





- - Automated Planning is a domain-independent approach!
  - As mentioned in the beginning, the integral part is:
    - The state descriptions: Which state properties exist?
    - Actions: What can be *done* and how does this change states?
  - Planning technology is agnostic against specific applications!
- Research bases on an abstract high-level description language. Example action in a domain controlling Satellites:





10.38

Pascal Bercher

#### Math Recap: Set Notation, cont'd

Pascal Bercher

00000

- We write a ∈ X if a is contained in X, i.e., an *element* of X. We say a ∉ X if a is not contained in X. Again, this is *not* recursive!
  - E.g., if  $X = \{\{a, b\}, c\}$ , then only  $\{a, b\} \in X$  and  $c \in X$ , but  $a \notin X$  and  $b \notin X$ . Also  $\{c\} \notin X$ .
- We write Y ⊆ X if Y is a (not necessarily strict) subset of X. We write Y ⊈ X if this does not hold.
  - E.g.,  $\{a, b, c\} \subseteq \{a, b, c\}$  (in fact,  $X \subseteq X$  for all sets X).
  - E.g., {*a*, *c*} ⊆ {*a*, *b*, *c*}.
  - E.g., if  $X = \{\{a, b\}, c\}$ , then  $\{c\} \subseteq X$  and  $\{\{a, b\}\} \subseteq X$ , but  $\{\{a, c\}\} \nsubseteq X$  and  $\{a, b\} \nsubseteq X$ .
- Let *X*, *Y*, *Z* be sets. Then *X* × *Y* × *Z* is the cross product of these sets. It's the set of tuples with one element from each set.
  - Formally,  $X \times Y \times Z = \{(x, y, z) \mid x \in X, y \in Y, z \in Z\}$
  - One normally uses standard math notation, e.g., X<sup>2</sup> = X × X. We use X<sup>n</sup> for exactly *n* times X, and X\* for *all* numbers in N ∪ {0}.

| Universit | Pascal Ber        | rcher                          |                          |                           | 12.38              |
|-----------|-------------------|--------------------------------|--------------------------|---------------------------|--------------------|
| roduction | Notation<br>00000 | Al Planning Problems<br>●○○○○○ | State Transition Systems | Blocksworld<br>0000000000 | Summary and Outloo |
|           |                   |                                |                          |                           |                    |
|           |                   |                                |                          |                           |                    |
|           |                   |                                |                          |                           |                    |
|           |                   | Al Pla                         | nning Problems           | ;                         |                    |
| _         |                   |                                |                          |                           |                    |
|           |                   |                                |                          |                           |                    |
|           |                   |                                |                          |                           |                    |

# 0000 Math Recap: Set Operations • We write $X \cup Y$ for *unifying two sets* X and Y, i.e., $X \cup Y$ contains all elements of both sets. • Formally: $X \cup Y = \{z \mid z \in X \text{ or } z \in Y\}$ • We write $X \cap Y$ is the set intersection, i.e., $X \cap Y$ contains all elements that are contained in both sets. • Formally: $X \cap Y = \{z \mid z \in X \text{ and } z \in Y\}$ • We write $X \setminus Y$ for set subtraction, i.e., $X \setminus Y$ contains all elements that are contained in X, but not ("minus the ones") in Y. • Formally: $X \setminus Y = \{z \in X \mid z \notin Y\}$ Australiar National University Pascal Bercher 13.38 AI Planning Problems 00000 Problem Definition: Assumptions made in Classical Planning

We focus on the "base case" of AI planning: Classical Planning

- Discrete: only instantaneous state changes (no time)
- Deterministic: outcomes of actions are known and unique
- Fully observable: no hidden information anywhere
- Single-agent: "the planner" controls all actions





Problem Definition: Formalism

Australiar

Iniversitv

Pascal Bercher

National

A classical planning problem  $\mathcal{P} = \langle V, A, s_l, g \rangle$  consists of:

- V is a finite set of *state variables*.
  - States are sets consisting of state variables (also called *facts*).
  - We assume the *closed world assumption*, i.e., all variables not mentioned in a state *s* do not hold in that state (in contrast to: it's not known whether they hold or not).

E.g., if  $a \in s$  then *a* is true (does hold) in *s*, but if  $a \notin s$  then *a* is false (does not hold) in *s*.

•  $S = 2^V$  is called the *state space*. (The set of all states.)



# Problem Definition: Formalism

Universitv

Pascal Bercher

A classical planning problem  $\mathcal{P} = \langle V, A, s_l, g \rangle$  consists of:

 A is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del, c) ∈ 2<sup>V</sup> × 2<sup>V</sup> × 2<sup>V</sup> × ℝ<sup>+</sup> consisting of a precondition, add and delete list, and action costs. For convenience, we write pre(a), add(a), del(a), and c(a).





ake

 $s_l = \{ CrateAtLoc1, TruckAtLoc2 \} = s_0$ 

move

Australia: Vational

niversity

Pascal Bercher

move

copyright: see slide ?? (first sub slide

 $g = \{$ CrateInTruck, TruckAtLoc2 $\}$ , thus:  $G = \{s_5\}$  since  $s_5 \supset g$ .

unload

nove

ightarrow Example: The action...

| take | pre: | {CrateAtLoc1} |
|------|------|---------------|
|      |      |               |

- add: {CrateInCrane}
- del: {CrateAtLoc1}

... is applicable in state {*CrateAtLoc1*, *TruckAtLoc2*} resulting into {*TruckAtLoc2*, *CrateInCrane*}.

#### Problem Definition: Formalism, cont'd I

AI Planning Problems

00000

- An action a ∈ A is called applicable (or executable) in a state s ∈ S if and only if pre(a) ⊆ s.
- If pre(a) ⊆ s holds, its application results into the successor state γ(a, s) = (s \ del(a)) ∪ add(a). γ : A × S → S is called the state transition function.
- An action sequence a = a<sub>0</sub>,..., a<sub>n-1</sub> is applicable in a state s<sub>0</sub> if and only if
  - for all  $0 \le i \le n 1$   $a_i$  is applicable in  $s_i$ , where for all  $1 \le i \le n$ ,  $s_i$  denotes the resulting state of applying  $a_0, \ldots, a_i$  to  $s_0 = s_i$ .
  - This means: Each action is applicable in its predecessor state.
- We extend the state transition function to work on action sequences as well, i.e., *γ* : *A*<sup>\*</sup> × *S* → *S*. (Definition omitted.)

|   | Australian<br>National |                |       |
|---|------------------------|----------------|-------|
|   | Chiversity             | Pascal Bercher | 17.38 |
| _ |                        |                |       |

Problem Definition: Formalism, cont'd II

Al Planning Problems

This is everything about the classical planning formalism! I.e.,

- Formal definition of the "planning problem".
- Formal definition of any "plan", i.e., solution.
   Most notably, this includes the definition of action application.

Questions so far?

# Problem Definition: Formalism, cont'd II

AI Planning Problems

## Solution:

- An action sequence  $\overline{a}$  consisting of 0 or more actions is called a *plan* or *solution* to a classical planning problem if and only if:
  - $\overline{a}$  is applicable in  $s_l$ .
  - $\overline{a}$  results into a goal state, i.e.,  $\gamma(\overline{a}, s_l) \supseteq g$ .



# Solution: take, moveLeft, load, moveRight

| Australian<br>National |                |       |
|------------------------|----------------|-------|
| University             | Pascal Bercher | 18.38 |

|          | Al Planning Problems | State Transition Systems |    | Summary and Outlook |
|----------|----------------------|--------------------------|----|---------------------|
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          | State Tr             | ansition Systen          | าร |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
|          |                      |                          |    |                     |
| National |                      |                          |    |                     |



Pascal Bercher



23.38

Australiar National

Jniversity

Pascal Bercher



Pascal Bercher

22.38

move

states



27.38

Jniversity

Pascal Bercher





niversity Pascal Bercher

Pascal Bercher

