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Introduction Negation Disjunctions Summary

Recap on Natural Deduction

What are theorems? (Sequents without assumptions!)

Relationship between ` and→:

• They live in completely different worlds!
• → is a connective and thus part of a formula, just like ¬, ∧, and ∨.
• ` is not a connective and can thus not possibly be part of any

formula! It only states whether we can derive a single formula A
from a set of formulae X , expressed by X ` A.

How do proofs in natural deduction look?

• We use a list/table format with 4 columns.
• All of these columns are essential!

Introduction and elimination rules for:

• Conjunction

(easy!)

• Implication

(not quite that easy!)

So what’s missing?

• Negation

(not as easy as you might think!)

• Disjunction

(quite hard... Practice it!)

Pascal Bercher 2.27
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Negation
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Introduction Negation Disjunctions Summary

Introduction: Intuitive Meaning

What does the negation connective in logics mean?

It inverts truth values! Remember our introductory example:

• Socrates is a goat (= p)
• It’s not true that Socrates is a goat (= ¬p)

Be careful when translating “not” used in natural language:

• Someone likes Logic (= p)
• Someone doesn’t like Logic! (6= ¬p)
• Such complex propositions will be covered in predicate logic!

Pascal Bercher 4.27
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Introduction Negation Disjunctions Summary

Introduction: Truth Table

Since the not connective simply inverts a single truth value we get
a simple truth table:

p ¬p

0 1
1 0

p ¬p ¬¬p

0 1 0
1 0 1

I.e., in propositional logic, two negations eliminate each other!

It’s not true that it’s not true that Socrates is a goat (So it is true!)

Pascal Bercher 5.27
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The 1-Step Rules: Double-Negation Elimination and Introduction

The (second) truth table gives us the following two rules:

Double-Negation Elimination and Introduction Rules:

¬¬A

A
¬¬E

A

¬¬A
¬¬I

Again based on sequents:

X ` ¬¬A

X ` A
¬¬E

X ` A

X ` ¬¬A
¬¬I

Pascal Bercher 6.27
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The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

Look carefully what/where the main connective is!

The rule refers to a complete formula!

So, e.g., we cannot go from p ∧ ¬¬q to p ∧ q in just one step!

Correctly handling that: (with a slightly more complex example)

p ∧ ¬¬q ` ¬¬p ∧ q

α1 (1) p ∧ ¬¬q A
α1 (2) p 1 ∧E
α1 (3) ¬¬p 2 ¬¬I
α1 (4) ¬¬q 1 ∧E
α1 (5) q 4 ¬¬E
α1 (6) ¬¬p ∧ q 3,5 ∧I

Pascal Bercher 7.27

¬¬A

A
¬¬E

A

¬¬A
¬¬I

Because A = (p ∧ ¬¬q),
but the rule states it should be ¬¬q!
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Introduction Negation Disjunctions Summary

The 1-Step Rules: Negation-Elimination

With the double-negation rules we can’t introduce or eliminate a
single negation.

To deal with single negations, we require the symbol ⊥.

We introduced it before: it represents “false”, an “absurd”
constant that can never be satisfied.

Negation-Elimination rule:

Pascal Bercher 8.27
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The 1-Step Rules: Negation-Elimination

With the double-negation rules we can’t introduce or eliminate a
single negation.

To deal with single negations, we require the symbol ⊥.

We introduced it before: it represents “false”, an “absurd”
constant that can never be satisfied.

Negation-Elimination rule: (without and with sequent-notation)

A ¬A

⊥
¬E

X ` A Y ` ¬A

X ,Y ` ⊥
¬E
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The 1-Step Rules: Negation-Introduction

Negation-Introduction rule:

[A]
...
⊥
¬A
¬I

Negation-Introduction discharges assumption A.
Interesting fact(s):

• Since we do not pose further restrictions on A, we can blame the
contradiction on anything we want!

E.g., if X = {A1, . . . ,An} and
X ` ⊥, we can conclude X \ {Ai} ` ¬Ai for any Ai ∈ X .

• This rule is the main proof idea behind the proof technique “Proof
by contradiction”. (There are, e.g., nice illustrations on YouTube
proving that

√
2 is not rational by that technique.)

Pascal Bercher 9.27
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The 1-Step Rules: Excursion, Proof by Contradiction

We want to show:

If you are in Canberra (p), you are

You are in Sydney(q)︷ ︸︸ ︷
not in Sydney(¬q); thus:

if you are in Sydney (q), you are not in Canberra (¬p)
I.e., p → ¬q ` q → ¬p

Proof by contradiction:

• Assume the premise (i.e., p → ¬q) is true and additionally make
• the assumption that the conclusion (i.e., q → ¬p) is fase!
• Thus, “You are in Sydney and in Canberra”, I(q) = 1 and I(p) = 1
• Because of the first assumption, and since we just assumed we

are in Canberra, we can conclude that we are not in Sydney.
• But now we are in Sydney, and not in Sydney, contradiction!
• Thus our additional assumption that the second implication is false

must be wrong, so it must be true!
• Thus, the first implication implies the second! q.e.d.

Pascal Bercher 10.27
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Why?

p q ¬p q → ¬p ¬(q → ¬p)

0 0 1 1 0
0 1 1 1 0
1 0 0 1 0
1 1 0 0 1
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Introduction Negation Disjunctions Summary

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

Contradict yourself, and I don’t care anymore!

In other words: We can conclude all we want from an inconsistent
knowledge base.

p,¬p ` q

α1 (1) p A
α2 (2) ¬p A
α1, α2 (3) ⊥ 1,2 ¬E
α1, α2 (4) ¬¬q 3[] ¬I
α1, α2 (5) q 4 ¬¬E

Here we have another example of vacuous discharge: We blame
the contradiction on a non-existing assumption ¬q.

Pascal Bercher 12.27
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Introduction Negation Disjunctions Summary

A 2-Step Rule: Reductio ad Absurdum (RAA)

We can combine Negation-Elimination with its Introduction:

Again, notations without and with sequents:

[B]
...
A

[B]
...
¬A

¬B
RAA

X ,B ` A Y ,B ` ¬A

X ,Y ` ¬B
RAA

The rules discharge assumption B.

Why is it correct?

X ,A ` ⊥
X ` ¬A

¬I
X ` A Y ` ¬A

X ,Y ` ⊥
¬E

X ,B ` A Y ,B ` ¬A

X ,Y ,B ` ⊥
¬E

X ,Y ` ¬B
¬I

Pascal Bercher 13.27
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Introduction Negation Disjunctions Summary

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

p → ¬p ` ¬p: p is so false, it implies its own negation!

Or: Since p and ¬p can’t be true at the same time, the implication
p → ¬p cannot be “activated”, so its precondition must be false.

p → ¬p ` ¬p

α1 (1) p → ¬p A
α2 (2) p A
α1, α2 (3) ¬p 1,2→E
α1 (4) ¬p 2,3[α2] RAA

α1 (n) ¬p

Pascal Bercher 14.27
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Introduction Negation Disjunctions Summary

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

¬p → p ` p: if p is even implied by its own negation,
then it must be true!

Again! Since p and ¬p can’t be true at the same time, the
implication ¬p → p cannot be “activated”, so its precondition
must be false.

¬p → p ` p

α1 (1) ¬p → p A
α2 (2) ¬p A
α1, α2 (3) p 1,2→E
α1 (4) ¬¬p 2,3[α2] RAA
α1 (5) p 4 ¬¬E

Pascal Bercher 15.27
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Disjunctions
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Introduction Negation Disjunctions Summary

Introduction: (Our) Or versus Exclusive Or

Disjunctions are of the form A ∨ B

It rains this afternoon or this evening.
(But it can also be both!)

The cat is either dead or alive.
(Unless it’s a physicist’s cat, the choice is exclusive!
The cat cannot be both dead and alive!)

We use the first, non-exclusive, notion of or:
At least one proposition needs to be true!
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The 1-Step Rules: Disjunction-Introduction

Disjunction-Introduction Rules:

Notation without sequents:

A

A ∨ B
∨I

B

A ∨ B
∨I

Notation with sequents:

X ` A

X ` A ∨ B
∨I

X ` B

X ` A ∨ B
∨I

Great! So we have that easy rule to prove a disjunction, right?

Well... No. (That’s only one sub step.) More later!
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The 1-Step Rules: Disjunction-Elimination, Introduction

If x is even, then x2 + x is even.

If x is odd, then x2 + x is even.

x is either odd or even.

Thus, x2 + x is even.

We call this the constructive dilemma: From only knowing the
conclusion, we can’t know which of the cases applied!

Formally, this can be expressed as p → r , q → r , p ∨ q ` r
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Thus, x2 + x is even.

We call this the constructive dilemma: From only knowing the
conclusion, we can’t know which of the cases applied!

Formally, this can be expressed as p → r , q → r , p ∨ q ` r

1Technically, we use the exclusive or here, but the argument remains true even if
it’s the non-exclusive or.
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The 1-Step Rules: Disjunction-Elimination Rule

Disjunction-Elimination Rule:

A ∨ B A→ C B → C

C
∨E

This does not help us so much:
• It’s too restrictive because it requires implications to work!

(Which would get eliminated as well.)
• But we only want to eliminate the disjunction without further

restrictions on the rest!

So, what do we do?

Pascal Bercher 20.27
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Introduction Negation Disjunctions Summary

The 1-Step Rules: Disjunction-Elimination Rule (Based on Sequents)

Deduction equivalence: X ` A→ B iff X ,A ` B
Thus, we can re-write the previous rule as follows:

A ∨ B

[A]
...
C

[B]
...
C

C
∨E

X ` A ∨ B Y ,A ` C Z ,B ` C

X ,Y , Z ` C
∨E

Now we:

• . . . don’t rely on implications anymore!
• . . . can discharge two assumptions (A and B), i.e., exactly those

of the disjunction (but from two different sequents!).

Some good news and bad news: This is the hardest rule in
natural deduction (So practice it!)

Pascal Bercher 21.27
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Introduction Negation Disjunctions Summary

The 1-Step Rules: When to Use that Rule

X ` A ∨ B Y ,A ` C Z ,B ` C

X ,Y , Z ` C
∨E

Technically, this rule is used to “eliminate” a disjunction.

But in practice, we use it to prove one!

How is that possible?

Because we can use any formula for C!

I.e., when we want to derive a disjunction, we can use it as C –
but this will also require another disjunction for the first sequent!

We often obtain that one via assuming it.

Pascal Bercher 22.27
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Introduction Negation Disjunctions Summary

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

Disjunction is commutative: p ∨ q ` q ∨ p

α1 (1) p ∨ q A

α2 (2) p A
α2 (3) q ∨ p 2 ∨I
α3 (4) q A
α3 (5) q ∨ p 4 ∨I
α1 (6) q ∨ p 1,3[α2],5[α3] ∨E

Pascal Bercher 23.27
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X ` B

X ` A ∨ B
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X ` B

X ` A ∨ B
∨I

X ` A

X ` A ∨ B
∨I

X ` A ∨ B Y ,A ` C Z ,B ` C

X ,Y , Z ` C
∨E

X =

α1︷ ︸︸ ︷
{p ∨ q} A = α2 = p

Y = ∅ B = α3 = q

Z = ∅ C = q ∨ p
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α2 (3) q ∨ p 2 ∨I
α3 (4) q A
α3 (5) q ∨ p 4 ∨I
α1 (6) q ∨ p 1,3[α2],5[α3] ∨E

In line 3, the q was just some arbitrary truth value that we’ve
added due to Disjunction-Introduction!

Similarly in line 5 the p was arbitrary. Notably, that’s not the p
from assumption α2.

Pascal Bercher 23.27

X ` B

X ` A ∨ B
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X ` A

X ` A ∨ B
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The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

Conjunction and disjunction behave just like multiplication and
addition, e.g. p · (q + r) = p · q + p · r :

p, q ∨ r ` (p ∧ q) ∨ (p ∧ r)

α1 (1) p A
α2 (2) q ∨ r A
α3 (3) q A
α4 (4) r A
α1, α3 (5) p ∧ q 1,3 ∧I
α1, α3 (6) (p ∧ q) ∨ (p ∧ r) 5 ∨I
α1, α4 (7) p ∧ r 1,4 ∧I
α1, α4 (8) (p ∧ q) ∨ (p ∧ r) 7 ∨I
α1, α2 (9) (p ∧ q) ∨ (p ∧ r) 2,6[α3],8[α4] ∨E

α1, α2 (n) (p ∧ q) ∨ (p ∧ r)

Pascal Bercher 24.27
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Just a comment:
The analogy would have been stronger
if instead of using the two assumptions
α1 = p and α2 = q ∨ r , only a single assumption
α′

1 = p ∧ (q ∨ r) would have been used.
(You can prove the other on your own.)
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The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

p → r , q → s ` (p ∨ q)→ (r ∨ s)

α1 (1) p → r A
α2 (2) q → s A
α3 (3) p ∨ q A
α4 (4) p A
α5 (5) q A
α1, α4 (6) r 1,4→E
α1, α4 (7) r ∨ s 6 ∨I
α2, α5 (8) s 2,5→E
α2, α5 (9) r ∨ s 8 ∨I
α1, α2, α3 (10) r ∨ s 3,7[α4],9[α5] ∨E
α1, α2 (11) (p ∨ q)→ (r ∨ s) 10[α3]→I

α1, α2, α3 (n-1) r ∨ s
α1, α2 (n) (p ∨ q)→ (r ∨ s)
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Introduction Negation Disjunctions Summary

Content of this Lecture

The remaining rules for natural deduction: negation and
disjunction

Note that, this time, we had more than just 1-step rules!
→ The entire Logic Notes sections:

• Propositional natural deduction: Negation
• Propositional natural deduction: Disjunction
→ We are done now with everything until Section 2!
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