# Logic (PHIL 2080, COMP 2620, COMP 6262) **Chapter:** Introduction to Logic

#### Pascal Bercher

Al Group School of Computing College of Engineering and Computer Science the Australian National University

21 & 22 February 2022



Organizational Matters

2.38

Team: Convenors & Lecturers, 1/3

### Prof. Dr. John Slaney

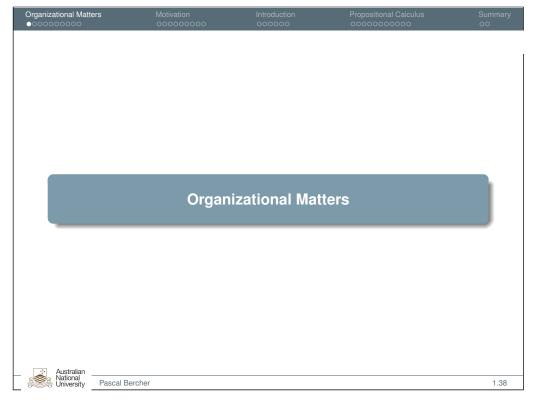
(2011 - 2020, now retired)

http://users.cecs.anu.edu.au/~jks/

We inherited his course; he produced:

- Course structure and content
- Most exercises (also for exams)
- The Logic for Fun (L4F) platform
- Its plagiarism scanner
- The online course notes





Organizational Matters

Team: Convenors & Lecturers, 2/3

#### Dr. Pascal Bercher

since 2021

https://cecs.anu.edu.au/people/pascal-bercher

- Studies: Computer Science (with minor Cognitive Science)
- PhD: Computer Science: Hierarchical Planning
- Research:
  - Hierarchical Task Network (HTN) Planning
  - Heuristic Search
  - Complexity Theory
- → Pascal is the convenor of the course.
- $\rightarrow$  and teaches the first 50%.



Pascal Bercher

Pascal Bercher

3.38

Team: Convenors & Lecturers, 3/3

## Dr. Yoshihiro Maruyama

since 2021

https://cs.anu.edu.au/people/yoshihiro-maruyama

- Studies: Mathematics, Philosophy, Computer Science
- PhD: Computer Science: Category-theoretical Logic
- Research: Mathematical and Philosophical Logic:
  - category-theoretical logic
  - categorical foundations of mathematics, CS, AI, physics
  - philosophy of logic, mathematics, AI, science in general
- → Yoshi will teach the second 50% of the course



Pascal Berchei

4.38

Organizational Matters

Motivation

Introduction

Propositional Calculus

Summar

Various: Appointments/Dates

## Lectures:

- Online live, recordings available via Wattle/Echo360
- 2 per week, (approx.) 60 minutes each, Mondays & Tuesdays
- Tutorials:
  - Once per week, 2 hours, in-person or zoom for those who are not on campus.
  - Self-enrollment starts and ends this week. But first take part in the survey!
  - We'll do both tutorial-like "standard" exercises as well as workshop-like modeling tasks
- Appointments:
  - Only in exceptional cases. If required ask for appointment via mail
  - Otherwise ask all questions via the forum or your tutor
- Drop-in Sessions:
  - You can ask your questions or just listen in. Intuitive explanations!
  - Date to be decided. Take part in the (second) survey!



Pascal Bercher 6.38

See Wattle for the complete list and contact info.
 They also provided a short introduction in the forum.

- What do they do?
  - Give the tutorials/workshops
  - Answer your questions (via Wattle forum)
  - (Co-)Mark the homework, assignments, and exam



Organizational Matters

Organizational Matters

Team: The Tutors

Pascal Berche

Introduction

Propositional Calculus

oo

5.38

Various: Exercises and Exam

- Homework (mostly) each week:
  - Standard exercises (do proofs) or modeling tasks
  - Get corrected by tutors, marks are just FYI, they do not count towards the exam/course mark
  - Collaboration (up to 3 people) is strongly encouraged, but please don't hand in the same results several times
- Three Assignments:
  - 1 related to formal proofs, 1 to modeling, and 1 essay
  - Each assignment counts 15% of the final mark
  - Any form of cheating will be escalated and has serious consequences. We use software!
  - Deadlines: Are strict, no exceptions (unless you have a serious reason, backed up by medical certificates, for example)
- Exam
  - Will be online, (likely) uses proctorio, 3 hours
  - Counts 55% of final mark



Pascal Bercher 7.38

Various: Course Material

- Slides (see Wattle)
- Online book "Logic Notes" (http://users.cecs.anu.edu. au/~jks/LogicNotes/index.html)
- Our modeling tool "Logic for Fun (L4F)" (https://l4f.cecs.anu.edu.au/) Currently offline, we are working on it!
- Online forum! (Set Wattle reminders accordingly!) Please read the rules! (Search first, use descriptive titles, etc.)
- For further reading, see books:
  - G. Restall. Logic: An Introduction. Ed. by J. Shand. Routledge, 2005 (Well-suited for Philosophy students)
  - D. van Dalen. Logic and Structure. Springer, 2012 (Well-suited for Computer Science and Mathematics students)



8.38

Various: Course Representatives

- Each course code (COMP2620, COMP6262, PHIL2080) has two course representatives
- Their job is:
  - to act as the official liaison between your peers and convener
  - you can conduct survey about the course and influence it by feeding back the results to the convenor/lecturer. (Note that there are two lecturers!)
  - See slides on Wattle or the pre-recorded lecture (for these slides)
- → Interested? Nominate yourself! Drop Pascal an email:
  - Note the deadline: March 2nd!
  - Name the course code you are nominating yourself for
  - Elaborate your motivation for doing so

Various: Feedback/Corrections

- Nobody is perfect!
- Did you find an error in the slides? (Even just a typo!)
- Do you have an idea on how to improve the slides?
  - More content? Less content?
  - Adding a specific example?
  - Adding a specific explanation?
  - Explaining a specific error students typically make?
- → Let us know! Drop the convenor, lecturer, or course representative an email!



9.38

Motivation

Motivation



Pascal Bercher

10.38

Pascal Bercher

11.38

#### Philosophy and Computer Science: Philosophy

- Logic is the science of representing and reasoning about knowledge.
- Reasoning about what follows from some knowledge (base) is clearly an important question!
  - Cogito, ergo sum (Latin)
  - Ich denke, also bin ich (German)
  - I think, therefore I am (English)
- A more detailed motivation (and history!) of Logic can be found in Yoshi's (13 minute) presentation available in Echo360.



Motivation

12.38

Making good Arguments: What is Logic?

- Logic is the science of reasoning, i.e., making arguments.
  - Good/correct reasoning vs. bad/wrong reasoning
  - Making (and reasoning about) valid arguments
  - ⇒ See (famous) Monty Python sketch "argument clinic" (e.g., https://www.dailymotion.com/video/x2hwqn9)

Person 1: Well, an argument is not the same as contradiction.

Person 2: It can be.

Person 1: No, it can't.

Person 2: An argument is a connected series of statements to establish a definite proposition.

Person 1: No, it isn't. Person 2: Yes, it is!

Pascal Bercher 14.38

#### Philosophy and Computer Science: Computer Science

- Computer hardware bases on logic gates: NOT, AND, OR, XOR etc. So all computers' hardware is based on logic.
- Logic plays an important role in Theoretical Computer Science (Complexity Theory and more). Many important problems are NP-complete, and the most famous and important problem is SAT (can a logical formula be made true?)
- Many practically relevant problems (also optimization problems) like, e.g., Traveling Salesman can be phrased as SAT problem and thus solved automatically.
- Many disciplines require/model knowledge of some sort. It is thus modeled via Logic. Think of medical data bases, implemented as ontologies: there are relationships between certain body parts and their functionality, which can be modeled allowing us to make inferences providing certain knowledge (like symptoms or dysfunctional organs).



13.38

Making good Arguments: What's an Argument?

## **Example:**

 All footballers are bipeds premises Socrates it a footballer

 Thus, Socrates is a biped conclusion

→ This is a valid argument

Arguments consist of premises and a conclusion.



Pascal Bercher

Making good Arguments: What's an Argument?

### **Another Example:**

 All cats are insects premises Snoopy is a cat

 Thus, Snoopy is an insect conclusion

- → This is also a valid argument!
  - Although everything was wrong!
  - All premises and the conclusion!
- → But we don't care, since it has a valid *form*. We exploit this form, and abstract from the content to reason about the conclusions.



Motivation

Making good Arguments: Forms of Arguments

Valid arguments have, e.g., the following form:

- All As are Bs;
- x is an A;
- Therefore, x is a B.

The example with Restall did not work because it used a wrong form:

- All As are Bs:
- x is an B:
- Therefore, x is an A.

Pascal Bercher

Making good Arguments: What's an Argument?

## **Our final Example:**

 All logicians are rational premises Restall<sup>1</sup> is rational Thus, Restall is a logician conclusion

→ Interestingly, this is an invalid (wrong!) argument!

- Although everything was right!
- All premises and the conclusion!
- → Wrong form: The conclusion did not follow from the premises.

<sup>1</sup>Greg Restall, professor of logic at the University of Melbourne, author of the best-known book on substructural logic and editor in chief of the Australasian Journal of Logic, is presumably a logician if anyone is.



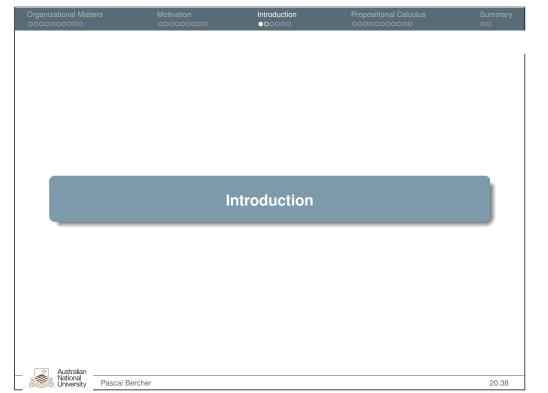
17.38

Making good Arguments: Valid Arguments

- An argument is considered valid, whenever the conclusion logically follows from the premises.
- "Logically follows" abstracts away from the number of "intermediate steps" that are required so that the conclusion becomes "obvious".
- For example, if we take all axioms of some mathematical system as the premises and one of its (valid) theorems/propositions as its conclusion, this forms a valid argument - no matter how ingenious the theorem is!
- Thus, showing that an argument is actually valid is hard!
- We will break down arguments into a sequence of arguments, so that every conclusion "follows in one step" from its premises.
- This will be done via *natural deduction* (next chapter and couple of weeks!), based on sequents, which represent arguments.



Pascal Bercher 19.38



Organizational Matters Motivation Introduction Propositional Calculus Summar

## Basic Definitions: Terminology

Atoms refer to any "atomic" truth statement:

- true (denoted by  $\top$ , T, or 1)
- false (denoted by  $\perp$ , F, or 0)
- ullet any propositional symbol (denoted by  $p,q,r,\ldots$ )

What's missing for *non-atomic* statements? Connectives!

- Socrates is a goat, ...
  - because ...
  - although ...
  - until ...
  - and ...
  - or ...
- It is not true that ...
  - Socrates is a goat
  - ...

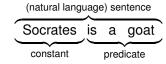


Pascal Bercher 22.38

 Organizational Matters
 Motivation
 Introduction
 Propositional Calculus
 Summary

 000000000
 000000000
 0000000000
 0000000000
 0000000000
 00000000000

Logic is about making statements:



## What's a predicate?

- It will formally be defined later, when we deal with predicate logics
- A predicate relates various objects (constants) to each other, e.g.:
  - isGoat(Socrates) or isGoat(Goat)
  - isFootballer(Socrates)
  - Kicks(Socrates, Goat) or Kicks(Socrates, Ball)
- Actually, predicates do not exist in propositional logics, where we have propositions instead, e.g.,
  - SocratesIsGoat or GoatIsGoat
  - SocratesIsFootballer
  - SocratesKicksGoat or SocratesKicksBall
  - $\rightarrow$  Since this is way too long, we usually just write p, q, r, etc.



Pascal Bercher

21.38

ganizational Matters Motivation Introduction Propositional Calculus

Basic Definitions: Syntax of Connectives

Which connectives do exist in propositional logic?

ullet ... and ...:  $\wedge$ 

e.g.,  $(p \wedge \top)$  or  $(p \wedge (q \wedge r))$ 

• ... or ...: V

e.g.,  $(\bot \lor \top)$  or  $(p \lor (q \land r))$ 

 $\bullet \ \, \text{if ..., then ...:} \ \, \rightarrow$ 

e.g., (p 
ightarrow q) or  $((p \wedge q) 
ightarrow (p ee q))$ 

also: ... implies ...  $\leftrightarrow$  ... if and only if ...:  $\leftrightarrow$ 

e.g.,  $(p \leftrightarrow q)$  or  $((p \land q) \leftrightarrow (q \land p))$ 

o not ...: ¬

e.g.,  $((\neg p) o q)$  or  $\neg (p o q)$ 

Pascal Bercher

rcher 23.38

Organizational Matters Motivation Introduction Propositional Calculus Summary

Basic Definitions: Semantics of Connectives

What do these connectives *mean*?

- The semantics is defined in terms of truth tables.
- A truth table for a formula tells us for each interpretation of the proposition symbols whether the formula is true or false.
- Examples:
  - $(\neg p)$  inverts p's truth value:  $\top$  is switched to  $\bot$ , and vice versa.
  - $(p \land q)$  is true if and only if both p and q are true.
  - $(p \lor q)$  is true if and only if at least one of p and q is true.



Pascal Bercher

Organizational Matters

000000000

etion Propositional Calc

Summary

24.38

Basic Definitions: Semantics of Connectives

What do these connectives *mean*?

- The semantics is defined in terms of truth tables.
- A truth table for a formula tells us for each interpretation of the proposition symbols whether the formula is true or false.
- Examples: (expressed as truth tables)

|          |   | _ | р | q | $\wedge$ | р | q | V |
|----------|---|---|---|---|----------|---|---|---|
| <u>p</u> |   |   |   | 0 |          | 0 | 0 | 0 |
| 0        | 1 |   |   | 1 |          | 0 | 1 | 1 |
| 1        | 0 |   |   | 0 |          |   | 0 |   |
|          |   |   | 1 | 1 | 1        | 1 | 1 | 1 |

We will henceforth use 0/1 because its readability is so much improved!



Pascal Bercher 24.38

Basic Definitions: Semantics of Connectives

What do these connectives *mean*?

- The semantics is defined in terms of truth tables.
- A truth table for a formula tells us for each interpretation of the proposition symbols whether the formula is true or false.
- Examples: (expressed as *truth tables*)

|         |   | р       | q       | $\wedge$ | <br>p   | q       | V |
|---------|---|---------|---------|----------|---------|---------|---|
| р       |   | $\perp$ |         |          | $\perp$ | $\perp$ |   |
| $\perp$ | Т |         | $\top$  |          | $\perp$ | T<br>T  | Т |
| $\top$  |   | $\top$  | $\perp$ | $\perp$  | Τ       | $\perp$ | Т |
|         | 1 | Т       | Т       | Т        | $\top$  | Т       | Т |



Pascal Berche

24.38

Organizational Matters

000000000

Propositional Calcu

Summary

Basic Definitions: Semantics of Connectives in Natural Language

Note that natural language does not always translate 1-to-1 to logics:

- "Jane and Jill went up the hill": says more than just WentUpHill(Jane) ∧ WentUpHill(Jill), because it means that they went there together.
- "One false move and I will shoot!"

  Does not mean  $Move(You) \land Shoot(I)$ , but  $Move(You) \rightarrow Shoot(I)$
- Funnily, "Don't move or I shoot":
   Is not mean ¬Move(You) ∨ Shoot(I), but also means
   Move(You) → Shoot(I), but both are equivalent.

Modeling the "real intention" behind (informal) natural language is one the learning goals of this course!

Organizational Matters Motivation Introduction Propositional Calculus Summary

# Propositional Calculus



Pascal Bercher

26.38

Formal Semantics: Semantics of  $\leftarrow$ ,  $\leftrightarrow$ 

Some "additional" truth tables:

| р | q | $\rightarrow$ | р | q | $\leftarrow$ | р | q | $\leftrightarrow$ |
|---|---|---------------|---|---|--------------|---|---|-------------------|
| 0 | 0 | 1             | 0 | 0 | 1            | 0 | 0 | 1                 |
| 0 | 1 | 1             |   | 1 |              |   | 1 |                   |
|   | 0 |               | 1 | 0 | 1            |   | 0 |                   |
| 1 | 1 | 1             | 1 | 1 | 1            | 1 | 1 | 1                 |

• We will not need them since we restrict to the standard connectives:  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ .

Organizational Matters Motivation Introduction Propositional Calculus Summar

Formal Semantics: Semantics of  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ 

- The formal semantics of a propositional formulae is given by truth tables. (Which you already saw.)
- $\bullet$  Recall that truth tables formally use the values  $\top$  (true) and  $\bot$  (false), though we use 1 and 0 for better readability.
- Truth tables: (Note how they are created)

|   |   | p | q | $\wedge$ | р | q | $\rightarrow$ | p | q | $\rightarrow$ |
|---|---|---|---|----------|---|---|---------------|---|---|---------------|
| p |   | 0 | 0 | 0        | 0 | 0 | 0             |   | 0 |               |
| 0 | 1 | 0 | 1 | 0        |   | 1 |               |   | 1 |               |
| 1 | 0 | 1 | 0 | 0        |   | 0 |               |   |   | 0             |
| , | ' | 1 | 1 | 1        | 1 | 1 | 1             | 1 | 1 | 1             |

• Example implication: If the light is red (p), you must stop (q).



Pascal Berche

27.38

Organizational Matters

Motivation

duction Propositional Calculus

Summa

Formal Semantics: Expressing Arbitrary Formulae with Truth Tables

Truth tables can be used to express arbitrary formulae, e.g.,

$$p \wedge \neg q$$

$$\neg p \lor q$$
 that's  $p \to q$ !

• 
$$p \rightarrow (q \rightarrow p)$$

| р | q | q 	o p | ho  ightarrow (q  ightarrow |
|---|---|--------|-----------------------------|
| 0 | 0 | 1      | 1                           |
| 0 | 1 | 0      | 1                           |
| 1 | 0 | 1      | 1                           |
| 1 | 1 | 1      | 1                           |
|   | 0 | 0 0    | 0 0 1                       |

Such a formula, which always evaluates to true is called a tautology.



Organizational Matters Motivation Introduction Propositional Calculus Summary

Formal Semantics: Interpretations and Properties of Formulae

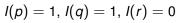
#### **Definition:**

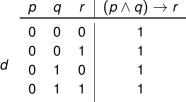
An *Interpretation* of a formula  $\phi$ , defined over a set P of propositional symbols is an assignment of truth values to symbols in P.

# Example:

- Let p = LogicIsInteresting
- Let *q* = *PascalsSlidesAreWellDesigned*
- Let r =studentsUnderstandContent
- Now consider  $(p \land q) \rightarrow r$

Here, an interpretation could be:





This interpretation does not make the formula true! (Interpretations can be thought of as rows in the table)



Pascal Bercher

30.38

Organizational Matter

Motivation

Introduction

Propositional Calculus

Summar

Syntax Simplifications: Precedence of Connectives

Our connectives use some precedence, which we exploit to eliminate parentheses! Connectives, ordered by precedence:

■ Highest: ¬

e.g.,  $\neg p \rightarrow q \equiv (\neg p) \rightarrow q$ 

Second-highest: \( \)

e.g.,  $p \land q \lor r \equiv (p \land q) \lor r$ 

■ Mid: ∨

- e.g.,  $p \rightarrow q \lor r \equiv p \rightarrow (q \lor r)$
- ullet Second-Lowest: o
- e.g.,  $p \rightarrow \neg q \leftrightarrow r \equiv (p \rightarrow (\neg q)) \leftrightarrow r$

- Lowest: ↔
- e.g.,  $\neg p \lor q \leftrightarrow q \land r \equiv ((\neg p) \lor q) \leftrightarrow (q \land r)$

We reduce parentheses to simplify and avoid confusion by exploiting:

- *precedence*, e.g., we write:  $\neg p \rightarrow q$  instead of  $((\neg p) \rightarrow q)$
- associativity, e.g., we write:
  - $p \wedge q \wedge r$  instead of  $(p \wedge (q \wedge r))$
  - $(p \land \neg q \land r) \rightarrow (p \lor \neg q \lor r)$  instead of  $(((p \land (\neg q)) \land r) \rightarrow (p \lor ((\neg q) \lor r)))$



Pascal Bercher 32.38

 Organizational Matters
 Motivation
 Introduction
 Propositional Calculus
 Summary

 000000000
 000000000
 0000000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <t

Formal Semantics: Interpretations and Properties of Formulae, cont'd

Why do we need interpretations?

Because now we can define important properties!

- A formula  $\phi$  is a *tautology* if:  $\phi$  is true under every interpretation.
- A formula  $\phi$  is **satisfiable** if: There exists an interpretation that makes  $\phi$  true.
- A formula  $\phi$  is **unsatisfiable** if: There does not exist an interpretation that makes  $\phi$  true. Or equivalently: If  $\phi$  is false under every interpretation.

So, could we say "Formula  $\phi$  is true"? Not really... Only that it is true under a certain interpretation.



Pascal Berch

Propositional Calo

\_

31.38

Connective Scopes and Main Connective: Connective Scopes

- Every connective has a scope.
- "[The scope of a connective] is defined to be the shortest formula or subformula in which that occurrence lies." (Logic Notes)
- Examples: In the formula  $\neg(p \land q) \rightarrow ((p \lor r) \rightarrow \neg s)$ 
  - ... the scope of its first  $\neg$  is  $(p \land q)$
  - ... the scope of its second  $\neg$  is s

#### Connective Scopes and Main Connective: Main Connective

- Every formula has a main connective:
- "[T]he main connective of any formula [...] is the one which is not inside the scope of any other. [...] The scope of the main connective is the whole formula." (Logic Notes)
- Examples: The main connective of . . .
  - $\neg(p \land q) \rightarrow ((p \lor r) \rightarrow \neg s)$  is: the first  $\rightarrow$
  - $(p \land q) \lor r \text{ is: } \lor$
  - What's the main connective of  $(p \land q) \lor r \lor (q \rightarrow r)$ ? Recall that " $(p \land q) \lor r \lor (q \rightarrow r)$ " is only syntactic sugar!
    - It was either  $((p \land q) \lor r) \lor (q \to r)$  [then, it's the right  $\lor$ ],
    - ightharpoonup or it was  $(p \land q) \lor (r \lor (q \rightarrow r))$  [then, it's the left  $\lor$ ]
    - → Formally, assiciativity defines *uniquely* what a formula with missing parentheses defines. (But that's not important for this course.)
- Why is it important to identify the main connective? Because the main connective defines the "type" of the formula, which defines what we are allowed to do in our proofs.



34.38

Substitution: Substitutions of Formulae

#### What is a substitution?

• "Formula A is a substitution instance of formula B if and only if A results from B by substitution of formulas for sentence letters." (Logic Notes) – (Definition is specific to propositional logic.)

## Example:

- "Original" formula:  $q \vee p$
- One of its substitution instances is  $(p \land q) \lor \neg r$ , because:
  - q got substituted by  $(p \land q)$
  - p got substituted by  $\neg r$

Connective Scopes and Main Connective: Type of Formula

The main connective dictates the type of a formula:

- if main connective is  $\neg$ , formula is a *negation*
- conjunction  $\wedge$ ,
- disjunction
- implication
- double-implication  $\leftrightarrow$ .



Propositional Calculus

35.38

Substitution: Substitutions of Formulae

#### What is a substitution?

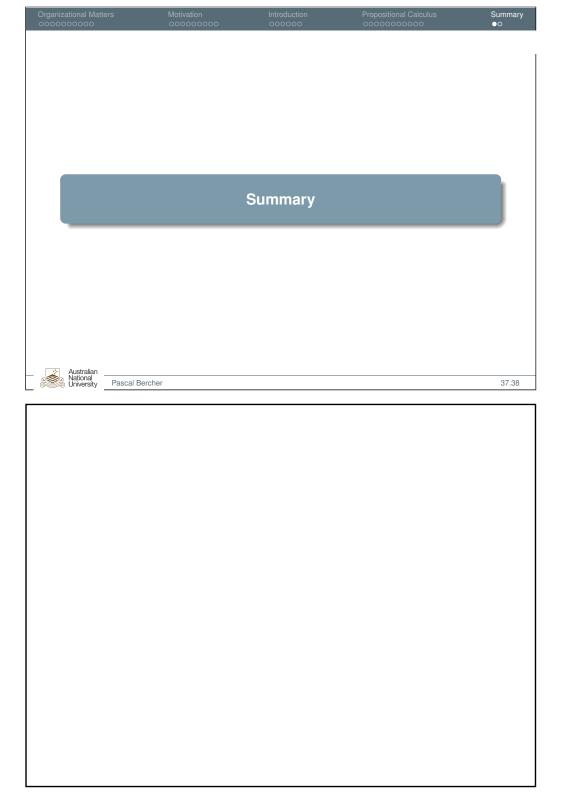
• "Formula A is a substitution instance of formula B if and only if A results from B by substitution of formulas for sentence letters." (Logic Notes) – (Definition is specific to propositional logic.)

### Non-Example:

• "Original" formula:  $q \vee q$ 

Pascal Bercher

• The formula  $(p \land q) \lor \neg r$  is *not a* substitution instance of it (because the left part had to be the same as the right)



anizational Matters Motivation Introduction Propositional Calculus Summary
0000000 0000000 000000000 0●

## Content of this Lecture

- Organizational Matters
- Introduction to Propositional Logic
  - Its syntax and semantics, interpretations
  - What connectives exist (and which don't)
  - How to identify the type of a formula (e.g., negation, conjunction, disjunction, implication, double-implication)
  - What's a substitution
- $\rightarrow$  Logic Notes sections:
  - Complete 1. Introduction except Inference in the abstract
  - 3. More about propositional logic: Truth tables.

| 0 <b>\$</b> 9 | Australian<br>National<br>University |
|---------------|--------------------------------------|
|               | ,                                    |

Pascal Bercher

38.38