Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Sequents, Semantics, and Propositional Natural Deduction — Conjunction, Implication, Theorems

Pascal Bercher

Al Group
School of Computing
College of Engineering and Computer Science
the Australian National University

28 February & 1 March 2022

Introduction

Recap: Connectives and Formulae: Syntax

The main connective dictates the type of a formula:

- if main connective is ¬, formula is a negation
- ... \wedge, ... conjunction
- ... V, ... disjunction
- ullet ... o, ... implication
- ullet ... \leftrightarrow , ... double-implication

Introduction 000

Recap: Connectives and Formulae: Semantics

What do these connectives mean?

 The "intended meaning" of connectives is expressed by truth tables:

		р	q	\wedge	р	q	\ \	р	q	\rightarrow
р	乛	0	0	0	0	0	0	0	0	1
0		0	1	0	0	1	1	0	1	1
1	0	1	0	0	1	0	1		0	
	'	1	1	1	1	1	1	1	1	1

• The truth value of a formula ϕ is defined by evaluating the formula under a given interpretation, which is an assignment of all propositional symbols.

Introduction

Sequents and Natural Deduction: What and Why?: Sequents

- We want to know when one logical formula follows logically from another.
- Suppose we know that "p is true', e.g., due to some observation (technically: thus know that it is *interpreted* as true), and we know that $p \to q$ holds as well. Then we can logically conclude that q also holds!
- We can express this with sequents: $p, p \rightarrow q \models q$

Introduction

Sequents and Natural Deduction: What and Why?: Sequents

- We want to know when one logical formula follows logically from another.
- Suppose we know that "p is true', e.g., due to some observation (technically: thus know that it is *interpreted* as true), and we know that $p \to q$ holds as well. Then we can logically conclude that q also holds!
- We can express this with sequents: $p, p \rightarrow q \models q$
- These conclusions can be arbitrarily complicated, however! I.e., it might not be obvious that the conclusion follows from the premises.
- We use Natural Deduction to "manipulate sequents" step-wise thus "showing" validity.

Introduction

Our convention:

Sequents 00000

- Letters from the end of the alphabet: set
- beginning ... : single object of the kind that's in the set

This represents a *valid* sequent: $X \models A$

- Read it: Formula A follows (logically) from the formulae in X
- For example, "q follows from p and $p \rightarrow q$ "
- We write down. but that's just short for:

$$\underbrace{\{p,p\to q\}}_{X} \models \underbrace{q}_{A}$$

• Also $X, Y \models A$ is short for $X \cup Y \models A$, $X, B \models A$ is short for $X \cup \{B\} \models A$, and $X, B, C \models A$ is short for $X \cup \{B, C\} \models A$.

Another Example for a Valid Sequent

Sequents 000000

Previous example: $p, p \rightarrow q \models q$

But what if the conclusion isn't a "true" proposition (i.e., that's interpreted by 1)? What if it's a formula? What would that mean?

Another Example for a Valid Sequent

Sequents 000000

Previous example: $p, p \rightarrow q \models q$

But what if the conclusion isn't a "true" proposition (i.e., that's interpreted by 1)? What if it's a formula? What would that mean?

What does it mean for a *formula* to follow logically?

- Assume we know $a \land (b \lor c)$ "holds", does $(b \lor c)$ follow as well?
- What does this even *mean*? We don't have the *property* "hold"?!

Another Example for a Valid Sequent

Sequents

Previous example: $p, p \rightarrow q \models q$

But what if the conclusion isn't a "true" proposition (i.e., that's interpreted by 1)? What if it's a formula? What would that mean?

What does it mean for a formula to follow logically?

- Assume we know $a \land (b \lor c)$ "holds", does $(b \lor c)$ follow as well?
- What does this even mean? We don't have the property "hold"?!

Answers:

- Yes, $a \land (b \lor c) \models (b \lor c)$ holds, i.e., it's a valid sequent!
- The formal definition is based on interpretations.

 Sequents
 Natural Deduction
 Conjunction
 Implication
 Theorems
 Summary

 000 00
 00000
 000000
 000000000
 000
 000
 000

Semantically Valid Sequents

Definition:

 $X \models A$ means the sequent is *valid*. This is the case if and only if:

- A is true for every interpretation for which all the formulae in X are true. Or, equivalently:
- There is no interpretation that makes X true, but not A.

 Sequents
 Natural Deduction
 Conjunction
 Implication
 Theorems
 Summary

 000 00
 00000
 000000
 000000000
 000
 000
 000

Semantically Valid Sequents

Definition:

 $X \models A$ means the sequent is *valid*. This is the case if and only if:

- A is true for every interpretation for which all the formulae in X are true. Or, equivalently:
- There is no interpretation that makes X true, but not A.

How to check/test/prove $X \models A$? Create the proof tables!

- Create a table t_X for all formulae in X (all need to be true)
- Create another table t_A for A and check validity criterion.

How to prove $a \land (b \lor c) \models (b \lor c)$?

done live

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Χ
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Recall the definition: The sequent is valid if all interpretations that make X true also make A true!

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Χ
0	0	0	0		
0	0	1	0		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Recall the definition: The sequent is valid if all interpretations that make X true also make A true!

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Χ
0	0	0	0	1 1	
0	0	1	0	1	
0	1	0	1	0	
0	1	1	1	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	0	
1	1	1	1	1	

Recall the definition: The sequent is valid if all interpretations that make X true also make A true!

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

_	р	q	r	$p \lor q$	$(p \lor q) \to r$	Х
	0	0	0	0	1	0
	0	0	1	0	1	0
	0	1	0	1	0	0
	0	1	1	1	1	0
	1	0	0	1	0	0
	1	0	1	1	1	1
	1	1	0	1	0	0
	1	1	1	1	1	1

Recall the definition: The sequent is valid if all interpretations that make X true also make A true!

10.39

checking Validity, Example 2

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	X		р	q	r	$p \rightarrow r$	$q \rightarrow r$	A
0	0	0	0	1	0	•	0	0	0			
0	0	1	0	1	0		0	0	1			
0	1	0	1	0	0		0	1	0			
0	1	1	1	1	0		0	1	1			
1	0	0	1	0	0		1	0	0			
1	0	1	1	1	1		1	0	1			
1	1	0	1	0	0		1	1	0			
1	1	1	1	1	1		1	1	1			

Recall the definition: The sequent is valid if all interpretations that make *X* true also make *A* true!

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	X	р	q	r	$p \rightarrow r$	$q \rightarrow r$	Α
0	0	0	0	1	0	0	0	0	1		
0	0	1	0	1	0	0	0	1	1		
0	1	0	1	0	0	0	1	0	1		
0	1	1	1	1	0	0	1	1	1		
1	0	0	1	0	0	1	0	0	0		
1	0	1	1	1	1	1	0	1	1		
1	1	0	1	0	0	1	1	0	0		
1	1	1	1	1	1	1	1	1	1		

Recall the definition: The sequent is valid if all interpretations that make *X* true also make *A* true!

10.39

00000 Checking Validity, Example 2

Sequents

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	X	р	q	r	$p \rightarrow r$	$q \rightarrow r$	Α
0	0	0	0	1	0	0	0	0	1	1	
0	0	1	0	1	0	0	0	1	1	1	
0	1	0	1	0	0	0	1	0	1	0	
0	1	1	1	1	0	0	1	1	1	1	
1	0	0	1	0	0	1	0	0	0	1	
1	0	1	1	1	1	1	0	1	1	1	
1	1	0	1	0	0	1	1	0	0	0	
1	1	1	1	1	1	1	1	1	1	1	

Recall the definition: The sequent is valid if all interpretations that make X true also make A true!

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Х	_	р	q	r	$p \rightarrow r$	$q \rightarrow r$	Α
0	0	0	0	1	0		0	0	0	1	1	1
0	0	1	0	1	0		0	0	1	1	1	1
0	1	0	1	0	0		0	1	0	1	0	0
0	1	1	1	1	0		0	1	1	1	1	1
1	0	0	1	0	0		1	0	0	0	1	0
1	0	1	1	1	1		1	0	1	1	1	1
1	1	0	1	0	0		1	1	0	0	0	0
1	1	1	1	1	1		1	1	1	1	1	1

Recall the definition: The sequent is valid if all interpretations that make *X* true also make *A* true!

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

$p q r \mid p \lor q \mid (p \lor q) \rightarrow r \mid X \qquad p q r \mid p \rightarrow r \mid q $	r A
0 0 0 0 0 1 0 0 0 0 1 1	1
0 0 1 0 1 0 0 0 1 1 1	1
0 1 0 1 0 0 0 1 0 1 0	0
0 1 1 1 1 0 0 1 1 1 1	1
1 0 0 1 0 0 1 0 0 0 1	0
1 0 1 1 1 1 1 1 1 1	1
1 1 0 1 0 0 1 1 0 0	0
1 1 1 1 1 1 1 1 1 1	1

Only two interpretations exist that make all $x \in X$ true:

1
$$l_1(p) = l_1(r) = 1, l_1(q) = 0$$
 2 $l_2(p) = l_2(q) = l_2(r) = 1$

$$I_2(p) = I_2(q) = I_2(r) = 1$$

Both of them make A true! Thus, $X \models A$.

Natural Deduction

So, it's all about finding out finding out whether some formula follows logically from the interaction of many others!

- E.g. you might have a huge knowledge base KB of rules. Maybe a medical database with (certified, based on experience or research) rules stating which symptoms indicate diseases or affected organs etc.
- What if we have a hypothesis about another rule that's not yet in the system?
 - E.g., if symptom p is present, it cannot be disease q. If that's true, it would mean $KB \models p \rightarrow \neg q$.

Motivation

So, it's all about finding out finding out whether some formula follows logically from the interaction of many others!

- E.g. you might have a huge knowledge base KB of rules. Maybe a medical database with (certified, based on experience or research) rules stating which symptoms indicate diseases or affected organs etc.
- What if we have a hypothesis about another rule that's not yet in the system?
 - E.g., if symptom p is present, it cannot be disease q. If that's true, it would mean $KB \models p \rightarrow \neg q$.

So we can just use truth tables and we are done, right?

Well, in theory, yes. But ... efficiency!

 Note that truth tables always grow exponentially, not just in the worst case!

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:
 - 1 ⇒ 2 lines (like the ¬ truth table)

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show X |= A and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 \Rightarrow 4 lines (like \land , \lor , and \rightarrow)

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 \Rightarrow 4 lines (like \land , \lor , and \rightarrow)
 - 3 ⇒ 8 lines (like our previous example!)

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 ⇒ 4 lines (like ∧, ∨, and →)
 - 3 ⇒ 8 lines (like our previous example!)
 - 4 ⇒ 16 lines

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show X |= A and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 \Rightarrow 4 lines (like \land , \lor , and \rightarrow)
 - 3 ⇒ 8 lines (like our previous example!)
 - 4 ⇒ 16 lines
 - 10 ⇒ 1.024 lines

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 \Rightarrow 4 lines (like \land , \lor , and \rightarrow)
 - 3 ⇒ 8 lines (like our previous example!)
 - 4 ⇒ 16 lines
 - 10 ⇒ 1.024 lines
 - 20 ⇒ 1.048.576 lines (> 1 million)

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show X |= A and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 \Rightarrow 4 lines (like \land , \lor , and \rightarrow)
 - 3 ⇒ 8 lines (like our previous example!)
 - 4 ⇒ 16 lines
 - 10 ⇒ 1.024 lines
 - 20 ⇒ 1.048.576 lines (> 1 million)
 - $n \Rightarrow 2^n$ lines (i.e., number of interpretations)

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 ⇒ 4 lines (like ∧, ∨, and →)
 - 3 ⇒ 8 lines (like our previous example!)
 - 4 ⇒ 16 lines
 - 10 ⇒ 1.024 lines
 - 20 ⇒ 1.048.576 lines (> 1 million)
 - $n \Rightarrow 2^n$ lines (i.e., number of interpretations)
- ⇒ We need a proof system that is not (always) that bad!

Inefficiency of Proving Validity with Truth Tables

- Note that truth tables always grow exponentially, not just in the worst case!
- Assume we want to show $X \models A$ and the number of propositional symbols is:
 - 1 \Rightarrow 2 lines (like the \neg truth table)
 - 2 ⇒ 4 lines (like ∧, ∨, and →)
 - 3 ⇒ 8 lines (like our previous example!)
 - 4 ⇒ 16 lines
 - 10 ⇒ 1.024 lines
 - 20 ⇒ 1.048.576 lines (> 1 million)
 - $n \Rightarrow 2^n$ lines (i.e., number of interpretations)
- ⇒ We need a proof system that is not (always) that bad!
 - We start with Natural Deduction!

Pascal Bercher

Natural Deduction and Derivations

- Natural deduction is pure syntax manipulation and acts as proof system.
- Natural Deduction exploits derivations.
- A derivation is a finite sequence of formulae, which are derived from each other based on elementary formula manipulations ("1-step inference rules")
- For each connective we will use two rules: one for introducing it, and one for eliminating it.

Pascal Bercher

Syntax of Sequents

- From now on, we write $X \vdash A$ rather than $X \models A$.
- The reason is that $X \models A$ denotes that A follows logically from X, but usually we still want to find that out using some proof system.

Syntax of Sequents

- From now on, we write $X \vdash A$ rather than $X \models A$.
- The reason is that $X \models A$ denotes that A follows logically from X, but usually we still want to find that out using some proof system.
- E.g., we could also write down p ⊢ ¬p, which is an invalid sequent.
- So, if some sequent $X \vdash A$ is given, we are interested in finding out whether it is actually *valid*, denoted by $X \models A$.

Syntax of Sequents

- From now on, we write $X \vdash A$ rather than $X \models A$.
- The reason is that $X \models A$ denotes that A follows logically from X, but usually we still want to find that out using some proof system.
- E.g., we could also write down $p \vdash \neg p$, which is an *invalid* sequent.
- So, if some sequent $X \vdash A$ is given, we are interested in finding out whether it is actually *valid*, denoted by $X \models A$.
- To show that it's valid, we use Natural deduction.
- Only in the second part you will formally learn the relationship between these two concepts \vdash and \models . I.e., you will learn how to show that each sequent $X \vdash A$ that is proved by some proof system (like Natural Deduction) is actually valid.

Conjunction

Pascal Bercher 16.39

The 1-Step Rules: And-Elimination

What are the 1-step rules for dealing with conjunction?

Elimination rule:

$$\frac{A \wedge B}{A} \wedge E \qquad \qquad \frac{A \wedge B}{B} \wedge E$$

Which reads: If we derived $A \wedge B$, we can derive both A and B.

The 1-Step Rules: And-Introduction

What are the 1-step rules for dealing with conjunction?

Introduction rule:

$$\frac{A}{A \wedge B} \wedge I$$

Which reads: If we derived A and we derived B, we can derive $A \wedge B$.

Proof Syntax / Notation: Overview

- How to write down proofs?
- There are many different notations that describe the same thing
- We introduce two:
 - Tree-like representation of the applied rules (just since it's another standard)
 - list-like representation (only use that one!)

• Assume we want to prove $p \land q \vdash q \land p$

Pascal Bercher 20.39

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $\underbrace{\rho \wedge q}_{\text{premise}}$,

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: p ∧ q , premise

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: p ∧ q , premise

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $\underbrace{p \land q}_{\text{premise}}$, $\underbrace{q}_{\land E}$, $\underbrace{p}_{\land A}$, $\underbrace{q \land p}_{\land I \text{ and conclusion}}$

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $p \wedge q$, premise
- In the tree-like format:

$$\frac{p \wedge q}{q} \wedge E \quad \frac{p \wedge q}{p} \wedge E$$

$$\frac{q \wedge p}{q \wedge p} \wedge E$$

- Leaves are assumptions, root is conclusion
- Advantages: Makes the proof structure obvious
- In exercises, etc: Do not use it, unless we ask you to!

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: p ∧ q , premise

Conjunction

In the list format:

column 1: assumption number column 2: line number column 3: derivation

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $p \wedge q$, premise
- In the list format:

$$\alpha_1$$
 (1) $p \wedge q$ A

column 1: assumption number column 2: line number column 3: derivation

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $p \land q$, q, p, premise
- In the list format:

$$\alpha_1$$
 (1) $p \wedge q$ A α_1 (2) q 1 $\wedge E$

column 1: assumption number column 2: line number column 3: derivation

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $p \wedge q$, premise

Conjunction

In the list format:

$$\alpha_1$$
 (1) $p \land q$ A
 α_1 (2) q 1 $\land E$
 α_1 (3) p 1 $\land E$

column 1: assumption number column 2: line number column 3: derivation

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: p ∧ q , premise
- In the list format:

$$\alpha_{1} \quad (1) \quad p \land q \quad A \\
\alpha_{1} \quad (2) \quad q \quad 1 \land E \\
\alpha_{1} \quad (3) \quad p \quad 1 \land E \\
\alpha_{1} \quad (4) \quad q \land p \quad 2,3 \land I$$

column 1: assumption number column 2: line number column 3: derivation

- Assume we want to prove $p \land q \vdash q \land p$
- Sequence of derivations: $p \land q$, q, p, premise
- In the list format:

column 1: assumption number column 2: line number column 3: derivation column 4: how it was derived

Note: Each line represents a sequent! (Sequence of sequents.)

The 1-Step Rules (Based on Sequents): Derivation Rules

Derivation Rules as considered so far:

$$\frac{A \wedge B}{A} {\wedge} E$$

$$\frac{A \wedge B}{B} \wedge E$$

$$\frac{A \quad B}{A \wedge B} \wedge B$$

The 1-Step Rules (Based on Sequents): Derivation Rules

Derivation Rules as considered so far:

$$\frac{A \wedge B}{A} \wedge E$$

$$\frac{A \wedge B}{B} \wedge E$$

$$\frac{A}{A \wedge B} \wedge I$$

Re-written in terms of sequents:

$$\frac{X \vdash A \land B}{X \vdash A} \land b$$

$$\frac{X \vdash A \land B}{X \vdash A} \land E \qquad \frac{X \vdash A \land B}{X \vdash B} \land E$$

The 1-Step Rules (Based on Sequents): Derivation Rules

Derivation Rules as considered so far:

$$\frac{A \wedge B}{A} \wedge E \qquad \qquad \frac{A \wedge B}{B} \wedge E \qquad \qquad \frac{A}{A \wedge B} \wedge I$$

Re-written in terms of sequents:

$$\frac{X \vdash A \land B}{X \vdash A} \land E \qquad \frac{X \vdash A \land B}{X \vdash B} \land E \qquad \frac{X \vdash A \qquad Y \vdash B}{X, Y \vdash A \land B} \land I$$

 \rightarrow l.e., now we see how premises accumulate!

$$p, q \vdash p \land q$$

Pascal Bercher 22.39

$$p, q \vdash p \land q$$

 α_1 (1) p

The 1-Step Rules (Based on Sequents): Accumulation of Assumptions, Example

$$p, q \vdash p \land q$$

 $lpha_{1}$ (2)

 α_2

$$\frac{X \vdash A \qquad Y \vdash B}{X, Y \vdash A \land B} \land I$$

The 1-Step Rules (Based on Sequents): Accumulation of Assumptions, Example

$$p, q \vdash p \land q$$

$$\alpha_1$$
 (1) p A
 α_2 (2) q A
 α_1, α_2 (3) $p \land q$ 1,2 $\land I$

$$\overline{\frac{X \vdash A \quad Y \vdash B}{X, Y \vdash A \land B} \land I}$$

The 1-Step Rules (Based on Sequents): Accumulation of Assumptions, Example

$$p, q \vdash p \land q$$

$$\overline{\frac{X \vdash A \quad Y \vdash B}{X, Y \vdash A \land B} \land I}$$

Pascal Bercher

Implication

Pascal Bercher 23.39

Introduction

- Now we consider the "if ..., then ..." connective: implication!
- E.g.,
 - $p \rightarrow q$: "if it is raining (p), then the ground is wet (q)"
 - Here, p is the antecedent and q the consequent

Introduction

- Now we consider the "if ..., then ..." connective: implication!
- E.g.,
 - $p \rightarrow q$: "if it is raining (p), then the ground is wet (q)"
 - Here, p is the antecedent and q the consequent
 - $(p \land q) \rightarrow r$:
 - All tigers are carnivores (p)
 - Timmy is a tiger (q)
 - Thus, Timmy is a carnivore (r)

} conclusion

This reasoning is (also) called *deduction*

The 1-Step Rules: Implication-Elimination and -Introduction

• Elimination rule:

$$\frac{A \to B}{B} \to E$$

Pascal Bercher 25.39

The 1-Step Rules: Implication-Elimination and -Introduction

Elimination rule:

$$\frac{A \to B}{B} \to E$$

Introduction rule:

if we can derive *B* using *A*:

then we can derive $A \rightarrow B$ and discharge A:

$$\begin{array}{ccc}
[A] & & A \\
\vdots & & \vdots \\
B & & B
\end{array} +$$

Pascal Bercher

[A]

The 1-Step Rules: Implication-Elimination and -Introduction (Based on Sequents)

Derivation Rules as considered so far:

$$\frac{A \to B}{B} \to A$$

$$\frac{\vdots}{B} \xrightarrow{A \to B} \to B$$

Re-written in terms of sequents:

$$\frac{X \vdash A \to B \quad Y \vdash A}{X, Y \vdash B} \to E$$

[A]

The 1-Step Rules: Implication-Elimination and -Introduction (Based on Sequents)

Derivation Rules as considered so far:

$$\frac{1 \to B}{B} \to E \qquad \frac{E}{A}$$

Re-written in terms of sequents:

$$\frac{X \vdash A \to B \quad Y \vdash A}{X, Y \vdash B} \to E$$

$$\underbrace{\frac{X,A \vdash B}{X \vdash A \to B}}_{\to I} \to I$$

Has side effect of removing the assumption A

We say that A gets discharged, and annotate that in the proof.

The 1-Step Rules: Deduction Equivalence

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$ deduction equivalence (or deduction theorem)

Why does this hold?

• If $X, A \vdash B$, then $X \vdash A \rightarrow B$:

• If $X \vdash A \rightarrow B$, then $X, A \vdash B$:

The 1-Step Rules: Deduction Equivalence

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$ deduction equivalence (or deduction theorem)

Why does this hold?

• If
$$X, A \vdash B$$
, then $X \vdash A \rightarrow B$:
$$\frac{X, A \vdash B}{X \vdash A \rightarrow B} \rightarrow I$$

• If $X \vdash A \rightarrow B$, then $X, A \vdash B$:

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$
deduction equivalence
(or deduction theorem)

Why does this hold?

• If
$$X, A \vdash B$$
, then $X \vdash A \rightarrow B$:
$$\frac{X, A \vdash B}{X \vdash A \rightarrow B} \rightarrow I$$

• If
$$X \vdash A \to B$$
, then $X, A \vdash B$:
$$\frac{X \vdash A \to B \quad A \vdash A}{X, A \vdash B} \to E$$

(That's the $\rightarrow E$ rule with Y substituted by A)

$$p \vdash q \rightarrow (p \land q)$$

 α_1 (1)

Α

The 1-Step Rules: Implication-Introduction, Example 1

$$p \vdash q \rightarrow (p \land q)$$

 α_1 (1)

Α

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\alpha_1$$
 (n) $q \to (p \land q)$

$$p \vdash q \rightarrow (p \land q)$$

- $lpha_{ extsf{1}}$ α_2

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\alpha_1, \alpha_2$$
 (n-1) $p \wedge q$
 α_1 (n) $q \rightarrow (p \wedge q)$ (n-1)[α_2] $\rightarrow I$

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption $\alpha_2 = q$.

The 1-Step Rules: Implication-Introduction, Example 1

$$p \vdash q \rightarrow (p \land q)$$
 $\begin{array}{cccc} \alpha_1 & (1) & p & A \\ \alpha_2 & (2) & q & A \\ \alpha_1, \alpha_2 & (3) & p \land q & 1,2 \land I \end{array}$

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\alpha_1, \alpha_2$$
 (n-1) $p \wedge q$
 α_1 (n) $q \rightarrow (p \wedge q)$ (n-1)[α_2] $\rightarrow I$

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption $\alpha_2 = q$.

The 1-Step Rules: Implication-Introduction, Example 1

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption $\alpha_2 = q$.

$$p \rightarrow q \vdash (p \land r) \rightarrow q$$

Pascal Bercher 29.39

$$p \rightarrow q \vdash (p \land r) \rightarrow q$$

$$\alpha_1$$
 (1) $p \rightarrow q$

Α

$$p \rightarrow q \vdash (p \land r) \rightarrow q$$

 α_1 (1)

(1) $p \rightarrow q$

Α

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\alpha_1$$
 (n) $(p \wedge r) \rightarrow q$

$$p \rightarrow q \vdash (p \land r) \rightarrow q$$

- (1) $p \rightarrow q$ α_1
- (2) $p \wedge r$ α_2

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\alpha_1, \alpha_2$$
 (n-1) q
 α_1 (n) $(p \land r) \rightarrow q$ (n-1)[α_2] $\rightarrow I$

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption α_2 .

$$\alpha_1, \alpha_2$$
 (n-1) q
 α_1 (n) $(p \land r) \rightarrow q$ (n-1)[α_2] $\rightarrow I$

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption α_2 .

- α_1 (n) $(p \wedge r) \rightarrow q$ (n-1)[α_2] $\rightarrow I$
- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption α_2 .

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption α_2 .

The proof of $p \to q \vdash (p \land r) \to q$ in a tree-like structure:

$$\frac{p \to q}{q} \frac{\frac{[p \land r]^{(1)}}{p} \land E}{q} \to E}{\frac{(p \land r) \to q}{} \to I(1)}$$

Here, we denote discharged assumptions by $[...]^{(n)}$, where we number each assumption so that they can be distinguished from each other, i.e., so that we know which rule discharged which assumption(s).

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

Pascal Bercher 31.39

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$
 (1) $(p \wedge q) \rightarrow r$ A

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$
 (1) $(p \wedge q) \rightarrow r$ A

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\alpha_1$$
 (n) $p \to (q \to r)$

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\begin{array}{ccc} (1) & (p \wedge q) \rightarrow r & \mathsf{A} \\ (2) & p & \mathsf{A} \end{array}$$

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$egin{array}{lll} lpha_1,lpha_2 & & ext{(n-1)} & q o r \ lpha_1 & & ext{(n)} & p o (q o r) & ext{(n-1)}[lpha_2] o I \end{array}$$

 α_1 α_2

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$

(1)
$$(p \wedge q) \rightarrow r$$
 A

$$\alpha_2$$

$$\alpha_3$$

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\frac{X \vdash A \to B \quad Y \vdash A}{X, Y \vdash B} \to E$$

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-2) r
 α_1, α_2 (n-1) $q \to r$ (n-2)[α_3] $\to I$
 α_1 (n) $p \to (q \to r)$ (n-1)[α_2] $\to I$

$$(n-2)[\alpha_3] \rightarrow$$

$$lpha_{\mathsf{1}}$$

$$(n-1)[\alpha_2] \rightarrow$$

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$

(1)
$$(p \wedge q) \rightarrow r$$
 A

$$\alpha_2$$

$$(2)$$
 p

$$lpha_{3}$$

$$\alpha_2, \alpha_3$$

$$(4) \quad p \wedge q$$

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\frac{X \vdash A \to B \quad Y \vdash A}{X, Y \vdash B} \to E$$

$$\begin{array}{lll} \alpha_1, \alpha_2, \alpha_3 & \text{(n-2)} & r \\ \alpha_1, \alpha_2 & \text{(n-1)} & q \rightarrow r & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & \text{(n)} & p \rightarrow (q \rightarrow r) & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$
 (1) $(p \wedge q) \rightarrow r$ A

$$\alpha_2$$
 (2) p A α_3 (3) q A

$$\alpha_2, \alpha_3$$
 (4) $p \wedge q$ 2,3 $\wedge I$

$$\alpha_1, \alpha_2, \alpha_3$$
 (5) r 1,4 $\rightarrow E$

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\frac{X \vdash A \to B \qquad Y \vdash A}{X, Y \vdash B} \to E$$

$$\begin{array}{lll} \alpha_1, \alpha_2, \alpha_3 & \text{(n-2)} & r \\ \alpha_1, \alpha_2 & \text{(n-1)} & q \rightarrow r & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & \text{(n)} & p \rightarrow (q \rightarrow r) & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

1.4 *→E*

 $5[\alpha_3] \rightarrow I$

The 1-Step Rules: Implication-Introduction and -Elimination, Example 2

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$
 (1) $(p \wedge q) \rightarrow r$ A

$$\alpha_2$$
 (2) p A α_3 (3) q A

$$\alpha_2, \alpha_3$$
 (4) $p \wedge q$ 2,3 $\wedge I$

$$\alpha_1, \alpha_2, \alpha_3$$
 (5) r

$$\alpha_1, \alpha_2$$
 (6) $q \rightarrow r$

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\begin{array}{|c|c|c|}
\hline
X \vdash A \to B & Y \vdash A \\
\hline
X, Y \vdash B
\end{array}$$

$$\begin{array}{lll} \alpha_1, \alpha_2, \alpha_3 & \text{(n-2)} & r \\ \alpha_1, \alpha_2 & \text{(n-1)} & q \rightarrow r & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & \text{(n)} & p \rightarrow (q \rightarrow r) & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$
 (1) $(p \wedge q) \rightarrow r$

$$\alpha_2$$
 (2) p

$$\alpha_3$$
 (3) q A

$$\alpha_2, \alpha_3$$
 (4) $p \wedge q$ 2,3 $\wedge I$

$$\alpha_1, \alpha_2, \alpha_3$$
 (5) r 1,4 $\rightarrow E$

$$\alpha_1, \alpha_2$$
 (6) $q \to r$ $5[\alpha_3] \to I$

$$\alpha_1$$
 (7) $p \rightarrow (q \rightarrow r)$ $6[\alpha_2] \rightarrow I$

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\begin{array}{|c|c|c|}
\hline
X \vdash A \to B & Y \vdash A \\
\hline
X, Y \vdash B
\end{array}$$

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-2) r

$$\alpha_1, \alpha_2$$
 (n-1) $q \to r$ (n-2)[α_3] $\to l$

$$\alpha_1$$
 (n) $p \rightarrow (q \rightarrow r)$ (n-1)[α_2] $\rightarrow I$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

 α_1

(1)

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

 α_1

(1) μ

Α

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\alpha_1$$

(n)
$$(q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

 α_1 α_2

(1) *p*

Α

A

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\begin{array}{lll} \alpha_1,\alpha_2 & & \text{(n-1)} & q \to (p \land r) \\ \alpha_1 & & \text{(n)} & (q \to r) \to (q \to (p \land r)) & \text{(n-1)}[\alpha_2] \to I \end{array}$$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

 α_1

1) p

Α

 α_2

(2) $q \rightarrow r$

F

 $lpha_{3}$

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\begin{array}{lll} \alpha_1,\alpha_2,\alpha_3 & \text{(n-2)} & p \wedge r \\ \alpha_1,\alpha_2 & \text{(n-1)} & q \rightarrow (p \wedge r) & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & \text{(n)} & (q \rightarrow r) \rightarrow (q \rightarrow (p \wedge r)) & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

 α_1

 α_2

 α_3 α_2, α_3

- (4)

2,3 *→E*

$$X,A \vdash B \longrightarrow I$$

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-2) $p \wedge r$

$$lpha_{ extsf{1}}, lpha_{ extsf{2}}$$

(n-1)
$$q \rightarrow (p \land r)$$

າ-2)[
$$lpha_3$$
] $ightarrow$

$$lpha_{ extsf{1}}$$

$$\begin{array}{lll} \alpha_1,\alpha_2 & & \text{(n-1)} & q \rightarrow (p \wedge r) & & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & & \text{(n)} & (q \rightarrow r) \rightarrow (q \rightarrow (p \wedge r)) & & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

1-2)[
$$lpha_3$$
] $ightarrow I$

$$\chi_{1}$$

$$(q
ightarrow r)
ightarrow (q
ightarrow (p \wedge r))$$

$$(n-1)[\alpha_2] \rightarrow 0$$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

- α_1
- (2) $q \rightarrow r$ α_2
- α_3
- α_2, α_3 (5) $p \wedge r$ $\alpha_1, \alpha_2, \alpha_3$

$$\begin{array}{|c|c|c|}
\hline
X \vdash A \to B & Y \vdash A \\
X, Y \vdash B & & \rightarrow E
\end{array}$$

2,3 *→E*

1,4 $\wedge I \qquad \left| \begin{array}{c} X, A \vdash B \\ \hline X \vdash A \rightarrow B \end{array} \right| \rightarrow I$

$$\begin{array}{lll} \alpha_1,\alpha_2,\alpha_3 & \text{(n-2)} & p \wedge r \\ \alpha_1,\alpha_2 & \text{(n-1)} & q \rightarrow (p \wedge r) & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & \text{(n)} & (q \rightarrow r) \rightarrow (q \rightarrow (p \wedge r)) & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

n-2)[
$$lpha_3$$
] $ightarrow$ 1

$$\alpha_1$$

(n)
$$(q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

$$[n-2)[\alpha_3] \rightarrow 0$$

$$lpha_{ extsf{1}}$$

$$(\mathsf{n}) \quad (q \to r) \to (q \to (p \land r))$$

$$(n-1)[\alpha_2] \rightarrow I$$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

$$\alpha_1$$
 (1)

$$\alpha_2$$
 (2) $q \rightarrow r$

$$\alpha_3$$
 (3) q α_2, α_3 (4) r

$$\alpha_2, \alpha_3$$
 (4) r

$$\alpha_1, \alpha_2, \alpha_3$$
 (5) $p \wedge r$

$$\alpha_1, \alpha_2$$
 (6) $q \to (p \land r)$

$$\begin{array}{|c|c|c|}\hline X \vdash A \to B & Y \vdash A \\ \hline X, Y \vdash B & \\ \hline \end{array} \to E$$

$$\begin{array}{c|c}
1,4 \land I \\
5[\alpha_3] \to I
\end{array} \begin{array}{c|c}
X,A \vdash B \\
X \vdash A \to B
\end{array} \to I$$

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-2) $p \wedge r$

$$\begin{array}{lll} \alpha_1,\alpha_2 & & \text{(n-1)} & q \rightarrow (p \wedge r) & & \text{(n-2)}[\alpha_3] \rightarrow I \\ \alpha_1 & & \text{(n)} & (q \rightarrow r) \rightarrow (q \rightarrow (p \wedge r)) & & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

n-2)[
$$lpha_3$$
] $ightarrow$ 1

$$\alpha_1$$

n)
$$(a \rightarrow r) \rightarrow (a \rightarrow (p \land r))$$

1-2)[
$$lpha_3$$
] $ightarrow$

$$(a) \quad (a \rightarrow b) \quad (b)$$

$$lpha_{\mathsf{1}}$$

(n)
$$(q
ightarrow r)
ightarrow (q
ightarrow (p \wedge r))$$

$$(n-1)[\alpha_2] \rightarrow I$$

$$p \vdash (q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$

$$\alpha_1$$

$$\frac{X \vdash A \to B \qquad Y \vdash A}{X, Y \vdash B} -$$

$$\alpha_2$$

$$2) q \to r$$

$$\alpha_3$$
 (3)

$$\alpha_2, \alpha_3$$
 (4) r

$$\alpha_1, \alpha_2, \alpha_3$$

(5)
$$p \wedge r$$

$$\begin{array}{c|c}
1,4 \land I \\
5[\alpha_3] \to I
\end{array} \qquad \begin{array}{c|c}
X,A \vdash B \\
X \vdash A \to B
\end{array} \to I$$

$$lpha_{ extsf{1}}, lpha_{ extsf{2}}$$

6)
$$a \rightarrow (n \land a)$$

$$\alpha_1$$

$$(6) q \to (p \land r)$$

$$\mathfrak{S}[\alpha_3] \rightarrow \mathfrak{S}[\alpha_4]$$

$$lpha_{\mathsf{1}}$$

$$(q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$
 $6[\alpha_2] \rightarrow I$

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-2) $p \wedge r$

$$\alpha_1, \alpha_2$$

$$\alpha_1, \alpha_2$$
 (n-1) $q \to (p \land r)$ (n-2)[α_3] $\to I$

$$(n-2)[\alpha_3] \rightarrow 0$$

$$lpha_{ extsf{1}}$$

(n)
$$(q \rightarrow r) \rightarrow (q \rightarrow (p \land r))$$
 $(n-1)[\alpha_2] \rightarrow I$

$$(q \to r) \to (q \to (p \land r))$$

Vacous Discharge: Discharging Non-existent Assumptions

We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$p \vdash q \rightarrow p$$

Vacous Discharge: Discharging Non-existent Assumptions

 We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$p \vdash q \rightarrow p$$

 α_1 (1) p

Α

We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$p \vdash q \rightarrow p$$

$$\alpha_1$$
 (1) p

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\alpha_1$$
 (n) $q \to p$

 We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$p \vdash q \rightarrow p$$

$$\alpha_1$$
 (1) p A α_2 (2) q A

$$\frac{X,A\vdash B}{X\vdash A\to B}\to I$$

$$\alpha_1, \alpha_2$$
 (n-1) p
 α_1 (n) $q \to p$ (n-1)[α_2] $\to I$

Vacous Discharge: Discharging Non-existent Assumptions

 We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$p \vdash q \rightarrow p$$

$$\begin{array}{ccccc}
\alpha_1 & (1) & p & A \\
-\alpha_2 & (2) & q & A \\
\alpha_1 & (2) & q \to p & 1[] \to I
\end{array}$$

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\alpha_1, \alpha_2$$
 (n-1) p
 α_1 (n) $q \to p$ (n-1)[α_2] $\to l$

- We call such a discharge a vacuous discharge.
- I.e., whenever we "would remove" some assumption α from a set of assumptions X, but $\alpha \notin X$, we write $i[] \rightarrow I$ instead of $i[\alpha] \rightarrow I$

Excursion: \vdash vs. \rightarrow : An Often Asked Question in Previous Courses

- \vdash and \rightarrow seem to be of a very related nature: E.g., compare $A, B \vdash C$ with $A \land B \rightarrow C$
- So what's the difference?

Excursion: ⊢ vs. →: An Often Asked Question in Previous Courses

- \vdash and \rightarrow seem to be of a very related nature: E.g., compare $A, B \vdash C$ with $A \land B \rightarrow C$
- So what's the difference?
- Well, there are indeed very related, the difference is its technical meaning.
- is used to introduce a proof system based on syntax manipulation. It makes propositions about formulae. It "states something" about interpretations (provided the sequent is valid).

Excursion: ⊢ vs. →: An Often Asked Question in Previous Courses

- \vdash and \rightarrow seem to be of a very related nature: E.g., compare A, $B \vdash C$ with $A \land B \rightarrow C$
- So what's the difference?
- Well, there are indeed very related, the difference is its technical meaning.
- manipulation. It makes propositions about formulae. It "states something" about interpretations (provided the sequent is valid).
- Indeed, you can write down any formula! Be it reasonable or not:
 - $q \rightarrow p$ and $\neg (q \rightarrow p)$.
 - $p \rightarrow (q \rightarrow p)$ and $\neg(p \rightarrow (q \rightarrow p))$ (Note that the second holds some "truth" since it's a tautology)
- So in conclusion, sequents relate formulae. A formula itself doesn't mean anything, it's just a formula.

Pascal Bercher

Theorems

Pascal Bercher 35.39

- Sequents that do not depend on anything are called *theorems!*
- Thus, A is a theorem if " \vdash A", e.g., \vdash $p \rightarrow (q \rightarrow p)$.

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " \vdash A", e.g., \vdash $p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:
 - Α (1) p $lpha_{1}$

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " \vdash A", e.g., \vdash $p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:
 - $lpha_{1}$

 α_2

- Α
- Α

Α

1.2 *∧I*

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " \vdash A", e.g., $\vdash p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

$$egin{array}{lll} lpha_1 & (1) & p & & & \\ lpha_2 & (2) & q & & & \\ lpha_1, lpha_2 & (3) & p \wedge q & & & \end{array}$$

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " \vdash A", e.g., $\vdash p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

$$egin{array}{lll} lpha_1 & (1) & p & & A \\ lpha_2 & (2) & q & & A \\ lpha_1, lpha_2 & (3) & p \wedge q & & 1,2 \wedge I \\ lpha_1 & (4) & q \rightarrow (p \wedge q) & & 3[lpha_2] \rightarrow I \end{array}$$

- Sequents that do not depend on anything are called *theorems*!
- Thus, A is a theorem if " \vdash A", e.g., $\vdash p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

$$lpha_1$$
 (1) p A
 $lpha_2$ (2) q A
 $lpha_1, lpha_2$ (3) $p \wedge q$ 1,2 $\wedge I$
 $lpha_1$ (4) $q \rightarrow (p \wedge q)$ 3[$lpha_2$] $\rightarrow I$
(5) $p \rightarrow (q \rightarrow (p \wedge q))$ 4[$lpha_1$] $\rightarrow I$

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " $\vdash A$ ", e.g., $\vdash p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

• Thus, we get $\vdash p \rightarrow (q \rightarrow (p \land q))$, so its formula is a theorem.

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " $\vdash A$ ", e.g., $\vdash p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

- Thus, we get $\vdash p \rightarrow (q \rightarrow (p \land q))$, so its formula is a theorem.
- Note that A in $\vdash A$ is a tautology!

From Arbitrary Sequents to Theorems

- Recall our example from the last couple of slides:
 - We proved $p \vdash q \rightarrow p$, and
 - (we claimed that) $\vdash p \rightarrow (q \rightarrow p)$
- We can generalize this to obtain arbitrarily many theorems! How?

From Arbitrary Sequents to Theorems

- Recall our example from the last couple of slides:
 - We proved $p \vdash q \rightarrow p$, and
 - (we claimed that) $\vdash p \rightarrow (q \rightarrow p)$
- We can generalize this to obtain arbitrarily many theorems! How?
- Remember the *deduction equivalence!*

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$

From Arbitrary Sequents to Theorems

- Recall our example from the last couple of slides:
 - We proved $p \vdash q \rightarrow p$, and
 - (we claimed that) $\vdash p \rightarrow (q \rightarrow p)$
- We can generalize this to obtain arbitrarily many theorems! How?
- Remember the *deduction equivalence*!

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$

 This means we can just "move" all assumptions as antecedents into the formula! (Just apply that equivalence recursively.)

Summary

Pascal Bercher 38.39

Content of this Lecture

- Sequents and their semantics
 - What does X ⊨ A mean?

Pascal Bercher

Content of this Lecture

- Sequents and their semantics
 - What does $X \models A$ mean?
- The most important basics of Natural Deduction!
 - How can proofs be written?
 - What does $X \vdash A$ mean?
 - Every logical connective comes with two 1-step rules: Introduction and Elimination
 - What's a theorem?

Pascal Bercher

Content of this Lecture

- Sequents and their semantics
 - What does X ⊨ A mean?
- The most important basics of Natural Deduction!
 - How can proofs be written?
 - What does X ⊢ A mean?
 - Every logical connective comes with two 1-step rules:
 Introduction and Elimination
 - What's a theorem?
- → The Logic Notes sections:
 - 3. More about propositional logic: Truth Tables
 - 2. Propositional natural deduction: Conjunction
 - 2. Propositional natural deduction: Implication
 - 2. Propositional natural deduction: Counting assumptions (except Contraction, which you should look up!)

Pascal Bercher

Summary