
Canberra Computer Science Enrichment:
A – Hands-on – Introduction to Automated Planning

Pascal Bercher

Planning & Optimization Group
College of Engineering and Computer Science

the Australian National University (ANU)

20. Nov. 2020

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Introduction

Pascal Bercher 1.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Planning in a Nutshell

We consider classical planning problems, which consist of:

An initial state sI – all “world properties” true in the beginning.

A set of available actions – how world states can be changed.

A goal description g – all properties we’d like to hold.

What do we want?

→ Find a plan that transforms sI into g.

sI s⊇g

description of the
initial world situation

description of desired
world properties

︸ ︷︷ ︸
plan

intermediate states

Pascal Bercher 2.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Planning Games like Sokoban

Title: A Sokoban puzzle and its solution

Source: https://en.wikipedia.org/wiki/Sokoban

Puzzle Author: Carlos Montiers Aguilera

Graphics Author: Borgar Þorsteinsson and Pascal Bercher.
The graphic has been modified multiple times (e.g., conversion from animated gif into this one.)

Pascal Bercher 3.38

https://en.wikipedia.org/wiki/Sokoban

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Planning Games like the Sliding Tile Puzzle

Initial State Goal State

Pascal Bercher 4.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Planning Robots like the Mars Rovers

The mixed-initiative planning system MAPGEN was used to
generate rovers’ plans offline.

These are then executed by the rovers (i.e., they do not run
planners).

Pascal Bercher 5.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Planning Automated Factories like a Greenhouse

Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading: � M. Helmert and H. Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”. In:
Proc. of the 20th Int. Conf. on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,
pp. 234–237

� The IPC Scanalyzer Domain in PDDL (see paper above).

Pascal Bercher 6.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Planning: A Domain-Independent Approach

Automated Planning is a domain-independent approach!
As mentioned in the beginning, the integral part is:
• The state descriptions: Which state properties exist?
• Actions: What can be done and how does this change states?

Planning technology is agnostic against specific applications!

Research bases on an abstract high-level description language.
Example action in a domain controlling Satellites:
(:durative−action t u rn_ to
:parameters (? s − s a t e l l i t e ?d_new − d i r e c t i o n ?d_prev − d i r e c t i o n)
:durat ion (= ? dura t i on 5)
:condit ion (and (a t s t a r t (p o i n t i n g ?s ?d_prev))

(over a l l (not (= ?d_new ?d_prev))))
: e f f e c t (and (a t end (p o i n t i n g ?s ?d_new))

(a t s t a r t (not (p o i n t i n g ?s ?d_prev))))
)

Pascal Bercher 7.38

https://www.lemnatec.com/

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Domain-Independence: Pros vs. Cons

Advantages of Domain-independence:
Use (well-tested) standard solvers:
• Cost-effective: only write the model, not new software
• Most likely there are less bugs

Optimality guarantees of solutions (find the cheapest).
Exploit further planning technology, e.g., automated support for:
• Model can be checked for problems.
• Existing techniques for proving unsolvability can be used.
• Plan explanation techniques can be exploited.
• Check solutions.

Disadvantages of Domain-independence:

You need a planning expert to model the domain.
(But we will have many more in just like 60 minutes!)

Potential inefficiency: a domain-specific might be more efficient
than a domain-independent one.

Pascal Bercher 8.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Notation

Pascal Bercher 9.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Math Recap: Sets versus Lists

We will heavily base upon sets.
Sets are invariant against repetition.
• E.g., {a, a, b, b, b, c} = {a, b, c}.

Sets are invariant against re-ordering.
• E.g., {a, b, a, b, c, b} = {a, a, b, b, b, c}.
• Thus, we also get {a, b, a, b, c, b} = {a, a, b, b, b, c}

= {a, b, c} = {a, c, b}
= {b, a, c} = {b, c, a}
= {c, a, b} = {c, b, a}

Therefore, sets are fundamentally different from lists!
• Lists are also called sequences or tuples.
• E.g., the list (a, b, c) is different from both (a, c, b) and (a, a, b, c)

Pascal Bercher 10.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Math Recap: Set Notation

The empty set {} is usually always denoted by the symbol ∅.
In contrast, the empty list (i.e., empty sequence) is denoted by ε.

Let X be a finite set. Then, 2X denotes its “power set” that
contains all subsets.
• E.g., if X = {a, b, c}, then

2X = {{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, ∅}
The “cardinality” of a set X is the number of its elements and
denoted by |X |. Cardinality is not recursive!
• E.g., if X = {a, b, c}, then |X | = 3.
• Regarding non-recursiveness: if, e.g., X = {{a, b}, c}, then
|X | = 2, because it has two elements, not three.

Note that for all possible X it holds that |2X | = 2|X |.
• E.g., if X = {a, b, c}, then |2X | = 2|X | = 23 = 8

Pascal Bercher 11.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Math Recap: Set Notation, cont’d

We write a ∈ X if a is contained in X , i.e., an element of X . We
say a /∈ X if a is not contained in X . Again, this is not recursive!
• E.g., if X = {{a, b}, c}, then only {a, b} ∈ X and c ∈ X , but

a /∈ X and b /∈ X . Also {c} /∈ X .

We write Y ⊆ X if Y is a (not necessarily strict) subset of X . We
write Y * X if this does not hold.
• E.g., {a, b, c} ⊆ {a, b, c} (in fact, X ⊆ X for all sets X).
• E.g., {a, c} ⊆ {a, b, c}.
• E.g., if X = {{a, b}, c}, then {c} ⊆ X and {{a, b}} ⊆ X ,

but {{a, c}} * X and {a, b} * X .

Let X ,Y , Z be sets. Then X × Y × Z is the cross product of
these sets. It’s the set of tuples with one element from each set.
• Formally, X × Y × Z = {(x , y , z) | x ∈ X , y ∈ Y , z ∈ Z}
• One normally uses standard math notation, e.g., X 2 = X × X . We

use X n for exactly n times X , and X∗ for all numbers in N ∪ {0}.

Pascal Bercher 12.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Math Recap: Set Operations

We write X ∪ Y for unifying two sets X and Y , i.e., X ∪ Y
contains all elements of both sets.
• Formally: X ∪ Y = {z | z ∈ X or z ∈ Y}

We write X ∩ Y is the set intersection, i.e., X ∩ Y contains all
elements that are contained in both sets.
• Formally: X ∩ Y = {z | z ∈ X and z ∈ Y}

We write X \ Y for set subtraction, i.e., X \ Y contains all
elements that are contained in X , but not (“minus the ones”) in Y .
• Formally: X \ Y = {z ∈ X | z /∈ Y}

Pascal Bercher 13.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

AI Planning Problems

Pascal Bercher 14.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Assumptions made in Classical Planning

We focus on the “base case” of AI planning: Classical Planning

Discrete: only instantaneous state changes (no time)

Deterministic: outcomes of actions are known and unique

Fully observable: no hidden information anywhere

Single-agent: “the planner” controls all actions

Pascal Bercher 15.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
V is a finite set of state variables.

move

move

put take put take

move

move

unload

load

move move

Title: Lecture Slides for Automated Planning

Source: http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf

Author & License Dana S. Nau (BY-NC-SA 2.0 gneric)

V = {CrateAtLoc1, CrateInCrane, CrateInTruck,
TruckAtLoc1, TruckAtLoc2}

sI ∈ S is the initial state (complete state description).
g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

since s5 ⊇ g.

Pascal Bercher 16.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
V is a finite set of state variables.

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

V = {CrateAtLoc1, CrateInCrane, CrateInTruck,
TruckAtLoc1, TruckAtLoc2}

sI ∈ S is the initial state (complete state description).
g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

since s5 ⊇ g.

Pascal Bercher 16.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
V is a finite set of state variables.
• States are sets consisting of state variables (also called facts).
• We assume the closed world assumption, i.e., all variables not

mentioned in a state s do not hold in that state (in contrast to: it’s
not known whether they hold or not).
E.g., if a ∈ s then a is true (does hold) in s, but if a /∈ s then a is
false (does not hold) in s.

• S = 2V is called the state space. (The set of all states.)

sI ∈ S is the initial state (complete state description).

g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

since s5 ⊇ g.

Pascal Bercher 16.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
A is a finite set of actions. Each action a ∈ A is a tuple
(pre, add , del, c) ∈ 2V × 2V × 2V × R+ consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

take pre: {CrateAtLoc1}
add: {CrateInCrane}
del: {CrateAtLoc1}

put pre: {CrateInCrane}
add: {CrateAtLoc1}
del: {CrateInCrane}

sI ∈ S is the initial state (complete state description).
g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

since s5 ⊇ g.

Pascal Bercher 16.38

http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
A is a finite set of actions. Each action a ∈ A is a tuple
(pre, add , del, c) ∈ 2V × 2V × 2V × R+ consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

moveLeft pre: {TruckAtLoc2}
add: {TruckAtLoc1}
del: {TruckAtLoc2}

moveRight pre: {TruckAtLoc1}
add: {TruckAtLoc2}
del: {TruckAtLoc1}

sI ∈ S is the initial state (complete state description).
g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

since s5 ⊇ g.

Pascal Bercher 16.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:
A is a finite set of actions. Each action a ∈ A is a tuple
(pre, add , del, c) ∈ 2V × 2V × 2V × R+ consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

load pre: {CrateInCrane, TruckAtLoc1}
add: {CrateInTruck}
del: {CrateInCrane}

unload pre: {CrateInTruck, TruckAtLoc1}
add: {CrateInCrane}
del: {CrateInTruck}

sI ∈ S is the initial state (complete state description).
g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

since s5 ⊇ g.

Pascal Bercher 16.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = 〈V ,A, sI , g〉 consists of:

sI ∈ S is the initial state (complete state description).

g ⊆ V is the goal description.
• Each state s ∈ S with s ⊇ g is called a goal state.
• We abbreviate the set of goal states with G = {s ∈ S | s ⊇ g}

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

sI = {CrateAtLoc1, TruckAtLoc2} = s0

g = {CrateInTruck, TruckAtLoc2}, thus: G = {s5} since s5 ⊇ g.

Pascal Bercher 16.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism, cont’d I

An action a ∈ A is called applicable (or executable) in a state
s ∈ S if and only if pre(a) ⊆ s.

If pre(a) ⊆ s holds, its application results into the successor state
γ(a, s) = (s \ del(a)) ∪ add(a). γ : A× S → S is called the
state transition function.

→ Example: The action...

take pre: {CrateAtLoc1}
add: {CrateInCrane}
del: {CrateAtLoc1}

... is applicable in state {CrateAtLoc1, TruckAtLoc2}
resulting into {TruckAtLoc2,CrateInCrane}.

Pascal Bercher 17.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism, cont’d I

An action a ∈ A is called applicable (or executable) in a state
s ∈ S if and only if pre(a) ⊆ s.

If pre(a) ⊆ s holds, its application results into the successor state
γ(a, s) = (s \ del(a)) ∪ add(a). γ : A× S → S is called the
state transition function.
An action sequence a = a0, . . . , an−1 is applicable in a state s0 if
and only if
• for all 0 ≤ i ≤ n − 1 ai is applicable in si , where for all 1 ≤ i ≤ n,

si denotes the resulting state of applying a0, . . . , ai to s0 = sI .
• This means: Each action is applicable in its predecessor state.

We extend the state transition function to work on action
sequences as well, i.e., γ : A∗ × S → S. (Definition omitted.)

Pascal Bercher 17.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism, cont’d II

Solution:

An action sequence a consisting of 0 or more actions is called a
plan or solution to a classical planning problem if and only if:
• a is applicable in sI .
• a results into a goal state, i.e., γ(a, sI) ⊇ g.

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

Solution: take, moveLeft, load, moveRight

Pascal Bercher 18.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism, cont’d II

This is everything about the classical planning formalism! I.e.,

Formal definition of the “planning problem”.

Formal definition of any “plan”, i.e., solution.
Most notably, this includes the definition of action application.

Questions so far?

Pascal Bercher 19.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

State Transition Systems

Pascal Bercher 20.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

What’s a State Transition System?

State transition systems are the “underlying semantics” of
classical planning problems.

They explicitly show all states and how they can be traversed by
actions.

We use them to give an intuition on how hard solving planning
problems can become (and how easy it is to model them)!

Pascal Bercher 21.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Example for a State Transition System

A state transition system is

just a graph consisting of states and labeled edges

with a designated initial state and designated goal states

as seen before:

move

move

put take put take

move

move

unload

load

move move

copyright: see slide ?? (first sub slide)

Pascal Bercher 22.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Formal Definition of State Transition System

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T , I,G), where

S is a finite set of states.

L is a finite set of transition labels.

c : L→ R+ is a cost function.

T ⊆ S × L× S is the transition relation.

I ∈ S is the initial state.

G ⊆ S is the set of goal states.

So where’s the difference to a planning?

→ Classical planning problems are compact representations of state
transition systems!

Pascal Bercher 23.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Size Increase of the State Space in Blocksworld

We have: n blocks, 1 gripper, and two actions, each
takes a top-most block with the gripper and
• puts it immediately onto some other top-most block
• or onto the table, respectively.

We want: transform the initial towers into another,
given set of towers.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4,051
7 37,633
8 394,353
9 4,596,553

blocks states
10 58,941,091
11 824,073,141
12 12,470,162,233
13 202,976,401,213
14 3,535,017,524,403
15 65,573,803,186,921
16 1,290,434,218,669,921
17 26,846,616,451,246,353
18 588,633,468,315,403,843

Pascal Bercher 24.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Size of Planning Problems vs. State Transition Systems

We can thus see that planning problems are much more compact
representations of state transition systems.

Compare, e.g., the size of blocksworld domain with n = 5 blocks
(which will have only a few actions) to the state size of > 501.

Exercise! We will model this simple blocksworld problem!

We give some details here, but then use an online PDDL
(Planning Domain Description Language) editor.

Pascal Bercher 25.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Blocksworld

Pascal Bercher 26.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Propositional Model: Required State Variables

A
B
C E

D

We have 5 blocks called A, B, C, D, E .
Actions can use the gripper to:
• take a top-most block from a tower of size ≥ 2, or
• take a block that lies on the table (tower of size 1).

Actions can also use the gripper to:
• place its block onto another top-most block, or
• place the block in it onto the table.

So, which state variables do we need?

AisTopMost, BisTopMost, etc. – to check whether we can grab it

AonB, AonC, etc. – so we can make the next block top-most

AonTable, BonTable, etc. – for the lowest block in each tower

holdingA, holdingB, etc. – to know what the gripper is holding

gripperFree – so we know whether we can take a block

Pascal Bercher 27.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Propositional Model: Modeling the Stack Actions

Now we model putting one block on another:
• Say we have block A in the gripper.
• We need support (i.e., an action) for each other block

b ∈ {B,C,D,E} since that one could be on top.
• Now let’s do it!

I Open editor.planning.domains
I Choose File, then Load. Choose groundBlocksworldDomain.pddl

from the zip for this course that can be downloaded from my
website.

I Before you do the exercise, take a look at the actions
take-A-from-table and place-A-on-table.

Solution:

(:act ion stack−A−onto−B
:precondit ion (and (holdingA) (BisTopMost))
: e f f e c t (and (not (holdingA)) (g r ipperFree)

(AonB) (AisTopMost)
(not (BisTopMost))))

Pascal Bercher 28.38

editor.planning.domains

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Propositional Model: Modeling the Unstack Actions

Now we model removing one block from another:
• Say we want to take block A into the gripper.
• We need support (i.e., an action) for each other block

b ∈ {B,C,D,E} since that one could be beneath A – we need
this since we need to state that this one will be at top next.

• Back to editor.planning.domains!

Solution:

(:act ion unstack−A−from−B
:precondit ion (and (g r ipperFree)

(AonB) (AisTopMost))
: e f f e c t (and (not (g r ipperFree)) (holdingA)

(not (AonB)) (not (AisTopMost))
(BisTopMost)))

Pascal Bercher 29.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Propositional Model: Modeling the Initial State

We now take a look at the problem definition.

A
B
C

D
E

A

BC
D E

initial state goal state

(Same as groundBlocksworldProblem-Instance1.pddl)

(define (problem blocksworld−prob1)
(:domain blocksworld−ground)
(: i n i t (AisTopMost) (AonB) (BonC) (ConTable)

(DisTopMost) (DonE) (EonTable))
(:goal (and (AisTopMost) (AonD) (DonC) (ConTable)

(EisTopMost) (EonB) (BonTable))))

Is this correct? No! The gripper being initially empty is missing!

Pascal Bercher 30.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: A “Lifted” Blocksworld Model

We have seen that modeling still requires many actions!
• Each stack and unstack action requires n ∗ (n − 1) different

variants when there are n blocks! (I.e, 5 ∗ 4 ∗ 2 = 40 actions just
for stack and unstack for n = 5 blocks).

• Also the number of existing state variables (defined in the domain
file) was quadratic! (36 for n = 5 blocks)

• (Although that’s much better than the exponential search space
increase (> 501 states for n = 5), we can still improve on that!)

We will now regard lifted planning problems, where one can
specify variables. This leads to an even more compact
representation! (In general, this gives an exponential size
decrease.)

Pascal Bercher 31.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: Required State Variables

A
B
C E

D

We have 5 blocks called A, B, C, D, E .
Actions can use the gripper to:
• take a top-most block from a tower of size ≥ 2, or
• take a block that lies on the table (tower of size 1).

Actions can also use the gripper to:
• place its block onto another top-most block, or
• place the block in it onto the table.

Which state variables predicates do we need? Let ?b and ?b′ be variables.
topMost(?b) – to check whether we can grab ?b

on(?b,?b′) – so we can make ?b′ the next top-most block

onTable(?b) – for the lowest block in each tower

holding(?b) – to know what the gripper is holding

gripperFree() – so we know whether we can take a block

→ The problem instance lists all blocks as “objects”

Pascal Bercher 32.38

editor.planning.domains

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: Modeling the (Lifted) Unstack Action

Now we model removing one block from another:
• Say we want to take block ?b into the gripper.
• We need support (i.e., an action) for each other block

?b′ ∈ {A,B,C,D,E} since that one could be beneath b – we
need this since we need to state that ?b′ one will be at top next.

• Again, do it!
I Choose File, then Load. Choose liftedBlocksworldDomain.pddl.
I You can again check the syntax by looking at the other actions.

Solution:

(:act ion unstack
:parameters (?b1 ?b2 − block)
:precondit ion (and (g r ipperFree)

(on ?b1 ?b2) (topMost ?b1))
: e f f e c t (and (not (g r ipperFree)) (ho ld ing ?b1)

(not (on ?b1 ?b2)) (not (topMost ?b1))
(topMost ?b2)))

Pascal Bercher 33.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: Solving Blocksworld

Now, solve it!

Load the file liftedBlocksworldProblem-Instance1.pddl.

Use the Solve button and select the right files.

A
B
C

D
E

A

BC
D E

initial state goal state

1 (unstack A B)
2 (place-on-table A)
3 (unstack B C)
4 (place-on-table B)
5 (unstack D E)

6 (stack D C)
7 (take-from-table A)
8 (stack A D)
9 (take-from-table E)
10 (stack E B)

Pascal Bercher 34.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: Size of the Lifted Model

How large does this (very compact) model become (now)? (n blocks)
Propositional model:
• O(n2) many actions and state variables.

Lifted model:
• Only 4 ∈ O(1) actions and 5 ∈ O(1) predicates.
• n ∈ O(n) blocks (as a simple list in the problem instance).

→ Every blocksworld problem can be modeled with just 4 actions
and listing the n blocks. (Instead of specifying the state transition
system, which grows exponentially.)

Pascal Bercher 35.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Summary and Outlook

Pascal Bercher 36.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Summary: What did we do today?

We’ve learned the formal foundations of Classical Planning
problems.

We’ve learned how they can be modeled using the Planning
Domain Description Language (PDDL).
We took a brief glance at planning.domains, which features
(among others) a tool for:
• Modeling planning problems in PDDL.
• Running a solver on these models.

Pascal Bercher 37.38

Introduction Notation AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Outlook: What didn’t we do today?

There are (so!) many extensions of the classical model, e.g.,
• Uncertainty! Partial observability and probabilistic effects.
• Time (how long do actions take, and what happens when?).
• Resource consumption and production.
• Complex state trajectory constraints.
• Hierarchies among the actions. (My main research area!)

How so actually solve planning problems? (My research area!)

Complexity analysis: How hard is it to solve a problem?
(My favorite research area!)
So much more, e.g.,
• Proving unsolvability.
• Plan explanations or explaining unsolvability.
• Modeling support.

Pascal Bercher 38.38

	Introduction
	Notation
	Math Recap

	AI Planning Problems
	Problem Definition

	State Transition Systems
	Blocksworld
	Propositional Model
	Lifted Model

	Summary and Outlook
	Summary
	Outlook

