Canberra Computer Science Enrichment: A – Hands-on – Introduction to Automated Planning

Pascal Bercher

School of Computing
College of Engineering and Computer Science
the Australian National University (ANU)

13. May 2022

0000000 000000

lems State Transition Sys

Blocksworld

Summary and Outlo

2.33

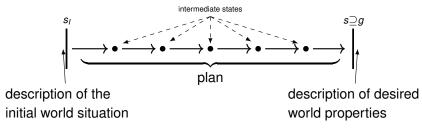
Planning in a Nutshell

We consider classical planning problems, which consist of:

- An initial state s_l all "world properties" true in the beginning.
- A set of available actions how world states can be changed.
- A goal description g all properties we'd like to hold.

What do we want?

 \rightarrow Find a *plan* that transforms s_l into g.



 Introduction
 AI Planning Problems
 State Transition Systems
 Blocksworld
 Summary and Outlook

 ◆000000
 000000
 0000000
 00000000
 000

Introduction

Pascal Bercher

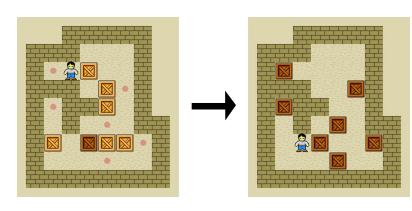
Systems Block

Summary and Outloo

1.33

3.33

Planning Games like Sokoban



Title: A Sokoban puzzle and its solution

Source: https://en.wikipedia.org/wiki/Sokoban

Puzzle Author: Carlos Montiers Aguilera

Graphics Author: Borgar Porsteinsson and Pascal Bercher.

The graphic has been modified multiple times (e.g., conversion from animated gif into this one.)

ity Pascal I

Pascal Bercher

Aust Natio

Initial State

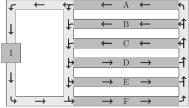
Goal State

Pascal Bercher

Introduction

4.33

Planning Automated Factories like a Greenhouse



Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading

- M. Helmert and H. Lasinger. "The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem". In: Proc. of the 20th Int. Conf. on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,
- The IPC Scanalyzer Domain in PDDL (see paper above).

Planning Robots like the Mars Rovers

- MAPGEN (Mixed Initiative Activity Planning Generator) is a ground-based decision support system for Mars Exploration Rover mission operations and science teams that begins to give content to the notion of autonomous planetary exploration.
- The paradigm is to enable the person using the software to critique a plan that the system automatically produces and ensure that resulting plans are viable within mission and flight rules.

from https://www.nasa.gov/

Pascal Bercher

5.33

Introduction

Planning: A Domain-Independent Approach

- Automated Planning is a domain-independent approach!
- As mentioned in the beginning, the integral part is:
 - The state descriptions: Which state properties exist?
 - Actions: What can be done and how does this change states?
- Planning technology is agnostic against specific applications! (So all previous examples can be modeled as planning problems.)
- Research bases on an abstract high-level description language. Example action in a domain controlling Satellites:

```
(:durative-action turn_to
:parameters (?s - satellite ?d_new - direction ?d_prev - direction)
:duration (= ?duration 5)
:condition (and (at start (pointing ?s ?d_prev))
                (over all (not (= ?d_new ?d_prev))))
:effect (and (at end (pointing ?s ?d new))
               (at start (not (pointing ?s ?d prev))))
```


Pascal Bercher

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

Domain-Independence: Pros vs. Cons

Advantages of Domain-independence:

- Use (well-tested) standard solvers:
 - Cost-effective: only write the model, not new software
 - Most likely there are less bugs
- Optimality guarantees of solutions (find the cheapest).
- Exploit further planning technology, e.g., automated support for:
 - Model can be checked for problems.
 - Existing techniques for proving unsolvability can be used.
 - Plan explanation techniques can be exploited.
 - Verify correctness of solutions.

Disadvantages of Domain-independence:

- You need a planning expert to model the domain.
 (But we will have many more in just like 60 minutes!)
- Potential inefficiency: a domain-specific *might* be more efficient than a domain-independent one.

Pascal Bercher

8.33

Introduction

Al Planning Problems

State Transition Systems

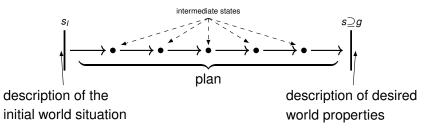
000000000

Summary and Outloo

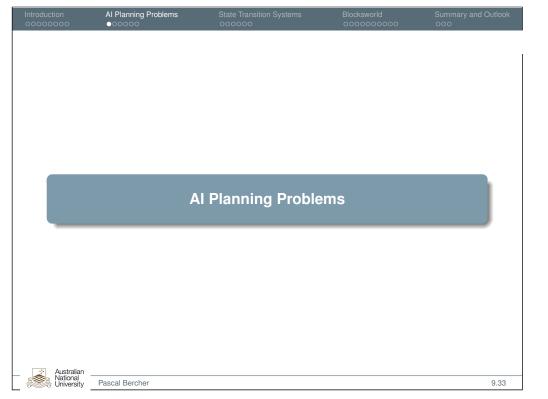
Problem Definition: Assumptions made in Classical Planning

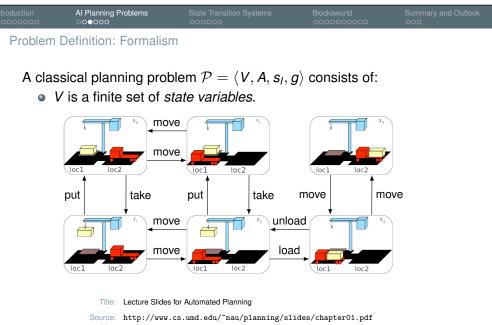
We focus on the "base case" of Al planning: Classical Planning

- Discrete: only instantaneous state changes (no time)
- Deterministic: outcomes of actions are known and unique
- Fully observable: no hidden information anywhere
- Single-agent: "the planner" controls all actions



Pascal Bercher 10.33





11.33

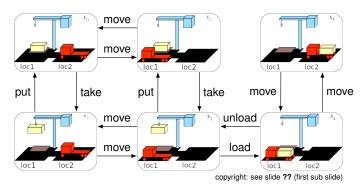
Author & License Dana S. Nau (BY-NC-SA 2.0 gneric)

Al Planning Problems

Problem Definition: Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

V is a finite set of state variables.



 $V = \{ CrateAtLoc1, CrateInCrane, CrateInTruck, \}$ TruckAtLoc1, TruckAtLoc2}

Pascal Bercher

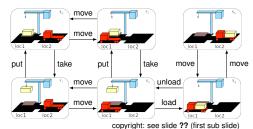
11.33

Problem Definition: Formalism

Al Planning Problems

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

• A is a finite set of actions. Each action $a \in A$ is a tuple $(pre, add, del, c) \in 2^{V} \times 2^{V} \times 2^{V} \times \mathbb{R}^{+}$ consisting of a precondition, add and delete list, and action costs. For convenience, we write pre(a), add(a), del(a), and c(a).



{CrateAtLoc1} {CrateInCrane}

Pascal Bercher

{CrateAtLoc1}

{CrateInCrane}

{CrateInCrane} {CrateAtLoc1}

Problem Definition: Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

- V is a finite set of state variables.
 - States are sets consisting of state variables (also called facts).

This state s_0 is formalized as: { CrateAtLoc1, TruckAtLoc2}

- We assume the closed world assumption, where all variables not mentioned in a state s do not hold. In contrast to the open world assumption where it's unknown whether they hold or not).
 - ▶ E.g., $TruckAtLoc2 \in s_0$, so it's currently true in state s_0 .
 - ▶ E.g., *CrateInCrane* \notin s_0 , so it's currently false in that state s_0 .
- $S = 2^V$ is called the *state space*. (The set of all states.)

Pascal Bercher

11.33

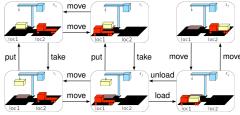
11.33

Al Planning Problems

Problem Definition: Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

• A is a finite set of actions. Each action $a \in A$ is a tuple $(pre, add, del, c) \in 2^{V} \times 2^{V} \times 2^{V} \times \mathbb{R}^{+}$ consisting of a precondition, add and delete list, and action costs. For convenience, we write pre(a), add(a), del(a), and c(a).



{TruckAtLoc2}

moveLeft pre: {TruckAtLoc2} {TruckAtLoc1}

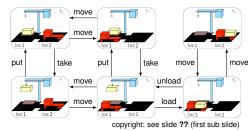
moveRight {TruckAtLoc1} {TruckAtLoc2}

{TruckAtLoc1}

Problem Definition: Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

• A is a finite set of actions. Each action $a \in A$ is a tuple $(pre, add, del, c) \in 2^{V} \times 2^{V} \times 2^{V} \times \mathbb{R}^{+}$ consisting of a precondition, add and delete list, and action costs. For convenience, we write pre(a), add(a), del(a), and c(a).



{CrateInCrane, TruckAtLoc1} unload {CrateInTruck, TruckAtLoc1}

{CrateInCrane} {CrateInCrane} {CrateInTruck}

Pascal Bercher

Al Planning Problems

11.33

Problem Definition: Formalism, cont'd I

- An action $a \in A$ is called *applicable* (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$.
- If $pre(a) \subseteq s$ holds, its application results into the successor state $\gamma(a,s)=(s\setminus del(a))\cup add(a).\ \gamma:A\times S\to S$ is called the state transition function.
- \rightarrow Example: The action...

take pre: {CrateAtLoc1}

{CrateInCrane} add:

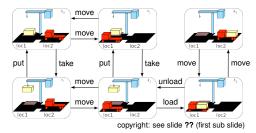
del: {CrateAtLoc1}

... is applicable in state $s_0 = \{CrateAtLoc1, TruckAtLoc2\}$ resulting into { *TruckAtLoc2*, *CrateInCrane*}.

Problem Definition: Formalism

A classical planning problem $\mathcal{P} = \langle V, A, s_l, g \rangle$ consists of:

- $s_l \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description.
 - Each state $s \in S$ with $s \supset g$ is called a goal state.
 - We abbreviate the set of goal states with $G = \{s \in S \mid s \supset g\}$



 $s_i = \{\text{CrateAtLoc1}, \text{TruckAtLoc2}\} = s_0$ $g = \{ \text{CrateInTruck, TruckAtLoc2} \}, \text{ thus: } G = \{ s_5 \} \text{ since } s_5 \supset g.$

Pascal Bercher

11.33

Al Planning Problems

Problem Definition: Formalism, cont'd I

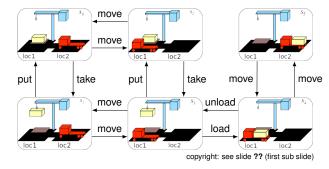
- An action $a \in A$ is called *applicable* (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$.
- If $pre(a) \subseteq s$ holds, its application results into the successor state $\gamma(a,s) = (s \setminus del(a)) \cup add(a)$. $\gamma : A \times S \rightarrow S$ is called the state transition function.
- An action sequence $\overline{a} = a_0, \dots, a_{n-1}$ is applicable in a state s_0 if and only if
 - for all $0 \le i \le n-1$ a_i is applicable in s_i , where for all $1 \le i \le n$, s_i denotes the resulting state of applying a_0, \ldots, a_i to $s_0 = s_i$.
 - This means: Each action is applicable in its predecessor state.
- We extend the state transition function to work on action sequences as well, i.e., $\gamma: A^* \times S \rightarrow S$. (Definition omitted.)

ntroduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

Problem Definition: Formalism, cont'd II

Solution:

- An action sequence \overline{a} consisting of 0 or more actions is called a plan or solution to a classical planning problem if and only if:
 - \overline{a} is applicable in s_l .
 - \overline{a} results into a goal state, i.e., $\gamma(\overline{a}, s_l) \supseteq g$.



Solution: take, moveLeft, load, moveRight

Pascal Bercher

stroduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

State Transition Systems

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outloo

Problem Definition: Formalism, cont'd II

This is everything about the classical planning formalism! I.e.,

- Formal definition of the "planning problem".
- Formal definition of any "plan", i.e., solution.
 Most notably, this includes the definition of action application.

Questions so far?

13.33

Pascal Bercher

14.33

on A

lanning Problems State Tra

Blocksworld

Summary and Outlook

What's a State Transition System?

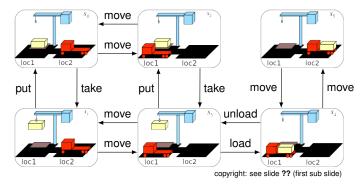
- State transition systems are the "underlying semantics" of classical planning problems.
- They *explicitly* show all states and how they can be traversed by actions.
- We use them to give an intuition on how hard solving planning problems can become (and how easy it is to model them)!

Pascal Bercher 15.33

Example for a State Transition System

A state transition system is

- just a graph consisting of states and labeled edges
- with a designated initial state and designated goal states as seen before:



Pascal Bercher

17.33

19.33

Size Increase of the State Space in Blocksworld

- We have: n blocks, 1 gripper, and two actions, each takes a top-most block with the gripper and
 - puts it immediately onto some other top-most block
 - or onto the table, respectively.
- We want: transform the initial towers into another. given set of towers.

blocks	states	blocks	states
1	1	10	58,941,091
2	3	11	824,073,141
3	13	12	12,470,162,233
4	73	13	202,976,401,213
5	501	14	3,535,017,524,403
6	4,051	15	65,573,803,186,921
7	37,633	16	1,290,434,218,669,921
8	394,353	17	26,846,616,451,246,353
9	4,596,553	18	588,633,468,315,403,843

Pascal Bercher

Formal Definition of State Transition System

Definition (State Transition System)

A state transition system is a 6-tuple (S, L, c, T, I, G), where

- S is a finite set of states.
- L is a finite set of transition labels.
- $c: L \to \mathbb{R}^+$ is a cost function.
- $T \subseteq S \times L \times S$ is the transition relation.
- $I \in S$ is the initial state.
- $G \subseteq S$ is the set of goal states.

So where's the difference to a planning?

 \rightarrow Classical planning problems $\mathcal{P} = \langle V, A, s_l, g \rangle$ are *compact* representations of state transition systems!

18.33

Size of Planning Problems vs. State Transition Systems

- We can thus see that planning problems are much more compact representations of state transition systems.
- Compare, e.g., the size of blocksworld domain with n = 5 blocks (which will have only a few actions) to the state size of > 501.
- Exercise! We will model this simple blocksworld problem!
- We give some details here, but then use an online PDDL (Planning Domain Description Language) editor.

Introduction AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

A Hands-on Exercise: Modeling Blocksworld

Pascal Bercher

. 0,0.0...0

Summary and Outlook

21.33

23.33

Propositional Model: Modeling the Stack Actions

- Now we model putting one block on another:
 - Say we have block *A* in the gripper.
 - We need support (i.e., an action) for each other block $b \in \{B, C, D, E\}$ since that one could be on top.
 - Now let's do it!
 - Open editor.planning.domains
 - Choose File, then Load. Choose groundBlocksworldDomain.pddl from the zip for this course that can be downloaded from "tinyurl.com/CCSE-2022-S1-planning".
 - ▶ Before you do the exercise, take a look at the actions take-A-from-table and place-A-on-table.
- Solution:

ction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

Propositional Model: Required State Variables

- We have 5 blocks called A, B, C, D, E.
- Actions can use the gripper to:
 - take a top-most block from a tower of size ≥ 2, or
 - take a block that lies on the table (tower of size 1).
- Actions can also use the gripper to:
 - place its block onto another top-most block, or
 - place the block in it onto the table.

So, which state variables do we need?

- AisTopMost, BisTopMost, etc. to check whether we can grab it
- AonB, AonC, etc. so we can make the next block top-most
- AonTable, BonTable, etc. for the lowest block in each tower
- holdingA, holdingB, etc. to know what the gripper is holding
- gripperFree so we know whether we can take a block

Pascal Bercher

Introduction 0000000 Al Planning Problen

State Transition System

Blocksworld

Summary and Outloo

Propositional Model: Modeling the Unstack Actions

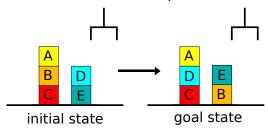
- Now we model removing one block from another:
 - Say we want to take block A into the gripper.
 - We need support (i.e., an action) for each other block
 b ∈ {B, C, D, E} since that one could be beneath A we need this since we need to state that this one will be at top next.
 - Back to editor.planning.domains!
- Solution:

Pascal Bercher 24.33

ntroduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

Propositional Model: Modeling the Initial State

• We now take a look at the problem definition.



• (Same as groundBlocksworldProblem-Instance1.pddl)

Is this correct? No! The gripper being initially empty is missing!

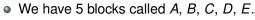
Pascal Bercher

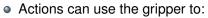
oduction Al Planning Problems

ansition Systems Biockswor 000000 Summary and Outloo

25.33

Lifted Model: Required State Variables





- take a top-most block from a tower of size \geq 2, or
- take a block that lies on the table (tower of size 1).
- Actions can also use the gripper to:
 - place its block onto another top-most block, or
 - place the block in it onto the table.

Which state variables predicates do we need? Let ?b and ?b' be variables.

- topMost(?b) to check whether we can grab ?b
- on(?b,?b') so we can make ?b' the next top-most block
- onTable(?b) for the lowest block in each tower
- holding(?b) to know what the gripper is holding
- gripperFree() so we know whether we can take a block
 - → The problem instance lists all blocks as "objects"

Pascal Bercher 27.33

Introduction Al Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: A "Lifted" Blocksworld Model

- We have seen that modeling still requires many actions!
 - Each stack and unstack action requires n * (n 1) different variants when there are n blocks! (I.e, 5 * 4 * 2 = 40 actions just for stack and unstack for n = 5 blocks).
 - Also the number of existing state variables (defined in the domain file) was quadratic! (36 for n = 5 blocks)
 - (Although that's much better than the exponential search space increase (> 501 states for n = 5), we can still improve on that!)
- We will now regard *lifted* planning problems, where one can specify variables. This leads to an even more compact representation! (In general, this gives an exponential size decrease.)

Pascal Bercher

Blocksworld Summary and Outloo

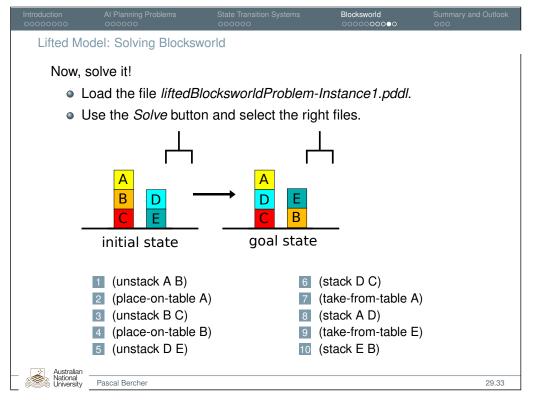
26.33

Lifted Model: Modeling the (Lifted) Unstack Action

- Now we model removing one block from another:
 - Say we want to take block ?b into the gripper.
 - We need support (i.e., an action) for each other block $?b' \in \{A, B, C, D, E\}$ since that one could be beneath ?b we need this since we need to state that ?b' one will be at top next.
 - Again, do it!
 - Choose File, then Load. Choose liftedBlocksworldDomain.pddl.
 - You can again check the syntax by looking at the other actions.
- Solution:

Pascal Bercher

28.33





Introduction AI Planning Problems State Transition Systems Blocksworld Summary and Outlook

Lifted Model: Size of the Lifted Model

How large does this (very compact) model become (now)? (*n* blocks)

- Propositional model:
 - $O(n^2)$ many actions and state variables.
- Lifted model:
 - Only $4 \in O(1)$ actions and $5 \in O(1)$ predicates.
 - $n \in O(n)$ blocks (as a simple list in the problem instance).
- → Every blocksworld problem can be modeled with just 4 actions and listing the *n* blocks. (Instead of specifying the state transition system, which grows exponentially.)

Pascal Bercher

30.33

32.33

Introduction

Planning Problems

nsition Systems E

sworld Summary and Outlook

Summary: What did we do today?

- We've learned the formal foundations of *Classical Planning* problems.
- We've learned how they can be modeled using the Planning Domain Description Language (PDDL).
- We took a brief glance at the website planning.domains, which features (among others) a tool for:
 - Modeling planning problems in PDDL.
 - Running a solver on these models.

