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Team: Convenors & Lecturers, 1/3

Prof. Dr. John Slaney (2011 – 2020, now retired)

http://users.cecs.anu.edu.au/~jks/

We inherited his course; he produced:

Course structure and content

Most exercises (also for exams)

The Logic for Fun (L4F) platform

Its plagiarism scanner

The online course notes
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Team: Convenors & Lecturers, 2/3

Dr. Pascal Bercher since 2021

https://cecs.anu.edu.au/people/pascal-bercher

Studies: Computer Science (with minor Cognitive Science)

PhD: Computer Science: Hierarchical Planning
Research:
• Hierarchical Task Network (HTN) Planning
• Heuristic Search
• Complexity Theory

→ Pascal is the convenor of the course,

→ and teaches the first 50%.
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Team: Convenors & Lecturers, 3/3

Dr. Yoshihiro Maruyama since 2021

https://cs.anu.edu.au/people/yoshihiro-maruyama

Studies: Mathematics, Philosophy, Computer Science

PhD: Computer Science: Category-theoretical Logic
Research: Mathematical and Philosophical Logic:
• category-theoretical logic
• categorical foundations of mathematics, CS, AI, physics
• philosophy of logic, mathematics, AI, science in general

→ Yoshi will teach the second 50% of the course

Pascal Bercher 4.38
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Team: The Tutors

See Wattle for the complete list and contact info.
They also provided a short introduction in the forum.
What do they do?
• Give the tutorials/workshops
• Answer your questions (via Wattle forum)
• (Co-)Mark the homework, assignments, and exam

Pascal Bercher 5.38
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Various: Appointments/Dates

Lectures:
• Online live, recordings available via Wattle/Echo360
• 2 per week, (approx.) 60 minutes each, Mondays & Tuesdays

Tutorials:

• Once per week, 2 hours, in-person or zoom for those who are not
on campus.

• Self-enrollment starts and ends this week. But first take part in the
survey!

• We’ll do both tutorial-like “standard” exercises as well as
workshop-like modeling tasks

Appointments:

• Only in exceptional cases. If required ask for appointment via mail
• Otherwise ask all questions via the forum or your tutor

Drop-in Sessions:

• You can ask your questions or just listen in. Intuitive explanations!
• Date to be decided. Take part in the (second) survey!

Pascal Bercher 6.38
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Various: Exercises and Exam

Homework (mostly) each week:
• Standard exercises (do proofs) or modeling tasks
• Get corrected by tutors, marks are just FYI, they do not count

towards the exam/course mark
• Collaboration (up to 3 people) is strongly encouraged, but please

don’t hand in the same results several times

Three Assignments:

• 1 related to formal proofs, 1 to modeling, and 1 essay
• Each assignment counts 15% of the final mark
• Any form of cheating will be escalated and has serious

consequences. We use software!
• Deadlines: Are strict, no exceptions (unless you have a serious

reason, backed up by medical certificates, for example)

Exam

• Will be online, (likely) uses proctorio, 3 hours
• Counts 55% of final mark

Pascal Bercher 7.38
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Various: Course Material

Slides (see Wattle)

Online book “Logic Notes” (http://users.cecs.anu.edu.
au/~jks/LogicNotes/index.html)

Our modeling tool “Logic for Fun (L4F)”
(https://l4f.cecs.anu.edu.au/)
Currently offline, we are working on it!

Online forum! (Set Wattle reminders accordingly!)
Please read the rules! (Search first, use descriptive titles, etc.)
For further reading, see books:
• G. Restall. Logic: An Introduction. Ed. by J. Shand. Routledge,

2005 (Well-suited for Philosophy students)
• D. van Dalen. Logic and Structure. Springer, 2012 (Well-suited for

Computer Science and Mathematics students)

Pascal Bercher 8.38
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Various: Feedback/Corrections

Nobody is perfect!

Did you find an error in the slides? (Even just a typo!)
Do you have an idea on how to improve the slides?
• More content? Less content?
• Adding a specific example?
• Adding a specific explanation?
• Explaining a specific error students typically make?

→ Let us know! Drop the convenor, lecturer, or course
representative an email!

Pascal Bercher 9.38
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Various: Course Representatives

Each course code (COMP2620, COMP6262, PHIL2080) has two
course representatives
Their job is:
• to act as the official liaison between your peers and convener
• you can conduct survey about the course and influence it by

feeding back the results to the convenor/lecturer. (Note that there
are two lecturers!)

• See slides on Wattle or the pre-recorded lecture (for these slides)

→ Interested? Nominate yourself! Drop Pascal an email:
• Note the deadline: March 2nd!
• Name the course code you are nominating yourself for
• Elaborate your motivation for doing so

Pascal Bercher 10.38
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Motivation
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Philosophy and Computer Science: Philosophy

Logic is the science of representing and reasoning about
knowledge.
Reasoning about what follows from some knowledge (base) is
clearly an important question!
• Cogito, ergo sum (Latin)
• Ich denke, also bin ich (German)
• I think, therefore I am (English)

A more detailed motivation (and history!) of Logic can be found in
Yoshi’s (13 minute) presentation available in Echo360.

Pascal Bercher 12.38
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Philosophy and Computer Science: Computer Science

Computer hardware bases on logic gates: NOT, AND, OR, XOR
etc. So all computers’ hardware is based on logic.

Logic plays an important role in Theoretical Computer Science
(Complexity Theory and more). Many important problems are
NP-complete, and the most famous and important problem is SAT
(can a logical formula be made true?)

Many practically relevant problems (also optimization problems)
like, e.g., Traveling Salesman can be phrased as SAT problem
and thus solved automatically.

Many disciplines require/model knowledge of some sort. It is thus
modeled via Logic. Think of medical data bases, implemented as
ontologies: there are relationships between certain body parts
and their functionality, which can be modeled allowing us to make
inferences providing certain knowledge (like symptoms or
dysfunctional organs).

Pascal Bercher 13.38
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Making good Arguments: What is Logic?

Logic is the science of reasoning, i.e., making arguments.
• Good/correct reasoning vs. bad/wrong reasoning
• Making (and reasoning about) valid arguments
⇒ See (famous) Monty Python sketch “argument clinic”

(e.g., https://www.dailymotion.com/video/x2hwqn9)

. . .
Person 1: Well, an argument is not the same as contradiction.
Person 2: It can be.
Person 1: No, it can’t.
Person 2: An argument is a connected series of statements to establish a

definite proposition.
Person 1: No, it isn’t.
Person 2: Yes, it is!

. . .

Pascal Bercher 14.38
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Making good Arguments: What’s an Argument?

Example:

All footballers are bipeds

Socrates it a footballer

}
premises

Thus, Socrates is a biped
}

conclusion

→ This is a valid argument

Arguments consist of premises and a conclusion.

Pascal Bercher 15.38
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Making good Arguments: What’s an Argument?

Another Example:

All cats are insects

Snoopy is a cat

 premises

Thus, Snoopy is an insect
}

conclusion

→ This is also a valid argument!
• Although everything was wrong!
• All premises and the conclusion!

→ But we don’t care, since it has a valid form. We exploit this form,
and abstract from the content to reason about the conclusions.

Pascal Bercher 16.38
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Making good Arguments: What’s an Argument?

Our final Example:

All logicians are rational

Restall1 is rational

}
premises

Thus, Restall is a logician
}

conclusion

→ Interestingly, this is an invalid (wrong!) argument!
• Although everything was right!
• All premises and the conclusion!

→ Wrong form: The conclusion did not follow from the premises.

1Greg Restall, professor of logic at the University of Melbourne, author of the
best-known book on substructural logic and editor in chief of the Australasian Journal
of Logic, is presumably a logician if anyone is.

Pascal Bercher 17.38
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Making good Arguments: Forms of Arguments

Valid arguments have, e.g., the following form:

All As are Bs;

x is an A;

Therefore, x is a B.

The example with Restall did not work because it used a wrong form:

All As are Bs;

x is an B;

Therefore, x is an A.

Pascal Bercher 18.38
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Making good Arguments: Valid Arguments

An argument is considered valid, whenever the conclusion
logically follows from the premises.

“Logically follows” abstracts away from the number of
“intermediate steps” that are required so that the conclusion
becomes “obvious”.

For example, if we take all axioms of some mathematical system
as the premises and one of its (valid) theorems/propositions as its
conclusion, this forms a valid argument – no matter how
ingenious the theorem is!

Thus, showing that an argument is actually valid is hard!

We will break down arguments into a sequence of arguments, so
that every conclusion “follows in one step” from its premises.

This will be done via natural deduction (next chapter and couple
of weeks!), based on sequents, which represent arguments.

Pascal Bercher 19.38
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Introduction
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Logic is about making statements: Socrates is a goat

Pascal Bercher 21.38
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Logic is about making statements:

(natural language) sentence︷ ︸︸ ︷
Socrates︸ ︷︷ ︸

constant

is a goat︸ ︷︷ ︸
predicate

Pascal Bercher 21.38
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What’s a predicate?

It will formally be defined later, when we deal with predicate logics

A predicate relates various objects (constants) to each other, e.g.:
• isGoat(Socrates) or isGoat(Goat)
• isFootballer(Socrates)
• Kicks(Socrates,Goat) or Kicks(Socrates,Ball)

Actually, predicates do not exist in propositional logics, where we
have propositions instead, e.g.,

• SocratesIsGoat or GoatIsGoat
• SocratesIsFootballer
• SocratesKicksGoat or SocratesKicksBall
→ Since this is way too long, we usually just write p, q, r , etc.

Pascal Bercher 21.38
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Basic Definitions: Terminology

Atoms refer to any “atomic” truth statement:

true (denoted by >, T , or 1)

false (denoted by ⊥, F , or 0)

any propositional symbol (denoted by p, q, r , . . . )

What’s missing for non-atomic statements? Connectives!
Socrates is a goat, ...
• because ...
• although ...
• until ...
• and ...
• or ...

It is not true that ...
• Socrates is a goat
• ...

Pascal Bercher 22.38
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Basic Definitions: Syntax of Connectives

Which connectives do exist in propositional logic?

... and ...: ∧ e.g., (p ∧ >) or (p ∧ (q ∧ r))

... or ...: ∨ e.g., (⊥ ∨>) or (p ∨ (q ∧ r))

if ..., then ...: → e.g., (p → q) or ((p ∧ q)→ (p ∨ q))
also: ... implies ...

... if and only if ...: ↔ e.g., (p ↔ q) or ((p ∧ q)↔ (q ∧ p))

not ...: ¬ e.g., ((¬p)→ q) or ¬(p → q)

Pascal Bercher 23.38
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Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.

Pascal Bercher 24.38
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Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.
Examples:
• (¬p) inverts p’s truth value: > is switched to ⊥, and vice versa.

• (p ∧ q) is true if and only if both p and q are true.
• (p ∨ q) is true if and only if at least one of p and q is true.
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Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.
Examples:
• (¬p) inverts p’s truth value: > is switched to ⊥, and vice versa.
• (p ∧ q) is true if and only if both p and q are true.

• (p ∨ q) is true if and only if at least one of p and q is true.

Pascal Bercher 24.38



Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.
Examples:
• (¬p) inverts p’s truth value: > is switched to ⊥, and vice versa.
• (p ∧ q) is true if and only if both p and q are true.
• (p ∨ q) is true if and only if at least one of p and q is true.

Pascal Bercher 24.38



Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.

Examples: (expressed as truth tables)

p ¬
⊥ >
> ⊥

p q ∧
⊥ ⊥ ⊥
⊥ > ⊥
> ⊥ ⊥
> > >

p q ∨
⊥ ⊥ ⊥
⊥ > >
> ⊥ >
> > >

Pascal Bercher 24.38



Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.

Examples: (expressed as truth tables)

p ¬
⊥ >
> ⊥

p q ∧
⊥ ⊥ ⊥
⊥ > ⊥
> ⊥ ⊥
> > >

p q ∨
⊥ ⊥ ⊥
⊥ > >
> ⊥ >
> > >

Pascal Bercher 24.38



Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives

What do these connectives mean?

The semantics is defined in terms of truth tables.

A truth table for a formula tells us for each interpretation of the
proposition symbols whether the formula is true or false.

Examples: (expressed as truth tables)

p ¬
⊥ >
> ⊥

p q ∧
⊥ ⊥ ⊥
⊥ > ⊥
> ⊥ ⊥
> > >

p q ∨
⊥ ⊥ ⊥
⊥ > >
> ⊥ >
> > >

Pascal Bercher 24.38



Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives
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We will henceforth use 0/1 because its readability is so much
improved!
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Basic Definitions: Semantics of Connectives in Natural Language

Note that natural language does not always translate 1-to-1 to logics:

“Jane and Jill went up the hill”:
says more than just WentUpHill(Jane) ∧WentUpHill(Jill),
because it means that they went there together.

“One false move and I will shoot!”
Does not mean Move(You) ∧ Shoot(I), but
Move(You)→ Shoot(I)

Funnily, “Don’t move or I shoot”:
Is not meant to mean ¬Move(You) ∨ Shoot(I), but also means
Move(You)→ Shoot(I), but both are equivalent.

Modeling the “real intention” behind (informal) natural language is one
the learning goals of this course!
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Propositional Calculus
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Formal Semantics: Semantics of ¬, ∧, ∨, →

The formal semantics of a propositional formulae is given by truth
tables. (Which you already saw.)

Recall that truth tables formally use the values > (true) and ⊥
(false), though we use 1 and 0 for better readability.

Truth tables: (Note how they are created)

p ¬
p q ∧ p q ∨

p q →
0 0

1

0 1

1

1 0

0

1 1

1

Example implication: If the light is red (p), you must stop (q).
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Formal Semantics: Semantics of←, ↔

Some “additional” truth tables:

p q →
0 0 1
0 1 1
1 0 0
1 1 1

p q ←
0 0 1
0 1 0
1 0 1
1 1 1

p q ↔
0 0
0 1
1 0
1 1

We will not need them since we restrict to the standard
connectives: ¬, ∧, ∨, →.

Pascal Bercher 28.38
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Formal Semantics: Expressing Arbitrary Formulae with Truth Tables

Truth tables can be used to express arbitrary formulae, e.g.,

p ∧ ¬q

p q ¬q ∧
0 0

1 0

0 1

0 0

1 0

1 1

1 1

0 0

¬p ∨ q

that’s p → q !

p q ¬p ¬p ∨ q

0 0

1 1

0 1

1 1

1 0

0 0

1 1

0 1

p → (q → p)

p q q → p p → (q → p)

0 0

1 1

0 1

0 1

1 0

1 1

1 1

1 1

Such a formula, which
always evaluates to true
is called a tautology.
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Formal Semantics: Interpretations and Properties of Formulae

Definition:
An Interpretation of a formula φ, defined over a set P of propositional
symbols is an assignment of truth values to symbols in P.

Example:

Let p =LogicIsInteresting

Let q =PascalsSlidesAreWellDesigned

Let r =studentsUnderstandContent

Now consider (p ∧ q)→ r

Here, an interpretation could be:
I(p) = 1, I(q) = 1, I(r) = 0

This interpretation does not make the formula true!
(Interpretations can be thought of as rows in the table)

Pascal Bercher 30.38

p q r (p ∧ q)→ r

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1
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Formal Semantics: Interpretations and Properties of Formulae, cont’d

Why do we need interpretations?
Because now we can define important properties!

A formula φ is a tautology if:

φ is true under every interpretation.

A formula φ is satisfiable if:

There exists an interpretation that makes φ true.

A formula φ is unsatisfiable if:

There does not exist an interpretation that makes φ true.
Or equivalently: If φ is false under every interpretation.

So, could we say “Formula φ is true”?
Not really... Only that it is true under a certain interpretation.
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Syntax Simplifications: Precedence of Connectives

Our connectives use some precedence, which we exploit to eliminate
parentheses! Connectives, ordered by precedence:

Highest: ¬ e.g., ¬p → q ≡ (¬p)→ q

Second-highest: ∧ e.g., p ∧ q ∨ r ≡ (p ∧ q) ∨ r

Mid: ∨ e.g., p → q ∨ r ≡ p → (q ∨ r)

Second-Lowest: → e.g., p → ¬q ↔ r ≡ (p → (¬q))↔ r

Lowest: ↔ e.g., ¬p ∨ q ↔ q ∧ r ≡ ((¬p) ∨ q)↔ (q ∧ r)

We reduce parentheses to simplify and avoid confusion by exploiting:

precedence, e.g., we write: ¬p → q instead of ((¬p)→ q)
associativity, e.g., we write:

• p ∧ q ∧ r instead of (p ∧ (q ∧ r))
• (p ∧ ¬q ∧ r)→ (p ∨ ¬q ∨ r) instead of

(((p ∧ (¬q)) ∧ r)→ (p ∨ ((¬q) ∨ r)))
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• (p ∧ ¬q ∧ r)→ (p ∨ ¬q ∨ r) instead of

(((p ∧ (¬q)) ∧ r)→ (p ∨ ((¬q) ∨ r)))
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Syntax Simplifications: Precedence of Connectives

Our connectives use some precedence, which we exploit to eliminate
parentheses! Connectives, ordered by precedence:

Highest: ¬ e.g., ¬p → q ≡ (¬p)→ q

Second-highest: ∧ e.g., p ∧ q ∨ r ≡ (p ∧ q) ∨ r

Mid: ∨ e.g., p → q ∨ r ≡ p → (q ∨ r)
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Connective Scopes and Main Connective: Connective Scopes

Every connective has a scope.

“[The scope of a connective] is defined to be the shortest formula
or subformula in which that occurrence lies.” (Logic Notes)
Examples: In the formula ¬(p ∧ q)→ ((p ∨ r)→ ¬s)
• ... the scope of its first ¬ is (p ∧ q)
• ... the scope of its second ¬ is s
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Connective Scopes and Main Connective: Main Connective

Every formula has a main connective:

“[T]he main connective of any formula [...] is the one which is not
inside the scope of any other. [...] The scope of the main
connective is the whole formula.” (Logic Notes)
Examples: The main connective of . . .
• ¬(p ∧ q)→ ((p ∨ r)→ ¬s) is:

the first→
• (p ∧ q) ∨ r is:

∨

• What’s the main connective of (p ∧ q) ∨ r ∨ (q → r)?

Recall that “(p ∧ q) ∨ r ∨ (q → r)” is only syntactic sugar!
I It was either ((p ∧ q) ∨ r) ∨ (q → r) [then, it’s the right ∨],
I or it was (p ∧ q) ∨ (r ∨ (q → r)) [then, it’s the left ∨]
→ Formally, assiciativity defines uniquely what a formula with missing

parentheses defines. (But that’s not important for this course.)

Why is it important to identify the main connective?
Because the main connective defines the “type” of the formula,
which defines what we are allowed to do in our proofs.
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Connective Scopes and Main Connective: Type of Formula

The main connective dictates the type of a formula:

if main connective is ¬, formula is a negation

... ∧, ... conjunction

... ∨, ... disjunction

... →, ... implication

... ↔, ... double-implication
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Substitution: Substitutions of Formulae

What is a substitution?

“Formula A is a substitution instance of formula B if and only if A
results from B by substitution of formulas for sentence letters.”
(Logic Notes) – (Definition is specific to propositional logic.)
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Substitution: Substitutions of Formulae

What is a substitution?

“Formula A is a substitution instance of formula B if and only if A
results from B by substitution of formulas for sentence letters.”
(Logic Notes) – (Definition is specific to propositional logic.)

Example:

“Original” formula: q ∨ p
One of its substitution instances is (p ∧ q) ∨ ¬r , because:
• q got substituted by (p ∧ q)
• p got substituted by ¬r
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Substitution: Substitutions of Formulae

What is a substitution?

“Formula A is a substitution instance of formula B if and only if A
results from B by substitution of formulas for sentence letters.”
(Logic Notes) – (Definition is specific to propositional logic.)

Non-Example:

“Original” formula: q ∨ q

The formula (p ∧ q) ∨ ¬r is not a substitution instance of it
(because the left part had to be the same as the right)

Pascal Bercher 36.38



Organizational Matters Motivation Introduction Propositional Calculus Summary

Summary
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Content of this Lecture

Organizational Matters
Introduction to Propositional Logic
• Its syntax and semantics, interpretations
• What connectives exist (and which don’t)
• How to identify the type of a formula (e.g., negation, conjunction,

disjunction, implication, double-implication)
• What’s a substitution

→ Logic Notes sections:
• Complete 1. Introduction except Inference in the abstract
• 3. More about propositional logic: Truth tables.
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