the maximum of the
predecessor vertex costs.

variable vertex • The cost of a variable vertex v is 0 if v ∈ V 0.
• For all v ∈ V i , i > 0, the cost of v equals the minimum cost of all

predecessor vertices (these might be either action or variable
vertices).

vertex set For a set of state variables v̄ ⊆ V , the cost equals the most
expensive variable in v̄ .

heuristic For a state s ∈ S, hmax (s) equals the cost of g.

Pascal Bercher 36.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

The hmax Heuristic: Example

Calculate hmax for the Cranes in the Harbor domain.
V0 A1 V1 A2 V2 A3 V3 A4 V4

CL1

TL2

T

ML

CL1

TL2

HC

TL1

T

ML

MR

P

L

CL1

TL2

HC

TL1

CiT

T

ML

MR

P

L

U

CL1

TL2

HC

TL1

CiT

allidentical

0

0

0

0

1

1

0

0

1

1

2

0

0

1

1

2

1

1

1

1

2

2

2

1

1

2

2

2

3

sI = {CrateAtLoc1, TruckAtLoc2} g = {CrateInTruck , TruckAtLoc2}
hmax (sI) = 2 h∗(sI) = 4 h∗makespan(sI) = 3

Pascal Bercher 37.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Delete Relaxation

The hmax Heuristic: Properties

Properties of hmax (proofs (trivial) given in lecture talk)

• Perfect?

→ No.

• Safe?

→ Yes.

• Goal-aware?

→ Yes.

• Admissible?

→ Yes.

• “Well-informed”?

→ Not at all. Almost all other heuristics dominate that one.

Pascal Bercher 38.39

Introduction AI Planning Problems AI Search Planning as Search Heuristic Planning Summary

Theoretical Research Methods ... Illustrated in AI Planning

In this lecture, we ...
• Analyzed (planning) search algorithms, i.e., we ...

• investigated runtime behavior,
• investigated space requirements,
• analyzed heuristics to improve performance, and
→ learned that heuristics base on special cases that are

computationally easier to compute (we aim at poly-computable
heuristics, whereas most planning problems – practically – require
exponential time and space)

• Possible outlook: computational investigation of (planning)
problems and heuristics. We normally investigate
• complexity of a problem (with/without relaxation)
• runtime of algorithms/heuristics
→ Literature and material: see Wattle! (soon)

→ Thank you for your attention!

Pascal Bercher 39.39

	Introduction
	Motivation
	Why AI Planning? What is it?

	AI Planning Problems
	Problem Definition
	State Transition Systems

	AI Search
	Recap: A* Search

	Planning as Search
	Progression Algorithm
	Analyzing the Planning Algorithm

	Heuristic Planning
	Introduction
	Formal Definitions and Properties of Heuristics
	Delete Relaxation

	Summary

