Canberra Computer Science Enrichment:

A — Hands-on - Introduction to Automated Planning

Pascal Bercher

School of Computing
College of Engineering and Computer Science
the Australian National University (ANU)

13. May 2022

Australian
), National

3 University

Planning in a Nutshell
We consider classical planning problems, which consist of:
@ An initial state s, — all “world properties” true in the beginning.
@ A set of available actions — how world states can be changed.
@ A goal description g — all properties we’d like to hold.

What do we want?
— Find a plan that transforms s, into g.

intermediate states

PR
S JPEL AN N s2Og
S RN
“« ~ 'S

\

> e >e > e > e > e >

N 7
plan

description of the
initial world situation

description of desired
world properties

| Australian
| e.': National
L n

University ~ Pascal Bercher 2.33

Introduction
€0000000

Introduction

| Australian
— ,,_..J National

oy Uﬁ}versity Pascal Bercher 133

Introduction
00000000

Planning Games like Sokoban

Title: A Sokoban puzzle and its solution

Source: https://en.wikipedia.org/wiki/Sokoban
Puzzle Author: Carlos Montiers Aguilera

Graphics Author: Borgar Porsteinsson and Pascal Bercher.
The graphic has been modified multiple times (e.g., conversion from animated gif into this one.)

U?niversity Pascal Bercher 333

https://en.wikipedia.org/wiki/Sokoban

Introduction
00080000

Al Planning Problems

M=
® 7 ulim

Institut fir
Kiinstliche Intelligenz

Initial State

Australian

State Transition Systems

Planning Games like the Sliding Tile Puzzle

Blocksworld

ulm university universitat |

uim

Institut fur
Kunstliche Intelligenz

Goal State

Summary and Outlook

U

I lational
&E‘%ﬁ% University

Pascal Bercher

4.33

Introduction
00000800

g Problems

ition Systems

Planning Automated Factories like a Greenhouse

| =« 4

I

= O |Q W >

N

o ¢ 64

AR Y

=

AR

Source: https://www.lemnatec.com/

Further reading:

pp. 234-237

Copyright: With kind permission from LemnaTec GmbH

W The IPC Scanalyzer Domain in PDDL (see paper above).

nmary and Outlook

B M. Helmert and H. Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”. In:
Proc. of the 20th Int. Conf. on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,

Pascal Bercher

| [& Australian
<> National
§ == University

6.33

Introduction Problems

State Transition Systems

o MAPGEN (Mixed Initiative Activity Planning Generator) is a
ground-based decision support system for Mars Exploration
Rover mission operations and science teams that begins to give
content to the notion of autonomous planetary exploration.

@ The paradigm is to enable the person using the software to
critique a plan that the system automatically produces and ensure
that resulting plans are viable within mission and flight rules.

from https://www.nasa.gov/

| Australian

mmary and Outlook

National
S22 (Averdty Pascal Bercher

5.33

Introduction
00000080

ng Problems nsition Systems

Planning: A Domain-Independent Approach

@ Automated Planning is a domain-independent approach!
@ As mentioned in the beginning, the integral part is:

® The state descriptions: Which state properties exist?
¢ Actions: What can be done and how does this change states?

@ Planning technology is agnostic against specific applications!
(So all previous examples can be modeled as planning problems.)

@ Research bases on an abstract high-level description language.
Example action in a domain controlling Satellites:

:durative —action turn_to
:parameters (?s — satellite ?d new — direction ?d_prev — direction)
:duration (= ?duration 5)
:condition (and (at start (pointing ?s ?d_prev))
(over all (not (= ?d_new ?d_prev))))
(at end (pointing ?s ?d_new))
(at start (not (pointing ?s ?d_prev))))

:effect (and

Australian

mary and Outlook

< & National
23

University ~ Pascal Bercher

https://www.lemnatec.com/

Introduction nning Problems
O000000e ©

Domain-Independence: Pros vs. Cons

Advantages of Domain-independence:
o Use (well-tested) standard solvers:
¢ Cost-effective: only write the model, not new software
® Most likely there are less bugs
@ Optimality guarantees of solutions (find the cheapest).

@ Exploit further planning technology, e.g., automated support for:
® Model can be checked for problems.
¢ Existing techniques for proving unsolvability can be used.
¢ Plan explanation techniques can be exploited.
® Verify correctness of solutions.

Disadvantages of Domain-independence:

@ You need a planning expert to model the domain.
(But we will have many more in just like 60 minutes!)

@ Potential inefficiency: a domain-specific might be more efficient
than a domain-independent one.

[7 Australian

sition Systems 3| d Summary and Outlook

&/’% Hﬁ}\l/ersﬁy Pascal Bercher 5.33

Introduction Al Planning Problems
[O 0®0000

Problem Definition: Assumptions made in Classical Planning

We focus on the “base case” of Al planning: Classical Planning
@ Discrete: only instantaneous state changes (no time)
o Deterministic: outcomes of actions are known and unique
@ Fully observable: no hidden information anywhere
@ Single-agent: “the planner” controls all actions

intermediate states

Summary and Outlook

S /’,;/T::\\\ sOg
T TN
\.‘ \. \; \. ‘\. N
4 (4 (4 (4 (4 (4
N ~~ >
plan

description of the
initial world situation

description of desired
world properties

-7‘ Australian
> National
w,a University Pascal Bercher

10.33

. @ Australlan
g\ National

=3 University ~ Pascal Bercher

Al Planning Problems Transition Systems
°

Al Planning Problems

Australian

Summary and Outlook

/% ﬁﬁf\',%'r‘é‘ny Pascal Bercher

Al Planning Problems
000000

Problem Definition: Formalism

A classical planning problem P = (V. A, s;, g) consists of:
o Vis afinite set of state variables.

(=] » . move g
move
\Jocl loc2 locl loc2 locl loc2
put take put take move move
4 '\ move 7 unload ¢ 2
move load
locl loc2 locl loc2 locl loc2

Title: Lecture Slides for Automated Planning

Source: http://www.cs.umd.edu/ nau/planning/slides/chapter01.pdf
Author & License Dana S. Nau (BY-NC-SA 2.0 gneric)

Summary and Outlook

http://www.cs.umd.edu/~nau/planning/slides/chapter01.pdf

Introduction
00 o}

Al Planning Problems State Transition Systems

Blocksworld
008000 o DO 00 Yo

Summary and Outlook

Introduction

(e}

Al Planning Problems State Transition Systems Blocksworld
ole} 008000 000000 o 0C 000

Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:
@ Vis afinite set of state variables.

e o\ s
,ﬁ So N move

move
\Jocl loc2 4 \Jocl loc2 / \Jocl loc2 /
put \take put \take move ‘ move
) ©\ move [5% "\ unload /~ ¢ S
move load
\Jocl locz J \Jocl loc2 \locl loc2 /

copyright: see slide ?? (first sub slide)

V = {CrateAtLoc1, CrateInCrane, CratelnTruck,
TruckAtLoc1, TruckAtLoc2}

Australian

» National

3 University Pascal Bercher

11.33

Introduction Al Planning Problems State Transition Systems Blocksworld

00@000 (e] ole} (e]e] 000

e]e] o}

Summary and Outlook

Introduction

(e}

Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:
@ Vs afinite set of state variables.
® States are sets consisting of state variables (also called facts).
e S0\
This state sg is formalized as:
{CrateAtLoc1, TruckAtLoc2}

\Jocl loc2 J
® We assume the closed world assumption, where all variables not
mentioned in a state s do not hold. In contrast to the open world
assumption where it's unknown whether they hold or not).
> E.g., TruckAtLoc2 € s, so it's currently true in state so.
> E.g., CrateinCrane ¢ sy, so it's currently false in that state sp.
* S = 2" is called the state space. (The set of all states.)

Australian

National

3 University ~ Pascal Bercher

11.33

Al Planning Problems State Transition Systems

Blocksworld
oJe] 00e000 000000 [e) O

Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:

@ Ais afinite set of actions. Each action a € Ais a tuple
(pre, add, del, c) € 2 x 2V x 2¥ x R* consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).

ﬁ&b move ‘ ‘
| move |

\Jocl loc2 Wocl loc2 ~ / \Jocl loc2

{ ltake]
move ;ﬁ' unload S
move load
— —

Lol loc2 / \Joc1 loc2 J \Jocl loc2

ltake move move

copyright: see slide ?? (first sub slide)

take pre: {CrateAtLoc1} put pre: {CratelnCrane}
add: {CrateInCrane} add: {CrateAtLoc1}
del: {CrateAtLoc1} del: {CrateInCrane}

Australian

% National

g*;,, ~3 University ~ Pascal Bercher

11.33

Problem Definition: Formalism

A classical planning problem P = (V. A, s;, g) consists of:

o Ais afinite set of actions. Each action a € Ais a tuple
(pre, add, del, c) € 2 x 2V x 2¥ x R* consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).

==fj) _move [O)
ﬁ&b move ‘ ‘
—

\Jocl loc2 Wocl loc2 \Jocl loc2

[ltake]
move [S unload A
1
move load
— —

Lol loc2 J \Jocl loc2 J \ocl loc2

J take move move

copyright: see slide ?? (first sub slide)

moveleft pre: {TruckAtLoc2} moveRight pre: {TruckAtLoc1}
add: {TruckAtLoc1} add: {TruckAtLoc2}
del: {TruckAtLoc2} del: {TruckAtLoc1}
Australian
3] LNJﬁit\[/%rr‘gilty Pascal Bercher 1133

Al Planning Problems

State Transition Systems Blocksworld
008000 0000 0 o]

Summary and Outlook

Al Planning Problems State Transition Systems Blocksworld
008000 ¢ ofe C

Summary and Outlook

Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:

o Ais afinite set of actions. Each action a € Ais a tuple
(pre, add, del, c) € 2 x 2V x 2¥ x R* consisting of a
precondition, add and delete list, and action costs. For
convenience, we write pre(a), add(a), del(a), and c(a).

ﬁ N move [- SN - ,A=17 SN
o,

\Jocl loc2 \ocl loc2 P ocl loc2

[[take]
move [?ﬁ' unload
move load

Cocl loc2 Uocl loc2 Uocl. o2/

copyright: see slide ?? (first sub slide)

ltake move [move

load pre: {CrateInCrane, TruckAtLoc1} unload pre: {CratelnTruck, TruckAtLoc1}

add: {CrateInTruck} add: {CrateIlnCrane}
del: {CrateInCrane} del: {CrateInTruck}
| [Z] Australian
= fa ”ﬁit\',%?gilw Pascal Bercher 11.33

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

00C 00 000800 000000 (e]e] le]e} 000

Problem Definition: Formalism

A classical planning problem P = (V, A, s;, g) consists of:
@ s; € Sis theinitial state (complete state description).
o g C Vs the goal description.

® Each state s € S with s D g is called a goal state.
* We abbreviate the set of goal states with G={s € S| s D g}

St e)

ocl loc2 Vlocl loc2 Jocl loc2

put[ltake put] ltake move I move
(| ° move [ﬁ “hunload 7 =

move load

\Jocl loc2 \Joci loca — / \oct loc2 J

copyright: see slide ?? (first sub slide)

s; = {CrateAtLoc1, TruckAtLoc2} = sy
g = {CrateInTruck, TruckAtLoc2}, thus: G = {ss} since s5 2 g.

| Australian

National
3 University ~ Pascal Bercher

11.33

Introduction Al Planning Problems State Transition Systems Blocksworld
o ole} [e]e]e] lele] 000000 @ O

Summary and Outlook

Problem Definition: Formalism, contd |

@ An action a € Ais called applicable (or executable) in a state
s € Sifand only if pre(a) C s.

o If pre(a) C s holds, its application results into the successor state
v(a,s) = (s\ del(a)) U add(a). v : Ax S — Sis called the
state transition function.

— Example: The action...

take pre: {CrateAtLoc1}
add: {CrateInCrane}
del: {CrateAtLoc1}

. is applicable in state s, = {CrateAtLoc1, TruckAtLoc2}
resulting into { TruckAtLoc2, CratelnCrane}.

Australian

National
@v Uﬁl\lloerr‘gny Pascal Bercher 12.33

Problem Definition: Formalism, contd |

@ An action a € Ais called applicable (or executable) in a state
s € Sifand only if pre(a) C s.

o If pre(a) C s holds, its application results into the successor state
v(a,s) = (s\ del(a)) U add(a). v : Ax S — Sis called the
state transition function.

@ An action sequence a = a, . . .,
and only if

® forall0 < i< n—1 g is applicable in s;, where forall 1 </ < n,
s; denotes the resulting state of applying ag, ..., a to s = s;.
¢ This means: Each action is applicable in its predecessor state.

an—1 is applicable in a state sj if

@ We extend the state transition function to work on action
sequences as well, i.e., v : A* x S — S. (Definition omitted.)

ﬁustrall?n
lational
3 University Pascal Bercher

12.33

Al Planning Problems on Systems

Summary and Outlook

Al Planning Problems Transition Systems

0000@0

Problem Definition: Formalism, contd Il

Solution:

@ An action sequence a consisting of 0 or more actions is called a
plan or solution to a classical planning problem if and only if:
® ais applicable in s;.
® aresults into a goal state, i.e., v(a,s/) 2 g.

(1) ¢ move [

move
E—
\Joc1 loc2) \Jocl loc2 \Jocl loc2 /
put Jtake put take movel Imove
\n\ - . :
4 @ il \ move [ﬁ ““unload /4 0
move load
. R
\Jocl loc2 locl loc2 Y oct loc2

copyright: see slide ?? (first sub slide)

Solution: take, moveleft, load, moveRight

[j ﬁgﬁtrahan

& /’% University

Pascal Bercher 13.33

nning Problems State Transition Systems

Summary and Outlook
@00000 o)

State Transition Systems

Muﬁ.&ers‘w Pascal Bercher 15.33

: &//% University

= Australlan
National
M Unlversuty

00000e

Problem Definition: Formalism, cont’d Il

This is everything about the classical planning formalism! |.e.,
@ Formal definition of the “planning problem”.

@ Formal definition of any “plan”, i.e., solution.
Most notabily, this includes the definition of action application.

Questions so far?

Summary and Outlook

| Australian
<S4, National

Pascal Bercher

14.33

State Transition Systems
000000

Al Planning Problems

What's a State Transition System?

o State transition systems are the “underlying semantics” of
classical planning problems.

@ They explicitly show all states and how they can be traversed by
actions.

@ We use them to give an intuition on how hard solving planning
problems can become (and how easy it is to model them)!

Summary and Outlook

Pascal Bercher

16.33

Introduction
0000000

Al Planning Problems

State Transition Systems
008000

Blocksworld
000000¢ 000

Summary and Outlook

Introduction

State Transition Systems

Y 3
«ZS=, National
L‘;»Ef;ia University

Example for a State Transition System

A state transition systemis

@ just a graph consisting of states and labeled edges

o with a designated initial state and designated goal states
as seen before:

e ﬁ s\ move [

move

\Jocl loc2 % \Jocl loc2 J \Jocl loc2 J

put] \ take put J take move \ { move

a "\ move [Sf:ﬂ “\unload [¢ Y
move load

\locl loc2 \locl loc2 \Jocl loc2

copyright: see slide ?? (first sub slide)

[&] Australian

&S

Pascal Bercher

17.33

Introduction Al Planning Problems State Transition Systems

Blocksworld
[e]e]e]e] Je) (e]e}

0000 000

Size Increase of the State Space in Blocksworld

@ We have: nblocks, 1 gripper, and two actions, each
takes a top-most block with the gripper and
IJ'I ® puts it immediately onto some other top-most block
ﬁ i ® or onto the table, respectively.
o We want: transform the initial towers into another,
given set of towers.

blocks states blocks states
1 1 10 58,941,091
2 3 11 824,073,141
3 13 12 12,470,162,233
4 73 13 202,976,401,213
5 501 14 3,535,017,524,403
6 4,051 15 65,573,803,186,921
7 37,633 16 1,290,434,218,669,921
8 394,353 17 26,846,616,451,246,353
9 4,596,553 18 588,633,468,315,403,843

Australian

Summary and Outlook

[@@ National

~“3 University ~ Pascal Bercher

19.33

Al Planning Problems Blocksworld
000000 000000000

00C

(e]e]e] Tole] 000

Formal Definition of State Transition System

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T, I, G), where

©

S is a finite set of states.

L is a finite set of transition labels.

¢: L — RT is a cost function.

T C S x L x Sis the transition relation.
| € Sis the initial state.

G C Siis the set of goal states.

So where’s the difference to a planning?

— Classical planning problems P = (V, A, s;, g) are compact
representations of state transition systems!

Australian

Summary and Outlook

National
=3 University

Pascal Bercher

18.33

State Transition Systems

Introduction
fo) O0000e

00C

Al Planning Problems

Blocksworld

Size of Planning Problems vs. State Transition Systems

@ We can thus see that planning problems are much more compact
representations of state transition systems.

@ Compare, e.g., the size of blocksworld domain with n = 5 blocks
(which will have only a few actions) to the state size of > 501.

o Exercise! We will model this simple blocksworld problem!

@ We give some details here, but then use an online PDDL
(Planning Domain Description Language) editor.

Summary and Outlook

Australian
5 National
3 University

Pascal Bercher

20.33

Al Planning Problems Si Transition Systems Blocksworld Summary and Outlook

A Hands-on Exercise: Modeling Blocksworld

Australian

,’% Hﬁ}\'/ersny Pascal Bercher

S =

Introduction Al Planning Problems > Transition Systems Blocksworld Summary and Outlook

00@000C

Propositional Model: Modeling the Stack Actions

@ Now we model putting one block on another:
® Say we have block A in the gripper.
® We need support (i.e., an action) for each other block
b € {B, C, D, E} since that one could be on top.
® Now let’s do it!
> Open editor.planning.domains
> Choose File, then Load. Choose groundBlocksworldDomain.pdd!
from the zip for this course that can be downloaded from
“tinyurl.com/CCSE-2022-S1-planning’.
> Before you do the exercise, take a look at the actions
take-A-from-table and place-A-on-table.

@ Solution:

(raction stack—A—onto—B
:precondition (and (holdingA) (BisTopMost))
:effect (and (not (holdingA)) (gripperFree)
(AonB) (AisTopMost)
(not (BisTopMost))))

" Australian

National

g‘\vfa University ~ Pascal Bercher

Al Planning Problems State Transition Systems Blocksworld Summary and Outlook
@ 0800000000

Propositional Model: Required State Variables

@ We have 5 blocks called A, B, C, D, E.
|J-| @ Actions can use the gripper to:

® take a top-most block from a tower of size > 2, or
¢ take a block that lies on the table (tower of size 1).
B

D @ Actions can also use the gripper to:

¢ place its block onto another top-most block, or
® place the block in it onto the table.

So, which state variables do we need?
o AisTopMost, BisTopMost, etc. — to check whether we can grab it
@ AonB, AonC, etc. — so we can make the next block top-most
@ AonTable, BonTable, etc. — for the lowest block in each tower
@ holdingA, holdingB, etc. — to know what the gripper is holding
o gripperFree — so we know whether we can take a block

[7] Australian

/% Hﬁf\',%',‘é‘ny Pascal Bercher 22.33

Introduction Al Planning Problems te Transition Systems Blocksworld Summary and Outlook
D (¢] (e] 0008000000 (

Propositional Model: Modeling the Unstack Actions

@ Now we model removing one block from another:

¢ Say we want to take block A into the gripper.

® We need support (i.e., an action) for each other block
b € {B, C, D, E} since that one could be beneath A — we need
this since we need to state that this one will be at top next.

¢ Backto editor.planning.domains!

@ Solution:

(:action unstack—A—from—B
:precondition (and (gripperFree)
(AonB) (AisTopMost))
:effect (and (not (gripperFree)) (holdingA)
(not (AonB)) (not (AisTopMost))
(BisTopMost)))

| Australian

National

- &
&,a University ~ Pascal Bercher 2433

editor.planning.domains
tinyurl.com/CCSE-2022-S1-planning
editor.planning.domains

Introduction Al Planning Problems

State Transition Systems Blocksworld Summary and Outlook

Introduction Al Planning Problems State Transition Systems Blocksworld

Summary and Outlook

Q0000000 000000 000000 0000@00000 000

Propositional Model: Modeling the Initial State

@ We now take a look at the problem definition.

Lo

EEE
B

initial state goal state

@ (Same as groundBlocksworldProblem-instance1.pdd])

(define (problem blocksworld—prob1)
(:domain blocksworld—ground)
(:init (AisTopMost) (AonB) (BonC) (ConTable)
(DisTopMost) (DonE) (EonTable))
(:goal (and (AisTopMost) (AonD) (DonC) (ConTable)
(EisTopMost) (EonB) (BonTable))))

Is this correct? No! The gripper being initially empty is missing!

Australian

]

' National
;5 Uﬁi\',%?gny Pascal Bercher 25.33

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

0000008000 000

Lifted Model: Required State Variables

@ We have 5 blocks called A, B, C, D, E.
@ Actions can use the gripper to:

|J‘| ® take a top-most block from a tower of size > 2, or
® take a block that lies on the table (tower of size 1).
B D @ Actions can also use the gripper to:

¢ place its block onto another top-most block, or
¢ place the block in it onto the table.

Which state-variables predicates do we need? Let ?b and ?b’ be variables.
topMost(?b) — to check whether we can grab 7b

(]

on(?b,?b’) — so we can make ?b’ the next top-most block
onTable(?b) — for the lowest block in each tower
holding(?b) — to know what the gripper is holding

®© 6 o6 o

gripperFree() — so we know whether we can take a block
— The problem instance lists all blocks as “objects”

7 ﬁu?tralilan
== lational
£=a Uni\l/ersity Pascal Bercher 27.33

Q0000000

Lifted Model: A “Lifted” Blocksworld Model

0000080000 000

@ We have seen that modeling still requires many actions!

® Each stack and unstack action requires n * (n — 1) different
variants when there are n blocks! (l.e, 5 x 4 x 2 = 40 actions just
for stack and unstack for n = 5 blocks).

® Also the number of existing state variables (defined in the domain
file) was quadratic! (36 for n = 5 blocks)

¢ (Although that’s much better than the exponential search space
increase (> 501 states for n = 5), we can still improve on that!)

@ We will now regard lifted planning problems, where one can
specify variables. This leads to an even more compact
representation! (In general, this gives an exponential size
decrease.)

Australian

National
University Pascal Bercher

26.33

Introduction Al Planning Problems State Transition Systems Blocksworld

0000000800 000

Lifted Model: Modeling the (Lifted) Unstack Action

@ Now we model removing one block from another:

® Say we want to take block 7b into the gripper.
® We need support (i.e., an action) for each other block
70’ € {A, B, C, D, E} since that one could be beneath ?b — we
need this since we need to state that 7?6’ one will be at top next.
¢ Again, do it!
> Choose File, then Load. Choose liftedBlocksworldDomain.pddl.
> You can again check the syntax by looking at the other actions.

@ Solution:

(:action unstack
:parameters (?b1 ?b2 — block)
:precondition (and (gripperFree)
(on ?b1 ?b2) (topMost ?b1))
:effect (and (not (gripperFree)) (holding ?b1)

Summary and Outlook

(not (on ?b1 ?b2)) (not (topMost ?b1))

(topMost ?b2)))

| Australian

i National
:5 University ~ Pascal Bercher

28.33

Blocksworld

anning Problems 1sition Systems Summary and Outlook

Lifted Model: Solving Blocksworld

Now, solve it!
o Load the file liftedBlocksworldProblem-instance1.pddl.
@ Use the Solve button and select the right files.

'J_I 'J_I
_EB TS

initial state goal state
(unstack A B) 3 (stack D C)
(place-on-table A) (take-from-table A)
(unstack B C) 1 (stack AD)
(place-on-table B) [l (take-from-table E)
(unstack D E) (stack E B)

[;‘ Australian

&\"gj% Hﬁ}\',%',‘éi'.y Pascal Bercher 29.33

State Transition Systems d Summary and Outlook
00 @00

sition Systems Blocksworld

Summary and Outlook

How large does this (very compact) model become (now)? (n blocks)
@ Propositional model:
* O(n?) many actions and state variables.
o Lifted model:
® Only 4 € O(1) actions and 5 € O(1) predicates.
® n € O(n) blocks (as a simple list in the problem instance).
— Every blocksworld problem can be modeled with just 4 actions
and listing the n blocks. (Instead of specifying the state transition
system, which grows exponentially.)

| Australian

=
&&3‘2% Hﬁf\',%',‘é.'ty Pascal Bercher 30.33

sition Systems Blocksworld Summary and Outlook
@ 000

Summary and Outlook

Australian

— £l e
@uﬁi&%’gw Pascal Bercher 3133

Summary: What did we do today?

o We've learned the formal foundations of Classical Planning
problems.

@ We've learned how they can be modeled using the Planning
Domain Description Language (PDDL).

@ We took a brief glance at the website planning.domains, which
features (among others) a tool for:

® Modeling planning problems in PDDL.
¢ Running a solver on these models.

Australian

£l fustale
g«g/»%uﬁib‘;’,‘gw Pascal Bercher 32.33

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook
00000000 000000 000000 0000000000 ooe

Outlook: What didn’t we do today?

@ There are (so!) many extensions of the classical model, e.g.,

® Uncertainty! Partial observability and probabilistic effects.

¢ Time (how long do actions take, and what happens when?).
® Resource consumption and production.

® Complex state trajectory constraints.

® Hierarchies among the actions. (My main research area!)

@ How so actually solve planning problems? (My research areal)
o Complexity analysis: How hard is it to solve a problem?
(My favorite research area!)

@ So much more, e.g.,

¢ Proving unsolvability.
¢ Plan explanations or explaining unsolvability.
® Modeling support.

Australian

2 ”git\[,%?gilw Pascal Bercher 33.33

	Introduction
	AI Planning Problems
	Problem Definition

	State Transition Systems
	A Hands-on Exercise: Modeling Blocksworld
	Propositional Model
	Lifted Model

	Summary and Outlook
	Summary
	Outlook

