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Recap: Connectives and Formulae: Syntax

The main connective dictates the type of a formula:

if main connective is ¬, formula is a negation

... ∧, ... conjunction

... ∨, ... disjunction

... →, ... implication

... ↔, ... double-implication
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Recap: Connectives and Formulae: Semantics

What do these connectives mean?

The “intended meaning” of connectives is expressed by truth
tables:

p ¬
0 1
1 0

p q ∧
0 0 0
0 1 0
1 0 0
1 1 1

p q ∨
0 0 0
0 1 1
1 0 1
1 1 1

p q →
0 0 1
0 1 1
1 0 0
1 1 1

The truth value of a formula φ is defined by evaluating the formula
under a given interpretation, which is an assignment of all
propositional symbols.
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Sequents and Natural Deduction: What and Why?: Sequents

We want to know when one logical formula follows logically from
another.

Suppose we know that “p is true’, e.g., due to some observation
(technically: thus know that it is interpreted as true), and we know
that p → q holds as well. Then we can logically conclude that q
also holds!

We can express this with sequents: p, p → q |= q

These conclusions can be arbitrarily complicated, however!
I.e., it might not be obvious that the conclusion follows from the
premises.

We use Natural Deduction to “manipulate sequents” step-wise
thus “showing” validity.
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Sequents
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Introduction

Our convention:

Letters from the end of the alphabet: set

. . . beginning . . . : single object of the
kind that’s in the set

This represents a valid sequent: X |= A

Read it: Formula A follows (logically) from the formulae in X

For example, “q follows from p and p → q”

We write down: p, p → q |= q
but that’s just short for: {p, p → q}︸ ︷︷ ︸

X

|= q︸︷︷︸
A

Also X ,Y |= A is short for X ∪ Y |= A,
X ,B |= A is short for X ∪ {B} |= A, and
X ,B,C |= A is short for X ∪ {B,C} |= A.
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Another Example for a Valid Sequent

Previous example: p, p → q |= q

But what if the conclusion isn’t a “true” proposition (i.e., that’s
interpreted by 1)? What if it’s a formula? What would that mean?

What does it mean for a formula to follow logically?

Assume we know a∧ (b ∨ c) “holds”, does (b ∨ c) follow as well?

What does this even mean? We don’t have the property “hold”?!

Answers:

Yes, a ∧ (b ∨ c) |= (b ∨ c) holds, i.e., it’s a valid sequent!

The formal definition is based on interpretations.

Pascal Bercher 7.39



Introduction Sequents Natural Deduction Conjunction Implication Theorems Summary

Semantically Valid Sequents

Definition:
X |= A means the sequent is valid. This is the case if and only if:

A is true for every interpretation for which all the formulae in X
are true. Or, equivalently:

There is no interpretation that makes X true, but not A.

How to check/test/prove X |= A? Create the proof tables!

Create a table tX for all formulae in X (all need to be true)

Create another table tA for A and check validity criterion.
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Checking Validity, Example 1

How to prove a ∧ (b ∨ c) |= (b ∨ c)? done live

This is done only in an additional (offline) recording.

But you should be able to do this yourself, also based on the
second example on the next slide!

If you still have trouble, watch the lecture recording.
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Checking Validity, Example 2

Show

X︷ ︸︸ ︷
(p ∨ q)→ r , p |=

A︷ ︸︸ ︷
(p → r) ∧ (q → r)

Table tX for premises:

p q r p ∨ q (p ∨ q)→ r X

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Table tA for conclusion:
p q r p → r q → r A

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 1 1 1

Recall the definition: The sequent is valid if all interpretations that
make X true also make A true!

Only two interpretations exist that
make all x ∈ X true:

1 I1(p) = I1(r) = 1, I1(q) = 0 2 I2(p) = I2(q) = I2(r) = 1

Both of them make A true! Thus, X |= A.
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Natural Deduction
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Motivation

So, it’s all about finding out finding out whether some formula follows
logically from the interaction of many others!

E.g. you might have a huge knowledge base KB of rules. Maybe
a medical database with (certified, based on experience or
research) rules stating which symptoms indicate diseases or
affected organs etc.

What if we have a hypothesis about another rule that’s not yet in
the system?
E.g., if symptom p is present, it cannot be disease q. If that’s true,
it would mean KB |= p → ¬q.

So we can just use truth tables and we are done, right?

Well, in theory, yes. But ... efficiency!
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Inefficiency of Proving Validity with Truth Tables

Note that truth tables always grow exponentially, not just in the
worst case!
Assume we want to show X |= A and the number of propositional
symbols is:
• 1⇒ 2 lines (like the ¬ truth table)
• 2⇒ 4 lines (like ∧, ∨, and→)
• 3⇒ 8 lines (like our previous example!)
• 4⇒ 16 lines
• 10⇒ 1.024 lines
• 20⇒ 1.048.576 lines (> 1 million)
• n⇒ 2n lines (i.e., number of interpretations)

⇒ We need a proof system that is not (always) that bad!
• We start with Natural Deduction!
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Natural Deduction and Derivations

Natural deduction is pure syntax manipulation and acts as proof
system.

Natural Deduction exploits derivations.

A derivation is a finite sequence of formulae, which are derived
from each other based on elementary formula manipulations
(“1-step inference rules”)

For each connective we will use two rules: one for introducing it,
and one for eliminating it.
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Syntax of Sequents

From now on, we write X ` A rather than X |= A.

The reason is that X |= A denotes that A follows logically from X ,
but usually we still want to find that out using some proof system.

E.g., we could also write down p ` ¬p, which is an invalid
sequent.

So, if some sequent X ` A is given, we are interested in finding
out whether it is actually valid, denoted by X |= A.

To show that it’s valid, we use Natural deduction.

Only in the second part you will formally learn the relationship
between these two concepts ` and |=. I.e., you will learn how to
show that each sequent X ` A that is proved by some proof
system (like Natural Deduction) is actually valid.
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Conjunction
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The 1-Step Rules: And-Elimination

What are the 1-step rules for dealing with conjunction?

Elimination rule:

A ∧ B

A
∧E

A ∧ B

B
∧E

Which reads: If we derived A ∧ B, we can derive both A and B.
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The 1-Step Rules: And-Introduction

What are the 1-step rules for dealing with conjunction?

Introduction rule:

A B

A ∧ B
∧I

Which reads: If we derived A and we derived B, we can derive A ∧ B.
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Proof Syntax / Notation: Overview

How to write down proofs?

There are many different notations that describe the same thing
We introduce two:
• Tree-like representation of the applied rules

(just since it’s another standard)
• list-like representation (only use that one!)
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Proof Syntax / Notation: Tree- and List-like Representations

Assume we want to prove p ∧ q ` q ∧ p

Sequence of derivations: p ∧ q︸ ︷︷ ︸
premise

, q︸︷︷︸
∧E

, p︸︷︷︸
∧E

, q ∧ p︸ ︷︷ ︸
∧I and conclusion

In the tree-like format:

p ∧ q

q
∧E

p ∧ q

p
∧E

q ∧ p
∧I

Leaves are assumptions, root is conclusion

Advantages: Makes the proof structure obvious

In exercises, etc: Do not use it, unless we ask you to!
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Proof Syntax / Notation: Tree- and List-like Representations

Assume we want to prove p ∧ q ` q ∧ p

Sequence of derivations: p ∧ q︸ ︷︷ ︸
premise

, q︸︷︷︸
∧E

, p︸︷︷︸
∧E

, q ∧ p︸ ︷︷ ︸
∧I and conclusion

In the list format:

α1 (1) p ∧ q A
α1 (2) q 1 ∧E
α1 (3) p 1 ∧E
α1 (4) q ∧ p 2,3 ∧I

≡ p ∧ q ` p ∧ q
≡ p ∧ q ` q
≡ p ∧ q ` p
≡ p ∧ q ` q ∧ p

column 1: assumption number column 2: line number
column 3: derivation column 4: how it was derived

Note: Each line represents a sequent! (Sequence of sequents.)
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The 1-Step Rules (Based on Sequents): Derivation Rules

Derivation Rules as considered so far:

A ∧ B

A
∧E

A ∧ B

B
∧E

A B

A ∧ B
∧I

Re-written in terms of sequents:

X ` A ∧ B

X ` A
∧E

X ` A ∧ B

X ` B
∧E

X ` A Y ` B

X ,Y ` A ∧ B
∧I

→ I.e., now we see how premises accumulate!
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The 1-Step Rules (Based on Sequents): Accumulation of Assumptions, Example

p, q ` p ∧ q

α1 (1) p A
α2 (2) q A
α1, α2 (3) p ∧ q 1,2 ∧I

≡ p ` p (by assumption)
≡ q ` q (by assumption)
≡ p, q ` p ∧ q (∧I)

Pascal Bercher 22.39
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Implication
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Introduction

Now we consider the “if . . . , then . . . ” connective: implication!
E.g.,
• p → q: “if it is raining (p), then the ground is wet (q)”
• Here, p is the antecedent and q the consequent
• (p ∧ q)→ r :

I All tigers are carnivores (p)

I Timmy is a tiger (q)

}
premises

I Thus, Timmy is a carnivore (r)
}

conclusion

This reasoning is (also) called deduction
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The 1-Step Rules: Implication-Elimination and -Introduction

Elimination rule:

A→ B A

B
→E

Introduction rule:

[A]
...
B

A→ B
→I

≡

if we can derive
B using A:

A
...
B

+

then we can derive
A→ B and discharge A:

[A]
...
B

A→ B
→I
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The 1-Step Rules: Implication-Elimination and -Introduction (Based on Sequents)

Derivation Rules as considered so far:

A→ B A

B
→E

[A]
...
B

A→ B
→I

Re-written in terms of sequents:

X ` A→ B Y ` A

X ,Y ` B
→E

X ,A ` B

X ` A→ B
→I︸ ︷︷ ︸

Has side effect of

removing the assumption A

We say that A gets discharged, and annotate that in the proof.
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The 1-Step Rules: Deduction Equivalence

X ` A→ B iff X ,A ` B︸ ︷︷ ︸
deduction equivalence
(or deduction theorem)

Why does this hold?

If X ,A ` B, then X ` A→ B: X ,A ` B

X ` A→ B
→I

If X ` A→ B, then X ,A ` B: X ` A→ B A ` A

X ,A ` B
→E

(That’s the→E rule with Y substituted by A)
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The 1-Step Rules: Implication-Introduction, Example 1

p ` q → (p ∧ q)

α1 (1) p A
α2 (2) q A
α1, α2 (3) p ∧ q 1,2 ∧I
α1 (4) q → (p ∧ q) 3[α2]→I

α1, α2 (n-1) p ∧ q
α1 (n) q → (p ∧ q) (n-1)[α2]→I

Assumption α2 is a new one, which was not given in the original
sequent, so we need to eliminate it later on.

In the last step, we discharge assumption α2 = q.

Pascal Bercher 28.39
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The 1-Step Rules: Implication-Introduction and -Elimination, Example 1

p → q ` (p ∧ r)→ q

α1 (1) p → q A
α2 (2) p ∧ r A
α2 (3) p 2 ∧E
α1, α2 (4) q 1,3→E
α1 (5) (p ∧ r)→ q 4[α2]→I

α1, α2 (n-1) q
α1 (n) (p ∧ r)→ q (n-1)[α2]→I

Assumption α2 is a new one, which was not given in the original
sequent, so we need to eliminate it later on.

In the last step, we discharge assumption α2.

Pascal Bercher 29.39

X ,A ` B

X ` A→ B
→I

X ` A→ B Y ` A

X ,Y ` B
→E

Introduction Sequents Natural Deduction Conjunction Implication Theorems Summary

The 1-Step Rules: Implication-Introduction and -Elimination, Example 1 (cont’d)

The proof of p → q ` (p ∧ r)→ q in a tree-like structure:

p → q

[p ∧ r ](1)

p
∧E

q
→E

(p ∧ r)→ q
→I(1)

Here, we denote discharged assumptions by [. . . ](n), where we
number each assumption so that they can be distinguished from
each other, i.e., so that we know which rule discharged which
assumption(s).
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The 1-Step Rules: Implication-Introduction and -Elimination, Example 2

(p ∧ q)→ r ` p → (q → r)

α1 (1) (p ∧ q)→ r A
α2 (2) p A
α3 (3) q A
α2, α3 (4) p ∧ q 2,3 ∧I
α1, α2, α3 (5) r 1,4→E
α1, α2 (6) q → r 5[α3]→I
α1 (7) p → (q → r) 6[α2]→I

α1, α2, α3 (n-2) r
α1, α2 (n-1) q → r (n-2)[α3]→I
α1 (n) p → (q → r) (n-1)[α2]→I
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The 1-Step Rules: Implication-Introduction and -Elimination, Example 3

p ` (q → r)→ (q → (p ∧ r))

α1 (1) p A
α2 (2) q → r A
α3 (3) q A
α2, α3 (4) r 2,3→E
α1, α2, α3 (5) p ∧ r 1,4 ∧I
α1, α2 (6) q → (p ∧ r) 5[α3]→I
α1 (7) (q → r)→ (q → (p ∧ r)) 6[α2]→I

α1, α2, α3 (n-2) p ∧ r
α1, α2 (n-1) q → (p ∧ r) (n-2)[α3]→I
α1 (n) (q → r)→ (q → (p ∧ r)) (n-1)[α2]→I
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Vacous Discharge: Discharging Non-existent Assumptions

We can “discharge” assumptions that are not there; this happens
if the conclusion does not depend on its assumption.

p ` q → p

α1 (1) p A
α2 (2) q A
α1 (2) q → p 1[]→I

α1��, α2 (n-1) p
α1 (n) q → p (n-1)[��α2]→I

We call such a discharge a vacuous discharge.

I.e., whenever we “would remove” some assumption α from a set
of assumptions X , but α /∈ X , we write i[]→I instead of i[α]→I
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Excursion: ` vs. →: An Often Asked Question in Previous Courses

` and→ seem to be of a very related nature:
E.g., compare A,B ` C with A ∧ B → C

So what’s the difference?

Well, there are indeed very related, the difference is its technical
meaning.

` is used to introduce a proof system based on syntax
manipulation. It makes propositions about formulae. It “states
something” about interpretations (provided the sequent is valid).
Indeed, you can write down any formula! Be it reasonable or not:
• q → p and ¬(q → p).
• p → (q → p) and ¬(p → (q → p))

(Note that the second holds some “truth” since it’s a tautology)

So in conclusion, sequents relate formulae. A formula itself
doesn’t mean anything, it’s just a formula.
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Theorems
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Unconditionally True Formulas

Sequents that do not depend on anything are called theorems!

Thus, A is a theorem if “` A”, e.g., ` p → (q → p).

Another (slightly more complex) example:

α1 (1) p A
α2 (2) q A
α1, α2 (3) p ∧ q 1,2 ∧I
α1 (4) q → (p ∧ q) 3[α2]→I

(5) p → (q → (p ∧ q)) 4[α1]→I

Thus, we get ` p → (q → (p ∧ q)), so its formula is a theorem.

Note that A in ` A is a tautology!
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From Arbitrary Sequents to Theorems

Recall our example from the last couple of slides:
• We proved p ` q → p, and
• (we claimed that) ` p → (q → p)

We can generalize this to obtain arbitrarily many theorems! How?

Remember the deduction equivalence!

X ` A→ B iff X ,A ` B

This means we can just “move” all assumptions as antecedents
into the formula! (Just apply that equivalence recursively.)
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Summary
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Content of this Lecture

Sequents and their semantics
• What does X |= A mean?

The most important basics of Natural Deduction!
• How can proofs be written?
• What does X ` A mean?
• Every logical connective comes with two 1-step rules:

Introduction and Elimination
• What’s a theorem?

→ The Logic Notes sections:
• 3. More about propositional logic: Truth Tables
• 2. Propositional natural deduction: Conjunction
• 2. Propositional natural deduction: Implication
• 2. Propositional natural deduction: Counting assumptions

(except Contraction, which you should look up!)
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