

Planning is the reasoning process required to generate a plan - a sequence of action that transforms a given state of a system into a desired one.

roductio •0 Motivation General Questions Covered What are important/interesting properties of algorithms? • What does it mean that one algorithm is better than another? • How does one *prove* such properties? E.g., how does one show: termination? • that one algorithm is better than another? \rightarrow Illustrated with AI planning and planning heuristics. Australian National University Pascal Bercher 1.39 000000 Why AI Planning? What is it? Games, e.g., Solitaire View Control Klondike Help b \$ ₽ Hint New Restart Select Game Undo Move

tock left: 23 Redeals left: 2

Pascal Bercher

 Source:
 https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png

 License:
 GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html

 Copyright:
 Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Time: 00:00:44 Score: 0

2.39

ietralia

niversitv

Introduction	Al Planning Problems	Al Search	Planning as Search	Heuristic Planning	Summary O
Problem Definit	ion				
What is Clas	sical Planning?				

We focus on the "base case" of AI planning: Classical Planning

- Discrete (no time).
- Deterministic.
- · Fully observable.
- Single-agent.

More formally, a classical planning problem consists of:

- A finite set of (deterministic and discrete) actions.
- A (fully known) initial state.
- A set of (fully known) goal states.

A *solution* (or *plan*) is any sequence of actions transforming the initial state into a goal state.

Australian National	
liniversity	Pascal Bercher

Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

- *V* is a finite set of *state variables* (also called: *facts* or *propositions*).
 - States are collections of state variables.
 - We assume the *closed world assumption*, i.e., all variables not mentioned in a state *s* do not hold in that state (in contrast to: it's not known whether they hold or not).
 - $S = 2^{V}$ is called the *state space*.

Introduction	Al Planning Problems	Al Search 0000	Planning as Search	Heuristic Planning	Summar O
Problem Defi	inition				
Formalism	1				

A classical planning problem $\mathcal{P} = \langle V, A, s_I, g \rangle$ consists of:

 A is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del, c) ∈ 2^V × 2^V × 2^V × ℝ₀⁺ consisting of a precondition, add and delete list, and action costs. (We often only give a 3-tuple if there are no action costs.)

ntroduction Al Planning Problems Al Search Planning as Search Heuristic Planning Summary

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

 A is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del, c) ∈ 2^V × 2^V × 2^V × ℝ₀⁺ consisting of a precondition, add and delete list, and action costs. (We often only give a 3-tuple if there are no action costs.)

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

 A is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del, c) ∈ 2^V × 2^V × 2^V × ℝ₀⁺ consisting of a precondition, add and delete list, and action costs. (We often only give a 3-tuple if there are no action costs.)

ntroduction Al Planning Problems Al Search Planning as Search Heuristic Planning Summary

Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

- $s_l \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (encodes a set of goal states).

Australian

ightarrow Example: The action

take pre: {CrateAtLoc1}

- add: {HoldCrate}
- del: {CrateAtLoc1}

is applicable in state {*CrateAtLoc1*, *TruckAtLoc2*} resulting into {*TruckAtLoc2*, *HoldCrate*}.

Example

Australiar

National

Every classical planning problem is a compact representation of a *state transition system*, i.e., of how states are transformed into each other.

- \bar{a} is applicable in s_l .
- \bar{a} results into a goal state, i.e., $\gamma(\bar{a}, s_l) \supseteq g$.

	Al Planning Problems		
ate Transition	Systems		
State Transit	ion System		

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T, I, G), where

- S is a finite set of states.
- L is a finite set of transition labels.
- $c: L \to \mathbb{R}_0^+$ is a cost function.
- $T \subseteq S \times L \times S$ is the transition relation.
- $I \in S$ is the initial state.
- $G \subseteq S$ is the set of goal states.

10.39

Introduction	Al Planning Proble	ms Al Search 0000	Plannin 0000	g as Search Heuristic Plannir 000000000	ng Summary 000000 O	Int	roduction
State Transition	on Systems					St	tate Transiti
Size Increa	ase of the State	Space in Blocks	World			1	Notes
		n blocks, 1 g A single acti gripper and • puts it ir • or onto	gripper. on takes mmediate the table.	s a top-most block with bly onto some other top-	h the most block		٠
	blocks	states	blocks	states			
	1	1	10	58941091	-		
	2	3	11	824073141			
	3	13	12	12470162233			•
	4	73	13	202976401213			
	5	501	14	3535017524403			
	6	4051	15	65573803186921			
	7	37633	16	1290434218669921			
	8	394353	17	26846616451246353			
	9	4596553	18	588633468315403843			
Australian National University	Pascal Bercher				14.39		Australiar National University
Introduction	Al Planning Proble	ms Al Search	Plannin	g as Search Heuristic Plannir	ng Summary	Int	roduction
0000000	0000000	0000	0000	00000000	00000 0		00000
Recap: A* Se	earch					R	ecap: A* S
Tree Searc	ch and Graph So	earch				1	Node Sele
function TRE initialize th loop do if the fr choose if the n expand	EE-SEARCH(problem he frontier using the ir rontier is empty then : a leaf node and remo node contains a goal st I the chosen node, add	c) returns a solution, or ititial state of problem return failure ve it from the frontier ate then return the cor ling the resulting nodes	failure responding so to the frontier	lution			•
function GRA initialize th <i>initialize th</i> loop do	APH-SEARCH(<i>proble</i> he frontier using the ir he explored set to be e	m) returns a solution, nitial state of <i>problem</i> empty	or failure				•

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution *if not in the explored set add the node to the explored set*expand the chosen node, adding the resulting nodes to the frontier

An informal description of the general tree-search and graph-search algorithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

> (graphic modified) copyright: Title: Artificial Intelligence: A Modern Approach (Third Edition) Url: https://aima.cs.berkeley.edu/ Authors: Stuart Russel and Peter Norvig

University Pascal Bercher

- Al Planning Problems Al Search Planning as Search Heuristic Planning Sum 00000
 ice Transition Systems
 otes
 Planning problems (very compactly!) define state transition
 - systems (cf. Blocks World).To solve a planning problem, we construct the underlying state
 - To solve a planning problem, we construct the underlying state transition system.
 - Each node in the search space corresponds to a state and a sequence of actions within the state transition system.

Node Selection Strategy

Pascal Bercher

• Tree and graph search can realize various different search strategies such as

0000

- Uninformed search (like Breadth or Depth First Search, BFS/DFS)
- Informed search (like A*)
- We will present the progression planning algorithm as instance of tree search.
- In A* search, each search node n get's an f value associated:
 - f(n) = g(n) + h(n) with
 - g(n) are the costs of *n*, e.g., number of actions leading to *n*
 - *h*(*n*) is the heuristic value computed for *n*. Heuristic means an estimate of the distance from *n* to a nearest solution.
- Always select a node from the fringe with lowest *f* value!
- \rightarrow That's all we need to execute A^* (but we skipped all the theory due to lack of time)

15.39

Pascal Bercher

19.39

Australian

Jniversity

National

Properties

What are we interested in? Which properties are of interest?

- Does it always terminate? If not, can we make it so?
- How can we make the algorithm *more efficient*?
- What's the runtime?
- Is it correct, i.e., is every plan it returns an actual solution?
- Is it complete, i.e., does it always find a solution if one exists?
- Is it optimal, i.e, does it always find the best solution?

Properties: Proof Sketches

Algorit	hm: Progression State-based Search
Input:	A classical planning problem $\langle V, A, s_l, g \rangle$

Output: A solution a or *fail* if none exists

- 1 fringe $\leftarrow \{(s_l, \varepsilon)\}$
- 2 while fringe $\neq \emptyset$ do
- 3 $(s, \bar{a}) \leftarrow nodeSelectAndRemove(fringe)$
- 4 if $s \supseteq g$ then return \bar{a}
- 5 for $a \in A$ do
- 6 if $pre(a) \subseteq s$ then
- 7 $s' = (s \setminus del(a)) \cup add(a)$
- 8 $fringe \leftarrow fringe \cup \{(s', \bar{a} \circ a)\}$
- 9 return fail

Does it always terminate?

Pascal Bercher

• No, due to cycles in state-space.

Australian

National

Universitv

Introduction	Al Planning Problems	Al Search 0000	Planning as Search	Heuristic Planning	Summary O
Analyzing th	e Planning Algorithm				
Propertie	s: Proof Sketches				
Algor Input Outp	rithm: Progression State : A classical planning ut: A solution ā or <i>fail</i> if	e-based Search problem $\langle V, A \rangle$ none exists	$\frac{1}{ s_l,g\rangle}$		
1 fringe 2 while 3 (s 4 if 5 fo 6 7 8 2	$\begin{aligned} e \leftarrow \{(s_l, \varepsilon)\} \\ \text{fringe} \neq \emptyset \text{ do} \\ , \bar{a}) \leftarrow \text{nodeSelectAndF} \\ s \supseteq g \text{ then return } \bar{a} \\ r \ a \in A \text{ do} \\ \text{ if } pre(a) \subseteq s \text{ then} \\ & s' = (s \setminus del(a)) \cup \\ & fringe \leftarrow fringe \cup \{ c \in A \} \end{aligned}$	Remove(fringe) add(a) (s',ā∘a)}			
		human ta mai			
How	can we make it a	lways term	nate?		
•	Ensure that every	y search no	de (state) is ex	plored only <i>once</i> .	
•	Check the currer	it plan lengt	h. Discard nod	es of a certain leng	th.
Australi	an				
- Univers	ity Pascal Bercher				23.39
Introduction	ty Pascal Bercher Al Planning Problems	Al Search 0000	Planning as Search ○○○●	Heuristic Planning 0000000000000000000000000000000000	23.39 Summary O
Introduction	Al Planning Problems	Al Search 0000	Planning as Search ○○○●	Heuristic Planning 000000000000000	23.39 Summary O
Introduction 0000000 Analyzing th Propertie	Al Planning Problems occoococo ne Planning Algorithm s: Proof Sketches	Al Search 0000	Planning as Search ○○O●	Heuristic Planning ೦೦೦೦೦೦೦೦೦೦೦೦೦೦	23.39 Summary O
Analyzing the Propertie	Al Planning Problems ooooooooo Planning Algorithm S: Proof Sketches rithm: Progression State : A classical planning ut: A solution \bar{a} or <i>fail</i> if	Al Search 0000 e-based Search problem (V, A none exists	Planning as Search $\circ\circ\circ\bullet$	Heuristic Planning 0000000000000000000000000000000000	23.39 Summary o
Analyzing the Propertie Algori Introduction Propertie Algori Input Outp 1 fringe 2 while 3 (s 4 if 5 fo	Pascal Bercher Al Planning Problems occorrectors and Planning Algorithm as: Proof Sketches rithm: Progression State : A classical planning ut: A solution \bar{a} or fail if $e \leftarrow \{(s_l, \varepsilon)\}$ is fringe $\neq \emptyset$ do $, \bar{a}) \leftarrow nodeSelectAndFi s \supseteq g then return \bar{a}r a \in A do$	Al Search cooo e-based Search problem (V, A none exists Remove(fringe)	Planning as Search $\circ \circ \circ \bullet$ 1 $S_{I}, g \rangle$	Heuristic Planning	23.39 Summary O
Analyzing the Propertie Algori Input Output 1 fringer 2 while 3 (s 4 if 5 fo 6 7 8 c)	Pascal Bercher Al Planning Problems occorrector ne Planning Algorithm s: Proof Sketches rithm: Progression State : A classical planning ut: A solution \bar{a} or <i>fail</i> if $e \leftarrow \{(s_I, \varepsilon)\}$: fringe $\neq \emptyset$ do , \bar{a}) \leftarrow nodeSelectAndF $s \supseteq g$ then return \bar{a} r $a \in A$ do if $pre(a) \subseteq s$ then $s' = (s \setminus del(a)) \cup s'$: fringe \leftarrow fringe $\cup \{s' \in S, s' \in S$	Al Search a-based Search problem (V, A) none exists Remove(fringe) add(a) $(s', \bar{a} \circ a)$	Planning as Search $\circ \circ \circ \bullet$ s_{I}, g	Heuristic Planning 000000000000000	23.39 Summary o
Analyzing the Propertie	Pascal Bercher Al Planning Problems occooocoo Planning Algorithm s: Proof Sketches rithm: Progression State : A classical planning ut: A solution \bar{a} or <i>fail</i> if $e \leftarrow \{(s_l, \varepsilon)\}$ tringe $\neq \emptyset$ do , \bar{a}) \leftarrow nodeSelectAndF $s \supseteq g$ then return \bar{a} r $a \in A$ do if pre(a) $\subseteq s$ then $\int s' = (s \setminus del(a)) \cup \int s' = (s \setminus del(a)) \cup fringe \leftarrow fringe \cup \{s, t, t,$	Al Search $\circ \circ \circ \circ$ e-based Search problem (<i>V</i> , <i>A</i> , none exists <i>Remove</i> (<i>fringe</i>) <i>add</i> (<i>a</i>) (<i>s'</i> , $\bar{a} \circ a$)}	Planning as Search $\circ \circ \circ \bullet$ 1 $S_{I}, g \rangle$	Heuristic Planning 000000000000000	23.39 Summary O
Analyzing the Propertie	Pascal Bercher Al Planning Problems coccoooco Planning Algorithm s: Proof Sketches rithm: Progression State : A classical planning ut: A solution \bar{a} or <i>fail</i> if $e \leftarrow \{(s_l, \varepsilon)\}$ fringe $\neq \emptyset$ do , \bar{a}) \leftarrow nodeSelectAndF $s \supseteq g$ then return \bar{a} r $a \in A$ do if pre(a) \subseteq s then $\int s' = (s \setminus del(a)) \cup$ fringe \leftarrow fringe \cup { n <i>fail</i> V can we make an	Al Search accordsectors accordsectors $accordsectors accordsectors ac$	Planning as Search	Heuristic Planning 0000000000000000	23.39 Summary O
Analyzing the Propertie Algoi Input Outp 1 fringe 2 while 3 (s 4 if 5 fo 6 7 8	Pascal Bercher Al Planning Problems cococococ Planning Algorithm s: Proof Sketches rithm: Progression State : A classical planning ut: A solution \bar{a} or <i>fail</i> if $e \leftarrow \{(s_l, \varepsilon)\}$ fringe $\neq \emptyset$ do , \bar{a}) \leftarrow nodeSelectAndF $s \supseteq g$ then return \bar{a} r $a \in A$ do if pre(a) \subseteq s then $\int s' = (s \setminus del(a)) \cup$ fringe \leftarrow fringe \cup { n <i>fail</i> V can we make an By including (and	Al Search accordsolver (V, A) accordsolver (V, A) accordsolver (ringe) add(a) $(s', \bar{a} \circ a)$ algorithm r addver (studying p)	Planning as Search $\circ \circ \circ \bullet$ $rac{1}{s_{I},g}$	Heuristic Planning 0000000000000000000000000000000000	23.39 Summary O

000000	00000000	0000	0000	0000000000000	0
Analyz	ing the Planning Algorithm				
Prop	erties: Proof Sketches				
7	Maorithm: Progression State	-based Search		-	
Í	nput: A classical planning r	problem $\langle V, A \rangle$	$s_{i}, a \rangle$	-	
(Dutput: A solution a or <i>fail</i> if	none exists	-17.97		
	(a, b)				
1/	$nnge \leftarrow \{(\mathbf{s}_{i}, \varepsilon)\}$ while fringe $\neq \emptyset$ do				
3	$(s, \bar{a}) \leftarrow nodeSelectAndRe$	emove(fringe)			
4	if $s \supseteq g$ then return \overline{a}				
5	for $a \in A$ do				
6	if $pre(a) \subseteq s$ then				
7	$S' = (S \setminus del(a)) \cup a$	add(a)			
0		3 , a ∪ a)}			
9 ľ	eturn <i>fail</i>				
Ī	f we made it terminate	e (by storing	visited no	- odes), what's the runtime?	
	Worst case: Until	all $ 2^{V} = 2$	V states	are generated	
				nt	
	\rightarrow Exponential time	and space i	equireme	111.	
	Australian				
	University Pascal Bercher				23.39
			Planning as Se ○○○●	arch Heuristic Planning	
Analyz	ing the Planning Algorithm				
Prop	erties: Proof Sketches				
7	Algorithm: Progression State	-based Search		-	
ī	nput: A classical planning p	problem $\langle V, A, s \rangle$	$ s_l,g\rangle$	-	
(Dutput: A solution a or fail if	none exists			
1 /	fringe $\leftarrow \{(s_l, \varepsilon)\}$				
2 \	while fringe $\neq \emptyset$ do				
3	$(s, ar{a}) \leftarrow \textit{nodeSelectAndRe}$	emove(fringe)			
4	if $s \supseteq g$ then return \overline{a}				
5	for $a \in A$ do				
7	$ s' = (s \setminus del(a)) \cup s$	add(a)			
8	$ [fringe \leftarrow fringe \cup \{($	s′,ā∘a)}			
9 I	eturn <i>fail</i>				
Ī	s it correct, i.e., is eve	ry plan it ret	turns an a	- ctual solution?	
	• Yes, which can be	e proved triv	ally (sho	w that the properties of	
	returned plans ma	atch the solu	ution crite	ria).	

nning as Search

Australian National University Australian National University

Pascal Bercher

Introduction	Al Planning Problems	Al Search 0000	Planning as Search ○○○●	Heuristic Planning	Summary O
Analyzing the	e Planning Algorithm				
Properties	: Proof Sketches				
Algori	thm: Progression Stat	e-based Searc	<u>h</u>		
Input:	A classical planning	problem $\langle V, A \rangle$	$\overline{A, s_l, g}$		
Outpu	t: A solution a or <i>fail</i> in	f none exists	, ., .,		
1 fringe	$\leftarrow \{(\mathbf{s}, \varepsilon)\}$				
2 while	fringe $\neq \emptyset$ do				
3 (<i>s</i> ,	$\bar{a}) \leftarrow \textit{nodeSelectAndI}$	Remove(fringe)		
4 if <i>s</i>	$\supseteq g$ then return \overline{a}				
5 for	$a \in A$ do				
6	If $pre(a) \subseteq s$ then $ s' = (s \setminus del(a)) \sqcup$	add(a)			
8	$fringe \leftarrow fringe \cup \{$	$(s', \bar{a} \circ a)$			
9 return	fail				
Is it c	complete, i.e., do	es it always	s find a solution i	f one exists?	
•	I his depends on	the node s	selection strategy	y. And on the fact	
	whether duplicat	es are con	sidered again.		
Australian National	1				
Oniversity	Pascal Bercher				23.39
Introduction	AI Planning Problems	AI Search	Planning as Search	Heuristic Planning	Summary
000000	0000000	0000	0000	• 0 00000000000000000	0
Introduction					
Search-Gu	idance in Classical I	Planning			

Problems of progression search:

- Often very huge branching factor (many actions are applicable to a state).
- The search space size increases exponential with search depth (cf. blocks world!)
- Thus, how we implement the node selection (line 3) has a *huge* impact on efficiency! (We rather explore the exact path from the initial state to a goal state rather than the entire search space.)
- Which state to explore next is decided by heuristics!

Introduction	Al Planning Problems	Al Search	Planning as Search ○○○●	Heuristic Planning	Summ O
Analyzing th	e Planning Algorithm				
Properties	: Proof Sketches				
Algor	ithm: Progression Stat	e-based Searc	h		
Input	A classical planning	problem $\langle V, A$	$\langle s_l, g \rangle$		
Outpu	It: A solution a or fail i	f none exists			
1 fringe	$\leftarrow \{(\boldsymbol{s}_l,\varepsilon)\}$				
2 while	fringe $ eq \emptyset$ do				
3 (<i>s</i>	$ar{a}) \leftarrow \textit{nodeSelectAndl}$	Remove(fringe)		
4 if s	$g \supseteq g$ then return \overline{a}				
5 foi	$a \in A$ do				
5	$ pre(a) \subseteq s$ then $ s' - (s \setminus del(a)) $	⊥add(a)			
8	$\int fringe \leftarrow fringe \cup \{$	$\{(s', \bar{a} \circ a)\}$			
9 returi	n <i>fail</i>				
ls it	optimal, i.e, does	it always fi	nd the best solut	ion?	
•	Yes, if used with	A^* and an	admissible heur	istic (see Al	
	lecture/handbool	k).		,	
		/			
🔅 Australia	ın				
National Universi	Pascal Bercher				23.3
Introduction	Al Planning Problems			Heuristic Planning	Summ O

Heuristic Example: Sliding Tile Puzzle

How far are we still away?

Pascal Bercher

• Number of misplaced tiles: 13

24.39

Australian

Australian

Iniversity

National

Introducti	on >0	Al Plar	nning Pro	blems	Al Search	Pla oc	nning as	Search	H	euristic Planning ●000000000000000000000000000000000000	Sum
Introdu	ction										
Heur	istic E	xample	e: Slidi	ing Tile	e Puzzle						
	2	1	4	8		4	2	3	4		
	2		4	0			2	3	4		
	9	7	11	10	\longrightarrow	5	6	7	8		
	6	5	15	3		9	10	11	12		
	13	14	12			13	14	15			
ļ		Initial	State		1		Goal	State]	
ł	How f	ar are	e we	still av	way?						
	• 1	Numb	er of	misp	aced tiles:	13					
	• "	Dista	nce"	(horiz	ontal and	vertic	al dis	tance	e) per	tile to goal	
	Ķ	oositio	$n \rightarrow$	Man	hatten dist	ance:	1+.	+ (2	2+1) ·	+	
	Australian National Jniversity		I Davahar								05
_		Fasca	II Dercher								20
Introducti 000000	on >O	Al Plar	nning Pro	blems	Al Search 0000	Pla OC	nning as	Search	0	euristic Planning	Sum O
Plan	ction ning H	euristio	c Cons	structio	n						
		00.1100.10									
ŀ	How t	o cor	ne up	with	heuristics	in a c	loma	in-ina	lepen	dent way?	
	• [Perfor	m a j	oroble	em relaxati	on.					
	• {	Solve	the r	elaxe	d problem.						
	• (Jse tł	ne co	st of t	he solutior	n in th	e rela	axed	proble	em as	
	â	appro	ximat	tion (i	.e., heurist	ic) of	the a	ctual	probl	em.	
E	Exam	ple S	liding	I Tile	Puzzle:						
	•	Numb	per of	misp	laced tiles.	Rela	xatio	n: We	e can	always move t	les
	t	o any	loca	tion, i	.e., ignore	all pr	econ	dition	s.		
	• / r	<i>Manh</i> neighl	<i>atten</i> bor til	<i>dista</i> le is n	<i>nce.</i> Relax ot free, i.e	ation	: We ore so	can r ome p	nove precoi	a tile, even if th nditions.	ie
	•	Ignore	e tiles	. Son	ne tiles (i.e	., stat	te var	iable:	s) do	not exist.	

University

Pascal Bercher

Introduction	Al Planning Problems	Al Search 0000	Planning as Search	Heuristic Planning	Summary O
Formal Defi	nitions and Properties of	Heuristics			
Definition	5				
Defi	nition (Heuristic)				
Give	in a state transition $h: \mathcal{S} ightarrow \mathbb{R}^+$ (the system t is system t is $\{\infty\}$.	s = (S, L, c, T, I)	l, G), a <i>heuristic h</i> is	sa
Defi	nition (Perfect He	euristic)			
A he is th h*(s	puristic $h^*: \mathcal{S} ightarrow \mathbb{R}$ e cost of the cheal $\mathcal{S}(x) = \infty$ for all state	2 ⁺ is calle pest transi es <i>s</i> for wh	d <i>perfect</i> , if for a tion from <i>s</i> to a g iich no goal state	Il states $s \in S \ h^*(s)$ goal $s' \in G$. Furthe e can be reached.	;) er,
Australia	ın				

00000000 Formal Definitions and Properties of Heuristics Definitions, cont'd II **Definition (Admissible Heuristics)** A heuristic *h* is called *admissible*, if for all states $s \in S$, it holds $h(s) \leq h^*(s).$

Definition (Dominance)

Pascal Bercher

A heuristic h_1 is said to dominate another heuristic h_2 if for all states $s \in S$, $h_1(s) \geq h_2(s)$.

Universitv

Pascal Bercher

27.39

Heuristic Planning

- Its delete-relaxation is the (delete-free) problem $\langle V, A', s_l, g \rangle$, where $A' = \{(pre, add, \emptyset, c) \mid (pre, add, del, c) \in A\}$.
- $\rightarrow \mathcal{P}^+$ refers to the delete-relaxation of \mathcal{P} .
- $\rightarrow h^+$ refers to the perfect heuristic (h^*) for \mathcal{P}^+ .

Australian National University		
	Pascal Bercher	31.39

Heuristic Planning 000000000 Delete Relaxation Definitions, Delete Relaxation

What's the core idea behind delete relaxation?

 \rightarrow What's true once stays true!

Jniversit\

Pascal Bercher

Consider Sokoban after: moving left, down,

These positions are also free! (Since they were free before or have become so.)

32.39

Definitions, Delete Relaxation

What's the core idea behind delete relaxation?

 \rightarrow What's true once stays true!

Consider Sokoban after: moving left, down, right...

\$

= a crate

These positions are also free! (Since they were free before or have become so.)

= a goal position

Why delete-relaxation and how to exploit it?

- Solving delete-free planning problems can be done in polynomial time!
- (Whereas solving arbitrary planning problems normally requires exponential space and time.)
- Many heuristics are based on delete-relaxation:
 - h^{max} (shown next!)
 - *h*^{Add} (improves *h*^{max} by incorporating *all* preconditions)
 - *h*^{FF} (compute a plan for the delete-relaxation)
 - $\rightarrow h^{Add}$ and h^{FF} might be covered in the assignments.

ntroduction	Al Planning Problems	Al Search 0000	Planning as Search	Heuristic Planning ○○○○○○○○○●○○○○	Summary O		
elete Relaxation							

Relaxed Planning Graph: Definition

Definition (Relaxed Planning Graph)

Let $\langle V, A, s_l, g \rangle$ be a (delete-free) planning problem.

Then, a *relaxed planning graph (rPG)* is a graph $\langle \overline{V}, \overline{A} \rangle$ consisting of:

- $\overline{V} = V^0 \dots V^n$, $V^i \subseteq V$, $0 \le i \le n$, a sequence of *variable layers*.
- $\bar{A} = A^1 \dots A^n$, $A^i \subseteq A$, $1 \le i \le n$, a sequence of *action layers*.
- $V^0 = s_I$.
- $A^{i} = \{a \in A \mid pre(a) \subseteq V^{i-1}\}, 1 \le i \le n.$
- $V^i = V^{i-1} \cup \bigcup_{a \in A^i} add(a), 1 \le i \le n.$
- Choose n = i, such that $V^{i-1} = V^i$ holds.

Questions:

- Why is "delete-free" in the problem description put in parentheses?
- Why is *n* chosen as is? Is there a bound on *n*?

Australiar National
University

Pascal Bercher

Let $\mathcal{P} = \langle V, A, s_l, g \rangle$ be a classical planning problem and $\mathcal{G} = \langle \overline{V}, \overline{A} \rangle$ its rPG.

- *h^{max}(s)* returns the first layer number in which all goal variables hold. Meaning: Number of action layers required in *P*⁺ to make the hardest variable in *g* true (starting in some *s* ∈ *S*, e.g., *s_l*).
- Formally, *h^{max}* can be calculated as follows:

action vertex The cost of an action vertex $a \in A^i$ is 1 plus the maximum of the predecessor vertex costs.

variable vertex • The cost of a variable vertex v is 0 if $v \in V^0$.

For all v ∈ Vⁱ, i > 0, the cost of v equals the minimum cost of all predecessor vertices (these might be either action or variable vertices).

vertex set For a set of state variables $\overline{\nu} \subseteq V$, the cost equals the most expensive variable in $\overline{\nu}$.

heuristic For a state $s \in S$, $h^{max}(s)$ equals the cost of g.

Pascal Bercher

- Analyzed (planning) search algorithms, i.e., we ...
 - investigated runtime behavior,
 - investigated space requirements,
 - analyzed heuristics to improve performance, and
 - → learned that heuristics base on special cases that are computationally easier to compute (we aim at poly-computable heuristics, whereas most planning problems – practically – require exponential time and space)
- Possible outlook: computational investigation of (planning) problems and heuristics. We normally investigate
 - complexity of a problem (with/without relaxation)
 - runtime of algorithms/heuristics
 - \rightarrow Literature and material: see Wattle! (soon)
- ightarrow Thank you for your attention!

