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Planning in a Nutshell
We consider classical planning problems, which consist of:
@ An initial state s, — all “world properties” true in the beginning.
@ A set of available actions — how world states can be changed.
@ A goal description g — all properties we’d like to hold.

What do we want?
— Find a plan that transforms s, into g.
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Planning Games like Sokoban

Title: A Sokoban puzzle and its solution

Source: https://en.wikipedia.org/wiki/Sokoban
Puzzle Author:  Carlos Montiers Aguilera

Graphics Author:  Borgar Porsteinsson and Pascal Bercher.
The graphic has been modified multiple times (e.g., conversion from animated gif into this one.)
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Planning Automated Factories like a Greenhouse
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Source: https://www.lemnatec.com/

Further reading:

pp. 234-237

Copyright:  With kind permission from LemnaTec GmbH

W The IPC Scanalyzer Domain in PDDL (see paper above).

nmary and Outlook

B M. Helmert and H. Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”. In:
Proc. of the 20th Int. Conf. on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,
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o MAPGEN (Mixed Initiative Activity Planning Generator) is a
ground-based decision support system for Mars Exploration
Rover mission operations and science teams that begins to give
content to the notion of autonomous planetary exploration.

@ The paradigm is to enable the person using the software to
critique a plan that the system automatically produces and ensure
that resulting plans are viable within mission and flight rules.

from https://www.nasa.gov/
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Planning: A Domain-Independent Approach

@ Automated Planning is a domain-independent approach!
@ As mentioned in the beginning, the integral part is:

® The state descriptions: Which state properties exist?
¢ Actions: What can be done and how does this change states?

@ Planning technology is agnostic against specific applications!
(So all previous examples can be modeled as planning problems.)

@ Research bases on an abstract high-level description language.
Example action in a domain controlling Satellites:

:durative —action turn_to
:parameters (?s — satellite ?d new — direction ?d_prev — direction)
:duration (= ?duration 5)
:condition (and (at start (pointing ?s ?d_prev))
(over all (not (= ?d_new ?d_prev))))
(at end (pointing ?s ?d_new))
(at start (not (pointing ?s ?d_prev))))

:effect (and
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Domain-Independence: Pros vs. Cons

Advantages of Domain-independence:
o Use (well-tested) standard solvers:
¢ Cost-effective: only write the model, not new software
® Most likely there are less bugs
@ Optimality guarantees of solutions (find the cheapest).

@ Exploit further planning technology, e.g., automated support for:
® Model can be checked for problems.
¢ Existing techniques for proving unsolvability can be used.
¢ Plan explanation techniques can be exploited.
® Verify correctness of solutions.

Disadvantages of Domain-independence:

@ You need a planning expert to model the domain.
(But we will have many more in just like 60 minutes!)

@ Potential inefficiency: a domain-specific might be more efficient
than a domain-independent one.
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Problem Definition: Assumptions made in Classical Planning

We focus on the “base case” of Al planning: Classical Planning
@ Discrete: only instantaneous state changes (no time)
o Deterministic: outcomes of actions are known and unique
@ Fully observable: no hidden information anywhere
@ Single-agent: “the planner” controls all actions

intermediate states
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Problem Definition: Formalism

A classical planning problem P = (V. A, s;, g) consists of:
o Vis afinite set of state variables.

(=] » . move g
move
\Jocl loc2 locl loc2 locl loc2
put take put take move move
4 '\ move 7 unload ¢ 2
move load
locl loc2 locl loc2 locl loc2

Title:  Lecture Slides for Automated Planning

Source: http://www.cs.umd.edu/ nau/planning/slides/chapter01.pdf
Author & License  Dana S. Nau (BY-NC-SA 2.0 gneric)
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Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:
@ Vis afinite set of state variables.

e o\ s
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copyright: see slide ?? (first sub slide)

V = {CrateAtLoc1, CrateInCrane, CratelnTruck,
TruckAtLoc1, TruckAtLoc2}
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Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:
@ Vs afinite set of state variables.
® States are sets consisting of state variables (also called facts).
e S0\
This state sg is formalized as:
{CrateAtLoc1, TruckAtLoc2}

\Jocl loc2 J
® We assume the closed world assumption, where all variables not
mentioned in a state s do not hold. In contrast to the open world
assumption where it's unknown whether they hold or not).
> E.g., TruckAtLoc2 € s, so it's currently true in state so.
> E.g., CrateinCrane ¢ sy, so it's currently false in that state sp.
* S = 2" is called the state space. (The set of all states.)
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Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:

@ Ais afinite set of actions. Each action a € Ais a tuple
(pre, add, del, c) € 2 x 2V x 2¥ x R* consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).
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take pre: {CrateAtLoc1} put pre: {CratelnCrane}
add: {CrateInCrane} add: {CrateAtLoc1}
del:  {CrateAtLoc1} del:  {CrateInCrane}
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Problem Definition: Formalism

A classical planning problem P = (V. A, s;, g) consists of:

o Ais afinite set of actions. Each action a € Ais a tuple
(pre, add, del, c) € 2 x 2V x 2¥ x R* consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).
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moveleft pre: {TruckAtLoc2} moveRight pre: {TruckAtLoc1}
add: {TruckAtLoc1} add: {TruckAtLoc2}
del:  {TruckAtLoc2} del:  {TruckAtLoc1}
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Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:

o Ais afinite set of actions. Each action a € Ais a tuple
(pre, add, del, c) € 2 x 2V x 2¥ x R* consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).
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ltake move [ move

load pre: {CrateInCrane, TruckAtLoc1} unload pre: {CratelnTruck, TruckAtLoc1}

add: {CrateInTruck} add: {CrateIlnCrane}
del:  {CrateInCrane} del:  {CrateInTruck}
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Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:
@ s; € Sis theinitial state (complete state description).
o g C Vs the goal description.

® Each state s € S with s D g is called a goal state.
* We abbreviate the set of goal states with G={s € S| s D g}

St e )

ocl loc2 Vlocl loc2 Jocl loc2

put[ ltake put] ltake move I move
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move load
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s; = {CrateAtLoc1, TruckAtLoc2} = sy
g = {CrateInTruck, TruckAtLoc2}, thus: G = {ss} since s5 2 g.
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Problem Definition: Formalism, contd |

@ An action a € Ais called applicable (or executable) in a state
s € Sifand only if pre(a) C s.

o If pre(a) C s holds, its application results into the successor state
v(a,s) = (s\ del(a)) U add(a). v : Ax S — Sis called the
state transition function.

— Example: The action...

take pre: {CrateAtLoc1}
add: {CrateInCrane}
del:  {CrateAtLoc1}

. is applicable in state s, = {CrateAtLoc1, TruckAtLoc2}
resulting into { TruckAtLoc2, CratelnCrane}.
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Problem Definition: Formalism, contd |

@ An action a € Ais called applicable (or executable) in a state
s € Sifand only if pre(a) C s.

o If pre(a) C s holds, its application results into the successor state
v(a,s) = (s\ del(a)) U add(a). v : Ax S — Sis called the
state transition function.

@ An action sequence a = a, . . .,
and only if

® forall0 < i< n—1 g is applicable in s;, where forall 1 </ < n,
s; denotes the resulting state of applying ag, ..., a to s = s;.
¢ This means: Each action is applicable in its predecessor state.

an—1 is applicable in a state sj if

@ We extend the state transition function to work on action
sequences as well, i.e., v : A* x S — S. (Definition omitted.)
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Problem Definition: Formalism, contd Il

Solution:

@ An action sequence a consisting of 0 or more actions is called a
plan or solution to a classical planning problem if and only if:
® ais applicable in s;.
® aresults into a goal state, i.e., v(a,s/) 2 g.
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Solution: take, moveleft, load, moveRight
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Problem Definition: Formalism, cont’d Il

This is everything about the classical planning formalism! |.e.,
@ Formal definition of the “planning problem”.

@ Formal definition of any “plan”, i.e., solution.
Most notabily, this includes the definition of action application.

Questions so far?
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What's a State Transition System?

o State transition systems are the “underlying semantics” of
classical planning problems.

@ They explicitly show all states and how they can be traversed by
actions.

@ We use them to give an intuition on how hard solving planning
problems can become (and how easy it is to model them)!
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Example for a State Transition System

A state transition systemis

@ just a graph consisting of states and labeled edges

o with a designated initial state and designated goal states
as seen before:

e ﬁ s\ move [
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Size Increase of the State Space in Blocksworld

@ We have: nblocks, 1 gripper, and two actions, each
takes a top-most block with the gripper and
IJ'I ® puts it immediately onto some other top-most block
ﬁ i ® or onto the table, respectively.
o We want: transform the initial towers into another,
given set of towers.

blocks states blocks states
1 1 10 58,941,091
2 3 11 824,073,141
3 13 12 12,470,162,233
4 73 13 202,976,401,213
5 501 14 3,535,017,524,403
6 4,051 15 65,573,803,186,921
7 37,633 16 1,290,434,218,669,921
8 394,353 17 26,846,616,451,246,353
9 4,596,553 18 588,633,468,315,403,843
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Formal Definition of State Transition System

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T, I, G), where

©

S is a finite set of states.

L is a finite set of transition labels.

¢: L — RT is a cost function.

T C S x L x Sis the transition relation.
| € Sis the initial state.

G C Siis the set of goal states.

So where’s the difference to a planning?

— Classical planning problems P = (V, A, s;, g) are compact
representations of state transition systems!
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Size of Planning Problems vs. State Transition Systems

@ We can thus see that planning problems are much more compact
representations of state transition systems.

@ Compare, e.g., the size of blocksworld domain with n = 5 blocks
(which will have only a few actions) to the state size of > 501.

o Exercise! We will model this simple blocksworld problem!

@ We give some details here, but then use an online PDDL
(Planning Domain Description Language) editor.
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Australian
5 National
3 University

Pascal Bercher

20.33




Al Planning Problems Si Transition Systems Blocksworld Summary and Outlook

A Hands-on Exercise: Modeling Blocksworld
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Propositional Model: Modeling the Stack Actions

@ Now we model putting one block on another:
® Say we have block A in the gripper.
® We need support (i.e., an action) for each other block
b € {B, C, D, E} since that one could be on top.
® Now let’s do it!
> Open editor.planning.domains
> Choose File, then Load. Choose groundBlocksworldDomain.pdd!
from the zip for this course that can be downloaded from
“tinyurl.com/CCSE-2022-S1-planning’.
> Before you do the exercise, take a look at the actions
take-A-from-table and place-A-on-table.

@ Solution:

(raction stack—A—onto—B
:precondition (and (holdingA) (BisTopMost))
:effect (and (not (holdingA)) (gripperFree)
(AonB) (AisTopMost)
(not (BisTopMost))))
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Propositional Model: Required State Variables

@ We have 5 blocks called A, B, C, D, E.
|J-| @ Actions can use the gripper to:

® take a top-most block from a tower of size > 2, or
¢ take a block that lies on the table (tower of size 1).
B

D @ Actions can also use the gripper to:

¢ place its block onto another top-most block, or
® place the block in it onto the table.

So, which state variables do we need?
o AisTopMost, BisTopMost, etc. — to check whether we can grab it
@ AonB, AonC, etc. — so we can make the next block top-most
@ AonTable, BonTable, etc. — for the lowest block in each tower
@ holdingA, holdingB, etc. — to know what the gripper is holding
o gripperFree — so we know whether we can take a block

[7] Australian
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Propositional Model: Modeling the Unstack Actions

@ Now we model removing one block from another:

¢ Say we want to take block A into the gripper.

® We need support (i.e., an action) for each other block
b € {B, C, D, E} since that one could be beneath A — we need
this since we need to state that this one will be at top next.

¢ Backto editor.planning.domains!

@ Solution:

(:action unstack—A—from—B
:precondition (and (gripperFree)
(AonB) (AisTopMost))
:effect (and (not (gripperFree)) (holdingA)
(not (AonB)) (not (AisTopMost))
(BisTopMost)))
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Propositional Model: Modeling the Initial State

@ We now take a look at the problem definition.

Lo

EEE
B

initial state goal state

@ (Same as groundBlocksworldProblem-instance1.pdd])

(define (problem blocksworld—prob1)
(:domain blocksworld—ground)
(:init (AisTopMost) (AonB) (BonC) (ConTable)
(DisTopMost) (DonE) (EonTable))
(:goal (and (AisTopMost) (AonD) (DonC) (ConTable)
(EisTopMost) (EonB) (BonTable))))

Is this correct? No! The gripper being initially empty is missing!

Australian

]

' National
;5 Uﬁi\',%?gny Pascal Bercher 25.33

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

0000008000 000

Lifted Model: Required State Variables

@ We have 5 blocks called A, B, C, D, E.
@ Actions can use the gripper to:

|J‘| ® take a top-most block from a tower of size > 2, or
® take a block that lies on the table (tower of size 1).
B D @ Actions can also use the gripper to:

¢ place its block onto another top-most block, or
¢ place the block in it onto the table.

Which state-variables predicates do we need? Let ?b and ?b’ be variables.
topMost(?b) — to check whether we can grab 7b

(]

on(?b,?b’) — so we can make ?b’ the next top-most block
onTable(?b) — for the lowest block in each tower
holding(?b) — to know what the gripper is holding

®© 6 o6 o

gripperFree() — so we know whether we can take a block
— The problem instance lists all blocks as “objects”

7 ﬁu?tralilan
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@ We have seen that modeling still requires many actions!

® Each stack and unstack action requires n * (n — 1) different
variants when there are n blocks! (l.e, 5 x 4 x 2 = 40 actions just
for stack and unstack for n = 5 blocks).

® Also the number of existing state variables (defined in the domain
file) was quadratic! (36 for n = 5 blocks)

¢ (Although that’s much better than the exponential search space
increase (> 501 states for n = 5), we can still improve on that!)

@ We will now regard lifted planning problems, where one can
specify variables. This leads to an even more compact
representation! (In general, this gives an exponential size
decrease.)
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Lifted Model: Modeling the (Lifted) Unstack Action

@ Now we model removing one block from another:

® Say we want to take block 7b into the gripper.
® We need support (i.e., an action) for each other block
70’ € {A, B, C, D, E} since that one could be beneath ?b — we
need this since we need to state that 7?6’ one will be at top next.
¢ Again, do it!
> Choose File, then Load. Choose liftedBlocksworldDomain.pddl.
> You can again check the syntax by looking at the other actions.

@ Solution:

(:action unstack
:parameters (?b1 ?b2 — block)
:precondition (and (gripperFree)
(on ?b1 ?b2) (topMost ?b1))
:effect (and (not (gripperFree)) (holding ?b1)

Summary and Outlook

(not (on ?b1 ?b2)) (not (topMost ?b1))

(topMost ?b2)))
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Lifted Model: Solving Blocksworld

Now, solve it!
o Load the file liftedBlocksworldProblem-instance1.pddl.
@ Use the Solve button and select the right files.

'J_I 'J_I
_EB TS

initial state goal state
(unstack A B) 3 (stack D C)
(place-on-table A) (take-from-table A)
(unstack B C) 1 (stack AD)
(place-on-table B) [l (take-from-table E)
(unstack D E) (stack E B)
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How large does this (very compact) model become (now)? (n blocks)
@ Propositional model:
* O(n?) many actions and state variables.
o Lifted model:
® Only 4 € O(1) actions and 5 € O(1) predicates.
® n € O(n) blocks (as a simple list in the problem instance).
— Every blocksworld problem can be modeled with just 4 actions
and listing the n blocks. (Instead of specifying the state transition
system, which grows exponentially.)
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Summary: What did we do today?

o We've learned the formal foundations of Classical Planning
problems.

@ We've learned how they can be modeled using the Planning
Domain Description Language (PDDL).

@ We took a brief glance at the website planning.domains, which
features (among others) a tool for:

® Modeling planning problems in PDDL.
¢ Running a solver on these models.
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Outlook: What didn’t we do today?

@ There are (so!) many extensions of the classical model, e.g.,

® Uncertainty! Partial observability and probabilistic effects.

¢ Time (how long do actions take, and what happens when?).
® Resource consumption and production.

® Complex state trajectory constraints.

® Hierarchies among the actions. (My main research area!)

@ How so actually solve planning problems? (My research areal)
o Complexity analysis: How hard is it to solve a problem?
(My favorite research area!)

@ So much more, e.g.,

¢ Proving unsolvability.
¢ Plan explanations or explaining unsolvability.
® Modeling support.
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