Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Propositional Natural Deduction - Negation, Disjunction

Pascal Bercher

AI Group
School of Computing
College of Engineering and Computer Science the Australian National University

7 \& 8 March 2022

Australian
National
University

Introduction

Recap on Natural Deduction

- What are theorems? (Sequents without assumptions!)

Recap on Natural Deduction

- What are theorems? (Sequents without assumptions!)
- Relationship between \vdash and \rightarrow :
- They live in completely different worlds!
- \rightarrow is a connective and thus part of a formula, just like \neg, \wedge, and \vee.
- \vdash is not a connective and can thus not possibly be part of any formula! It only states whether we can derive a single formula A from a set of formulae X, expressed by $X \vdash A$.

Recap on Natural Deduction

- What are theorems? (Sequents without assumptions!)
- Relationship between \vdash and \rightarrow :
- They live in completely different worlds!
- \rightarrow is a connective and thus part of a formula, just like \neg, \wedge, and \vee.
- \vdash is not a connective and can thus not possibly be part of any formula! It only states whether we can derive a single formula A from a set of formulae X, expressed by $X \vdash A$.
- How do proofs in natural deduction look?
- We use a list/table format with 4 columns.
- All of these columns are essential!

Recap on Natural Deduction

- What are theorems? (Sequents without assumptions!)
- Relationship between \vdash and \rightarrow :
- They live in completely different worlds!
- \rightarrow is a connective and thus part of a formula, just like \neg, \wedge, and \vee.
- \vdash is not a connective and can thus not possibly be part of any formula! It only states whether we can derive a single formula A from a set of formulae X, expressed by $X \vdash A$.
- How do proofs in natural deduction look?
- We use a list/table format with 4 columns.
- All of these columns are essential!
- Introduction and elimination rules for:
- Conjunction (easy!)
- Implication (not quite that easy!)

Recap on Natural Deduction

- What are theorems? (Sequents without assumptions!)
- Relationship between \vdash and \rightarrow :
- They live in completely different worlds!
- \rightarrow is a connective and thus part of a formula, just like \neg, \wedge, and \vee.
- \vdash is not a connective and can thus not possibly be part of any formula! It only states whether we can derive a single formula A from a set of formulae X, expressed by $X \vdash A$.
- How do proofs in natural deduction look?
- We use a list/table format with 4 columns.
- All of these columns are essential!
- Introduction and elimination rules for:
- Conjunction (easy!)
- Implication (not quite that easy!)
- So what's missing?
- Negation (not as easy as you might think!)
- Disjunction (quite hard... Practice it!)

Negation

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:
- Socrates is a goat $(=p)$

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:
- Socrates is a goat (= p)
- It's not true that Socrates is a goat $(=\neg p)$

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:
- Socrates is a goat (= p)
- It's not true that Socrates is a goat $(=\neg p)$
- Be careful when translating "not" used in natural language:

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:
- Socrates is a goat ($=p$)
- It's not true that Socrates is a goat $(=\neg p)$
- Be careful when translating "not" used in natural language:
- Someone likes Logic ($=p$)

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:
- Socrates is a goat ($=p$)
- It's not true that Socrates is a goat $(=\neg p)$
- Be careful when translating "not" used in natural language:
- Someone likes Logic (= p)
- Someone doesn't like Logic! $(\neq \neg p)$

Introduction: Intuitive Meaning

- What does the negation connective in logics mean?
- It inverts truth values! Remember our introductory example:
- Socrates is a goat ($=p$)
- It's not true that Socrates is a goat $(=\neg p)$
- Be careful when translating "not" used in natural language:
- Someone likes Logic (= p)
- Someone doesn't like Logic! $(\neq \neg p)$
- Such complex propositions will be covered in predicate logic!

Introduction: Truth Table

- Since the not connective simply inverts a single truth value we get a simple truth table:

Introduction: Truth Table

- Since the not connective simply inverts a single truth value we get a simple truth table:

$-$| p | $\neg p$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

Introduction: Truth Table

- Since the not connective simply inverts a single truth value we get a simple truth table:

p	$\neg p$				
0	1				
1	0	\quad	p	$\neg p$	$\neg \neg p$
:---:	:---:	:---:			
0	1	0			
1	0	1			

Introduction: Truth Table

- Since the not connective simply inverts a single truth value we get a simple truth table:

p	$\neg p$
0	1
1	0

p	$\neg p$	$\neg \neg p$
0	1	0
1	0	1

- I.e., in propositional logic, two negations eliminate each other!

Introduction: Truth Table

- Since the not connective simply inverts a single truth value we get a simple truth table:

p	$\neg p$
0	1
1	0

p	$\neg p$	$\neg \neg p$
0	1	0
1	0	1

- I.e., in propositional logic, two negations eliminate each other!
- It's not true that it's not true that Socrates is a goat (So it is true!)

The 1-Step Rules: Double-Negation Elimination and Introduction

- The (second) truth table gives us the following two rules:
- Double-Negation Elimination and Introduction Rules:

$$
\frac{\neg \neg A}{A} \neg \neg E
$$

$$
\frac{A}{\neg \neg A} \neg \neg
$$

The 1-Step Rules: Double-Negation Elimination and Introduction

- The (second) truth table gives us the following two rules:
- Double-Negation Elimination and Introduction Rules:

$$
\frac{\neg \neg A}{A} \neg \neg E
$$

$$
\left.\frac{A}{\neg \neg A} \neg \neg \right\rvert\,
$$

- Again based on sequents:

$$
\frac{X \vdash \neg \neg A}{X \vdash A} \neg \neg E \quad \frac{X \vdash A}{X \vdash \neg \neg A} \neg \neg 1
$$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!

$$
\frac{\neg \neg A}{A} \neg \neg E \quad \frac{A}{\neg \neg A} \neg \neg /
$$

Because $A=(p \wedge \neg \neg q)$,
but the rule states it should be $\neg \neg q$!

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
p \wedge \neg \neg q \vdash \neg \neg p \wedge q
$$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
\begin{aligned}
& p \wedge \neg \neg q \vdash \neg \neg p \wedge q \\
& \alpha_{1} \quad \text { (1) } p \wedge \neg \neg q \quad A
\end{aligned}
$$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
\begin{aligned}
& p \wedge \neg \neg q \vdash \neg \neg p \wedge q \\
& \alpha_{1} \\
& \text { (1) } \quad p \wedge \neg \neg q \\
& \alpha_{1} \\
& \text { (2) } \quad p
\end{aligned} \quad 1
$$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
p \wedge \neg \neg q \vdash \neg \neg p \wedge q
$$

α_{1}	(1)	$p \wedge \neg \neg q$	A
α_{1}	(2)	p	$1 \wedge E$
α_{1}	(3)	$\neg \neg p$	$2 \neg \neg /$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
\begin{array}{lll}
p \wedge \neg \neg q \vdash \neg \neg p \wedge q \\
& & \\
\alpha_{1} & \text { (1) } & p \wedge \neg \neg q \\
\alpha_{1} & \text { (2) } & p
\end{array}
$$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
\begin{aligned}
& p \wedge \neg \neg q \vdash \neg \neg p \wedge q \\
& \alpha_{1} \text { (1) } p \wedge \neg \neg q \quad \mathrm{~A}
\end{aligned}
$$

The 1-Step Rules: A Mistake That Will Cost You Marks

Avoid the next common mistake:

- Look carefully what/where the main connective is!
- The rule refers to a complete formula!
- So, e.g., we cannot go from $p \wedge \neg \neg q$ to $p \wedge q$ in just one step!
- Correctly handling that: (with a slightly more complex example)

$$
\begin{aligned}
& p \wedge \neg \neg q \vdash \neg \neg p \wedge q \\
& \alpha_{1} \text { (1) } p \wedge \neg \neg q \quad \mathrm{~A}
\end{aligned}
$$

The 1-Step Rules: Negation-Elimination

- With the double-negation rules we can't introduce or eliminate a single negation.
- To deal with single negations, we require the symbol \perp.
- We introduced it before: it represents "false", an "absurd" constant that can never be satisfied.

The 1-Step Rules: Negation-Elimination

- With the double-negation rules we can't introduce or eliminate a single negation.
- To deal with single negations, we require the symbol \perp.
- We introduced it before: it represents "false", an "absurd" constant that can never be satisfied.
- Negation-Elimination rule:

The 1-Step Rules: Negation-Elimination

- With the double-negation rules we can't introduce or eliminate a single negation.
- To deal with single negations, we require the symbol \perp.
- We introduced it before: it represents "false", an "absurd" constant that can never be satisfied.
- Negation-Elimination rule: (without and with sequent-notation)

$$
\frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp} \neg E
$$

The 1-Step Rules: Negation-Introduction

- Negation-Introduction rule:

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{\perp}{\neg A} \neg /
\end{gathered}
$$

The 1-Step Rules: Negation-Introduction

- Negation-Introduction rule: (without and with sequent-notation)

$$
\begin{aligned}
& {[A]} \\
& \vdots \\
& \frac{\perp}{\neg A} \neg I
\end{aligned} \quad \frac{}{X, A \vdash \perp} \overline{X \vdash \neg A} \neg /
$$

- Negation-Introduction discharges assumption A.

The 1-Step Rules: Negation-Introduction

- Negation-Introduction rule: (without and with sequent-notation)

$$
\begin{aligned}
& {[A]} \\
& \vdots \\
& \frac{\perp}{\neg A} \neg I
\end{aligned} \quad \frac{}{X, A \vdash \perp} \neg 1
$$

- Negation-Introduction discharges assumption A.
- Interesting fact(s):
- Since we do not pose further restrictions on A, we can blame the contradiction on anything we want!

The 1-Step Rules: Negation-Introduction

- Negation-Introduction rule: (without and with sequent-notation)

$$
\begin{aligned}
& {[A]} \\
& \vdots \\
& \frac{\perp}{\neg A} \neg I
\end{aligned} \quad \frac{}{X, A \vdash \perp} \neg /
$$

- Negation-Introduction discharges assumption A.
- Interesting fact(s):
- Since we do not pose further restrictions on A, we can blame the contradiction on anything we want! E.g., if $X=\left\{A_{1}, \ldots, A_{n}\right\}$ and $X \vdash \perp$, we can conclude $X \backslash\left\{A_{i}\right\} \vdash \neg A_{i}$ for any $A_{i} \in X$.

The 1-Step Rules: Negation-Introduction

- Negation-Introduction rule: (without and with sequent-notation)

$$
\left.\begin{array}{l}
{[A]} \\
\vdots \\
\frac{\perp}{\neg A} \neg I
\end{array} \quad \frac{}{X, A \vdash \perp} \neg I\right)
$$

- Negation-Introduction discharges assumption A.
- Interesting fact(s):
- Since we do not pose further restrictions on A, we can blame the contradiction on anything we want! E.g., if $X=\left\{A_{1}, \ldots, A_{n}\right\}$ and $X \vdash \perp$, we can conclude $X \backslash\left\{A_{i}\right\} \vdash \neg A_{i}$ for any $A_{i} \in X$.
- This rule is the main proof idea behind the proof technique "Proof by contradiction". (There are, e.g., nice illustrations on YouTube proving that $\sqrt{2}$ is not rational by that technique.)

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show: You are in Sydney (q)
If you are in Canberra (p), you are $\overbrace{\text { not in Sydney }(\neg q)}$; thus: if you are in Sydney (q), you are not in Canberra ($\neg p$)
l.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show:

> You are in Sydney (q)

If you are in Canberra (p), you are $\overbrace{\text { not in Sydney }(\neg q)}$; thus: if you are in Sydney (q), you are not in Canberra ($\neg p$)
I.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$

- Proof by contradiction:
- Assume the premise (i.e., $p \rightarrow \neg q$) is true and additionally make
- the assumption that the conclusion (i.e., $q \rightarrow \neg p$) is fase!

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show: You are in Sydney (q) If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$
I.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$
- Proof by contradiction:
- Assume the premise (i.e., $p \rightarrow \neg q$) is true and additionally make
- the assumption that the conclusion (i.e., $q \rightarrow \neg p$) is fase!
- Thus, "You are in Sydney and in Canberra", $I(q)=1$ and $I(p)=1$

Why?

p	q	$\neg p$	$q \rightarrow \neg p$	$\neg(q \rightarrow \neg p)$
0	0	1	1	0
0	1	1	1	0
1	0	0	1	0
1	1	0	0	1

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show: You are in Sydney (q) If you are in Canberra (p), you are $\overbrace{\text { not in Sydney }(\neg q)}$; thus: if you are in Sydney (q), you are not in Canberra ($\neg p$)
I.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$
- Proof by contradiction:
- Assume the premise (i.e., $p \rightarrow \neg q$) is true and additionally make
- the assumption that the conclusion (i.e., $q \rightarrow \neg p$) is fase!
- Thus, "You are in Sydney and in Canberra", $I(q)=1$ and $I(p)=1$
- Because of the first assumption, and since we just assumed we are in Canberra, we can conclude that we are not in Sydney.

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show: You are in Sydney (q)
If you are in Canberra (p), you are $\overbrace{\text { not in Sydney }(\neg q)}$; thus: if you are in Sydney (q), you are not in Canberra ($\neg p$)
I.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$
- Proof by contradiction:
- Assume the premise (i.e., $p \rightarrow \neg q$) is true and additionally make
- the assumption that the conclusion (i.e., $q \rightarrow \neg p$) is fase!
- Thus, "You are in Sydney and in Canberra", $I(q)=1$ and $I(p)=1$
- Because of the first assumption, and since we just assumed we are in Canberra, we can conclude that we are not in Sydney.
- But now we are in Sydney, and not in Sydney, contradiction!

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show: You are in Sydney (q)
If you are in Canberra (p), you are $\overbrace{\text { not in Sydney }(\neg q)}$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$
l.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$
- Proof by contradiction:
- Assume the premise (i.e., $p \rightarrow \neg q$) is true and additionally make
- the assumption that the conclusion (i.e., $q \rightarrow \neg p$) is fase!
- Thus, "You are in Sydney and in Canberra", $I(q)=1$ and $I(p)=1$
- Because of the first assumption, and since we just assumed we are in Canberra, we can conclude that we are not in Sydney.
- But now we are in Sydney, and not in Sydney, contradiction!
- Thus our additional assumption that the second implication is false must be wrong, so it must be true!

The 1-Step Rules: Excursion, Proof by Contradiction

- We want to show: You are in Sydney (q)
If you are in Canberra (p), you are $\overbrace{\text { not in Sydney }(\neg q)}$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$ l.e., $p \rightarrow \neg q \vdash q \rightarrow \neg p$
- Proof by contradiction:
- Assume the premise (i.e., $p \rightarrow \neg q$) is true and additionally make
- the assumption that the conclusion (i.e., $q \rightarrow \neg p$) is fase!
- Thus, "You are in Sydney and in Canberra", $I(q)=1$ and $I(p)=1$
- Because of the first assumption, and since we just assumed we are in Canberra, we can conclude that we are not in Sydney.
- But now we are in Sydney, and not in Sydney, contradiction!
- Thus our additional assumption that the second implication is false must be wrong, so it must be true!
- Thus, the first implication implies the second! q.e.d.

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
p \rightarrow \neg q \vdash q \rightarrow \neg p
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
\begin{equation*}
p \rightarrow \neg q \vdash q \rightarrow \neg p \tag{1}
\end{equation*}
$$

(1) $\quad p \rightarrow \neg q \quad \mathrm{~A}$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
\begin{aligned}
& p \rightarrow \neg q \vdash q \rightarrow \neg p \\
& \alpha_{1}
\end{aligned} \quad \text { (1) } \quad p \rightarrow \neg q \quad A
$$

(n) $\quad q \rightarrow \neg p$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
p \rightarrow \neg q \vdash q \rightarrow \neg p
$$

α_{1}
(1) $p \rightarrow \neg q$
A
α_{2}
(2) q
A

$$
\frac{X, A \vdash \perp}{X \vdash \neg A} \neg I
$$

$$
\begin{array}{lll}
\alpha_{1}, \alpha_{2} & (\mathrm{n}-1) & \neg p \\
\alpha_{1} & (\mathrm{n}) & q \rightarrow \neg p
\end{array} \quad(\mathrm{n}-1) \rightarrow l
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
p \rightarrow \neg q \vdash q \rightarrow \neg p
$$

α_{1}	(1)	$p \rightarrow \neg q$	A
α_{2}	(2)	q	A
α_{3}	(3)	p	A

$$
\frac{X, A \vdash \perp}{X \vdash \neg A} \neg I
$$

$$
\begin{array}{llll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-2) & \perp & \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}-1) & \neg p & (\mathrm{n}-2)\left[\alpha_{3}\right] \\
\alpha_{1} & (\mathrm{n}) & q \rightarrow \neg p & (\mathrm{n}-1) \rightarrow l
\end{array}
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$p \rightarrow \neg q \vdash q \rightarrow \neg p$					
α_{1}	(1)	$p \rightarrow \neg q$	A		
α_{2}	(2)	q	A		
α_{3}	(3)	p	A	\quad	$\frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp} \neg E$
:---:					

$\alpha_{1}, \alpha_{2}, \alpha_{3}$	$(\mathrm{n}-2)$	\perp	$\mathrm{x}, \mathrm{y} \neg E$
α_{1}, α_{2}	$(\mathrm{n}-1)$	$\neg p$	$(\mathrm{n}-2)\left[\alpha_{3}\right] \neg l$
α_{1}	(n)	$q \rightarrow \neg p$	$(\mathrm{n}-1) \rightarrow l$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
\begin{array}{llll}
p \rightarrow \neg q \vdash q \rightarrow \neg p \\
\alpha_{1} & \text { (1) } & p \rightarrow \neg q & \mathrm{~A} \\
\alpha_{2} & \text { (2) } & q & \mathrm{~A} \\
\alpha_{3} & \text { (3) } & p & \mathrm{~A} \\
\alpha_{1}, \alpha_{3} & \text { (4) } & \neg q & 1,3 \rightarrow E \\
& & \frac{X \vdash A}{X, A \vdash \perp} \\
& & & \begin{array}{l}
X \vdash \neg A \\
X \vdash \neg A \\
\end{array}
\end{array}
$$

$\alpha_{1}, \alpha_{2}, \alpha_{3}$	$(\mathrm{n}-2)$	\perp	$\mathrm{x}, \mathrm{y} \neg E$
α_{1}, α_{2}	$(\mathrm{n}-1)$	$\neg p$	$(\mathrm{n}-2)\left[\alpha_{3}\right] \neg l$
α_{1}	(n)	$q \rightarrow \neg p$	$(\mathrm{n}-1) \rightarrow l$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
\begin{array}{llll}
p \rightarrow \neg q \vdash q \rightarrow \neg p \\
\alpha_{1} & \text { (1) } & p \rightarrow \neg q & \mathrm{~A} \\
\alpha_{2} & \text { (2) } & q & \mathrm{~A} \\
\alpha_{3} & \text { (3) } & p & \mathrm{~A} \\
\alpha_{1}, \alpha_{3} & \text { (4) } & \neg q & 1,3 \rightarrow E \\
\alpha_{1}, \alpha_{2}, \alpha_{3} & \text { (5) } & \perp & 2,4 \neg E \quad \frac{X, A \vdash \perp}{X \vdash, Y \vdash \perp}
\end{array}
$$

$\alpha_{1}, \alpha_{2}, \alpha_{3}$	$(\mathrm{n}-2)$	\perp	$\mathrm{x}, \mathrm{y} \neg E$
α_{1}, α_{2}	$(\mathrm{n}-1)$	$\neg p$	$(\mathrm{n}-2)\left[\alpha_{3}\right] \neg l$
α_{1}	(n)	$q \rightarrow \neg p$	$(\mathrm{n}-1) \rightarrow l$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$$
\begin{array}{llll}
p \rightarrow \neg q \vdash q \rightarrow \neg p & \\
\alpha_{1} & \text { (1) } & p \rightarrow \neg q & \mathrm{~A} \\
\alpha_{2} & \text { (2) } & q & \mathrm{~A} \\
\alpha_{3} & \text { (3) } & p & \mathrm{~A} \\
\alpha_{1}, \alpha_{3} & \text { (4) } & \neg q & 1,3 \rightarrow E \\
\alpha_{1}, \alpha_{2}, \alpha_{3} & \text { (5) } & \perp & 2,4 \neg E \\
\alpha_{1}, \alpha_{2} & \text { (6) } & \neg p & 5\left[\alpha_{3}\right] \neg l
\end{array} \quad \begin{aligned}
& X \vdash A, Y \vdash \neg A \\
& X \vdash, Y \vdash \perp \\
& \hline
\end{aligned}
$$

$\alpha_{1}, \alpha_{2}, \alpha_{3}$	$(\mathrm{n}-2)$	\perp	$\mathrm{x}, \mathrm{y} \neg E$
α_{1}, α_{2}	$(\mathrm{n}-1)$	$\neg p$	$(\mathrm{n}-2)\left[\alpha_{3}\right] \neg /$
α_{1}	(n)	$q \rightarrow \neg p$	$(\mathrm{n}-1) \rightarrow I$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 1

- If you are in Canberra (p), you are not in Sydney $(\neg q)$; thus: if you are in Sydney (q), you are not in Canberra $(\neg p)$

$p \rightarrow \neg q \vdash q \rightarrow \neg p$				$\frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp} \neg E$
α_{1}	(1)	$p \rightarrow \neg q$	A	
α_{2}	(2)	q	A	
α_{3}	(3)	p	A	
α_{1}, α_{3}	(4)	$\neg q$	$1,3 \rightarrow E$	$X, A \vdash \perp$
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	(5)	\perp	$2,4 \neg E$	$\overline{X \vdash \neg A} \neg /$
α_{1}, α_{2}	(6)	$\neg p$	$5\left[\alpha_{3}\right] \neg /$	
α_{1}	(7)	$q \rightarrow \neg p$	$6\left[\alpha_{2}\right] \rightarrow 1$	
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	($\mathrm{n}-2$)	\perp	$\mathrm{x}, \mathrm{y} \neg \mathrm{E}$	
α_{1}, α_{2}	($\mathrm{n}-1$)	$\neg p$	$(\mathrm{n}-2)\left[\alpha_{3}\right]$	
α_{1}	(n)	$q \rightarrow \neg p$	$(\mathrm{n}-1) \rightarrow 1$	

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

- Contradict yourself, and I don't care anymore!
- In other words: We can conclude all we want from an inconsistent knowledge base.

$$
p, \neg p \vdash q
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

- Contradict yourself, and I don't care anymore!
- In other words: We can conclude all we want from an inconsistent knowledge base.

$$
p, \neg p \vdash q
$$

$$
\begin{array}{llll}
\alpha_{1} & \text { (1) } & p & \mathrm{~A}
\end{array}
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

- Contradict yourself, and I don't care anymore!
- In other words: We can conclude all we want from an inconsistent knowledge base.

$$
p, \neg p \vdash q
$$

α_{1}	(1)	p	A
α_{2}	(2)	$\neg p$	A

$$
\frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp}
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

- Contradict yourself, and I don't care anymore!
- In other words: We can conclude all we want from an inconsistent knowledge base.

$$
p, \neg p \vdash q
$$

α_{1}	(1)	p	A
α_{2}	(2)	$\neg p$	A
α_{1}, α_{2}	(3)	\perp	$1,2 \neg E$

$$
\frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp}
$$

$$
\frac{X, A \vdash \perp}{X \vdash \neg A} \neg I
$$

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

- Contradict yourself, and I don't care anymore!
- In other words: We can conclude all we want from an inconsistent knowledge base.

$$
\begin{array}{llll}
p, \neg p \vdash q \\
& \\
\alpha_{1} & (1) & p & \mathrm{~A} \\
\alpha_{2} & (2) & \neg p & \mathrm{~A} \\
\alpha_{1}, \alpha_{2} & (3) & \perp & 1,2 \neg E \\
\alpha_{1}, \alpha_{2} & (4) & \neg \neg q & 3[] \neg I
\end{array}
$$

$$
\begin{array}{|l|}
\hline \frac{X, A \vdash \perp}{X \vdash \neg A} \neg I \quad \frac{X \vdash \neg \neg A}{X \vdash A} \neg \neg E
\end{array}
$$

- Here we have another example of vacuous discharge: We blame the contradiction on a non-existing assumption $\neg q$.

The 1-Step Rules: Negation-Elimination and -Introduction, Example 2

- Contradict yourself, and I don't care anymore!
- In other words: We can conclude all we want from an inconsistent knowledge base.

$$
\begin{array}{llll}
p, \neg p \vdash q \\
\alpha_{1} & (1) & p & \mathrm{~A} \\
\alpha_{2} & (2) & \neg p & \mathrm{~A} \\
\alpha_{1}, \alpha_{2} & (3) & \perp & 1,2 \neg E \\
\alpha_{1}, \alpha_{2} & (4) & \neg \neg q & 3[] \neg / \\
\alpha_{1}, \alpha_{2} & (5) & q & 4 \neg \neg E
\end{array}
$$

$$
\frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp}
$$

$$
\frac{x, A \vdash \perp}{x \vdash \neg A} \neg l \left\lvert\, \frac{x \vdash \neg \neg A}{x \vdash A} \neg \neg E\right.
$$

- Here we have another example of vacuous discharge: We blame the contradiction on a non-existing assumption $\neg q$.

A 2-Step Rule: Reductio ad Absurdum (RAA)

- We can combine Negation-Elimination with its Introduction:

Again, notations without and with sequents:
$[B] \quad[B]$

$$
\frac{X, B \vdash A \quad Y, B \vdash \neg A}{X, Y \vdash \neg B}
$$

- The rules discharge assumption B.

A 2-Step Rule: Reductio ad Absurdum (RAA)

- We can combine Negation-Elimination with its Introduction:

Again, notations without and with sequents:
$[B] \quad[B]$

$$
\frac{A \quad \neg A}{\neg B} R A A \quad \frac{X, B \vdash A \quad Y, B \vdash \neg A}{X, Y \vdash \neg B} R A A
$$

- The rules discharge assumption B.

$$
\begin{aligned}
& \text { - Why is it correct? } \\
& \qquad \frac{X, A \vdash \perp}{X \vdash \neg A} \neg / \quad \frac{X \vdash A \quad Y \vdash \neg A}{X, Y \vdash \perp} \neg E \quad \frac{X, B \vdash A \quad Y, B \vdash \neg A}{X, Y, B \vdash \perp} \\
& \\
& \frac{X, Y \vdash \neg B}{} \quad
\end{aligned}
$$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p: \quad p$ is so false, it implies its own negation!

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p: \quad p$ is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p: \quad p$ is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

$$
p \rightarrow \neg p \vdash \neg p
$$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p$: p is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

$$
p \rightarrow \neg p \vdash \neg p
$$

$$
\alpha_{1} \quad \text { (1) } \quad p \rightarrow \neg p \quad A
$$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p$: p is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

$$
p \rightarrow \neg p \vdash \neg p
$$

$$
\alpha_{1} \quad \text { (1) } \quad p \rightarrow \neg p \quad A
$$

$$
\frac{X, B \vdash A \quad Y, B \vdash \neg A}{X, Y \vdash \neg B}
$$

$\alpha_{1} \quad(\mathrm{n}) \quad \neg p$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p: \quad p$ is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

$$
p \rightarrow \neg p \vdash \neg p
$$

α_{1}
(1) $p \rightarrow \neg p$

A

$$
X, B \vdash A \quad Y, B \vdash \neg A
$$

α_{2}
(2) p

A
$\alpha_{1} \quad(\mathrm{n}) \quad \neg p \quad \mathrm{x}, \mathrm{y}\left[\alpha_{2}\right] R A A$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p: \quad p$ is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

$$
\begin{array}{llll}
p \rightarrow \neg p \vdash \neg p \\
\alpha_{1} & \text { (1) } & p \rightarrow \neg p & A \\
\alpha_{2} & \text { (2) } & p & A \\
\alpha_{1}, \alpha_{2} & \text { (3) } & \neg p & 1,2 \rightarrow E
\end{array}
$$

$$
X, B \vdash A \quad Y, B \vdash \neg A
$$

$$
X, Y \vdash \neg B
$$

α_{1}
(n) $\neg p$
$\mathrm{x}, \mathrm{y}\left[\alpha_{2}\right] R A A$

A 2-Step Rule: Reduction ad Absurdum (RAA), Example 1

- $p \rightarrow \neg p \vdash \neg p: \quad p$ is so false, it implies its own negation!

Or: Since p and $\neg p$ can't be true at the same time, the implication $p \rightarrow \neg p$ cannot be "activated", so its precondition must be false.

$$
\begin{aligned}
& p \rightarrow \neg p \vdash \neg p \\
& \alpha_{1} \\
& \text { (1) } p \rightarrow \neg p \\
& X, B \vdash A \quad Y, B \vdash \neg A \\
& \text { RAm } \\
& \alpha_{2} \\
& \text { (2) } p \\
& \text { A } \\
& \alpha_{1}, \alpha_{2} \\
& \text { (3) } \neg p \\
& 1,2 \rightarrow E \\
& \alpha_{1} \\
& \text { (4) } \neg p \\
& \text { 2,3[} \alpha_{2} \text {] aAA } \\
& \alpha_{1} \\
& \text { (n) } \neg p \\
& \mathrm{x}, \mathrm{y}\left[\alpha_{2}\right] R A A
\end{aligned}
$$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

Again! Since p and $\neg p$ can't be true at the same time, the implication $\neg p \rightarrow p$ cannot be "activated", so its precondition must be false.

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

Again! Since p and $\neg p$ can't be true at the same time, the implication $\neg p \rightarrow p$ cannot be "activated", so its precondition must be false.

$$
\begin{aligned}
& \neg p \rightarrow p \vdash p \\
& \alpha_{1} \quad \text { (1) } \quad \neg p \rightarrow p \quad \mathrm{~A}
\end{aligned}
$$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

Again! Since p and $\neg p$ can't be true at the same time, the implication $\neg p \rightarrow p$ cannot be "activated", so its precondition must be false.

$$
\neg p \rightarrow p \vdash p
$$

α_{1}	(1)	$\neg p \rightarrow p$	A
α_{2}	(2) $\neg p$	A	

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

Again! Since p and $\neg p$ can't be true at the same time, the implication $\neg p \rightarrow p$ cannot be "activated", so its precondition must be false.

$$
X, B \vdash A \quad Y, B \vdash \neg A
$$

\[

\]

$$
X, Y \vdash \neg B
$$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

Again! Since p and $\neg p$ can't be true at the same time, the implication $\neg p \rightarrow p$ cannot be "activated", so its precondition must be false.

$$
\neg p \rightarrow p \vdash p
$$

$$
\frac{X, B \vdash A \quad Y, B \vdash \neg A}{X, Y \vdash \neg B}
$$

α_{1}	(1)	$\neg p \rightarrow p$	A
α_{2}	(2)	$\neg p$	A
α_{1}, α_{2}	(3)	p	$1,2 \rightarrow E$
α_{1}	(4)	$\neg \neg p$	$2,3\left[\alpha_{2}\right] R A A$

A 2-Step Rule: Reductio ad Absurdum (RAA), Example 2

- $\neg p \rightarrow p \vdash p$: if p is even implied by its own negation, then it must be true!

Again! Since p and $\neg p$ can't be true at the same time, the implication $\neg p \rightarrow p$ cannot be "activated", so its precondition must be false.

$$
\neg p \rightarrow p \vdash p
$$

$$
\frac{X, B \vdash A \quad Y, B \vdash \neg A}{X, Y \vdash \neg B}
$$

α_{1}	(1)	$\neg p \rightarrow p$	A
α_{2}	(2)	$\neg p$	A
α_{1}, α_{2}	(3)	p	$1,2 \rightarrow E$
α_{1}	(4)	$\neg \neg p$	$2,3\left[\alpha_{2}\right]$
α_{1}	(5)	p	$4 \neg \neg$

Disjunctions

Introduction: (Our) Or versus Exclusive Or

- Disjunctions are of the form $A \vee B$
- It rains this afternoon or this evening. (But it can also be both!)

Introduction: (Our) Or versus Exclusive Or

- Disjunctions are of the form $A \vee B$
- It rains this afternoon or this evening. (But it can also be both!)
- The cat is either dead or alive.
(Unless it's a physicist's cat, the choice is exclusive! The cat cannot be both dead and alive!)

Introduction: (Our) Or versus Exclusive Or

- Disjunctions are of the form $A \vee B$
- It rains this afternoon or this evening.
(But it can also be both!)
- The cat is either dead or alive.
(Unless it's a physicist's cat, the choice is exclusive!
The cat cannot be both dead and alive!)
- We use the first, non-exclusive, notion of or:

At least one proposition needs to be true!

The 1-Step Rules: Disjunction-Introduction

Disjunction-Introduction Rules:

- Notation without sequents:

The 1-Step Rules: Disjunction-Introduction

Disjunction-Introduction Rules:

- Notation without sequents:

$$
\frac{A}{A \vee B} \vee I
$$

$$
\frac{B}{A \vee B} \vee I
$$

- Notation with sequents:

$$
\frac{X \vdash A}{X \vdash A \vee B} \vee I \quad \frac{X \vdash B}{X \vdash A \vee B} \vee I
$$

The 1-Step Rules: Disjunction-Introduction

Disjunction-Introduction Rules:

- Notation without sequents:

$$
\frac{A}{A \vee B} \vee I
$$

$$
\frac{B}{A \vee B} \vee I
$$

- Notation with sequents:

$$
\frac{x \vdash A}{x \vdash A \vee B} \vee I \quad \frac{x \vdash B}{X \vdash A \vee B} \vee I
$$

- Great! So we have that easy rule to prove a disjunction, right?

The 1-Step Rules: Disjunction-Introduction

Disjunction-Introduction Rules:

- Notation without sequents:

$$
\frac{A}{A \vee B} \vee I
$$

$$
\frac{B}{A \vee B} \vee I
$$

- Notation with sequents:

$$
\frac{x \vdash A}{x \vdash A \vee B} \vee I \quad \frac{x \vdash B}{X \vdash A \vee B} \vee I
$$

- Great! So we have that easy rule to prove a disjunction, right?
- Well... No. (That's only one sub step.) More later!

The 1-Step Rules: Disjunction-Elimination, Introduction

- If x is even, then $x^{2}+x$ is even.

The 1-Step Rules: Disjunction-Elimination, Introduction

- If x is even, then $x^{2}+x$ is even.
- If x is odd, then $x^{2}+x$ is even.

The 1-Step Rules: Disjunction-Elimination, Introduction

- If x is even, then $x^{2}+x$ is even.
- If x is odd, then $x^{2}+x$ is even.
- x is either odd or even. ${ }^{1}$
${ }^{1}$ Technically, we use the exclusive or here, but the argument remains true even if it's the non-exclusive or.

The 1-Step Rules: Disjunction-Elimination, Introduction

- If x is even, then $x^{2}+x$ is even.
- If x is odd, then $x^{2}+x$ is even.
- x is either odd or even. ${ }^{1}$
- Thus, $x^{2}+x$ is even.
${ }^{1}$ Technically, we use the exclusive or here, but the argument remains true even if it's the non-exclusive or.

The 1-Step Rules: Disjunction-Elimination, Introduction

- If x is even, then $x^{2}+x$ is even.
- If x is odd, then $x^{2}+x$ is even.
- x is either odd or even. ${ }^{1}$
- Thus, $x^{2}+x$ is even.
- We call this the constructive dilemma: From only knowing the conclusion, we can't know which of the cases applied!

[^0]
The 1-Step Rules: Disjunction-Elimination, Introduction

- If x is even, then $x^{2}+x$ is even.
- If x is odd, then $x^{2}+x$ is even.
- x is either odd or even. ${ }^{1}$
- Thus, $x^{2}+x$ is even.
- We call this the constructive dilemma: From only knowing the conclusion, we can't know which of the cases applied!
- Formally, this can be expressed as $p \rightarrow r, q \rightarrow r, p \vee q \vdash r$

[^1]
The 1-Step Rules: Disjunction-Elimination Rule

- Disjunction-Elimination Rule:

- This does not help us so much:
- It's too restrictive because it requires implications to work! (Which would get eliminated as well.)
- But we only want to eliminate the disjunction without further restrictions on the rest!

The 1-Step Rules: Disjunction-Elimination Rule

- Disjunction-Elimination Rule:

- This does not help us so much:
- It's too restrictive because it requires implications to work! (Which would get eliminated as well.)
- But we only want to eliminate the disjunction without further restrictions on the rest!
- So, what do we do?

The 1-Step Rules: Disjunction-Elimination Rule (Based on Sequents)

- Deduction equivalence: $X \vdash A \rightarrow B \quad$ iff $\quad X, A \vdash B$ Thus, we can re-write the previous rule as follows:

The 1-Step Rules: Disjunction-Elimination Rule (Based on Sequents)

- Deduction equivalence: $X \vdash A \rightarrow B \quad$ iff $\quad X, A \vdash B$ Thus, we can re-write the previous rule as follows:
[A] [B]

- Now we:
- ... don't rely on implications anymore!
- ... can discharge two assumptions (A and B), i.e., exactly those of the disjunction (but from two different sequents!).

The 1-Step Rules: Disjunction-Elimination Rule (Based on Sequents)

- Deduction equivalence: $X \vdash A \rightarrow B \quad$ iff $\quad X, A \vdash B$

Thus, we can re-write the previous rule as follows:
[A] [B]

- Now we:
- ... don't rely on implications anymore!
- ... can discharge two assumptions (A and B), i.e., exactly those of the disjunction (but from two different sequents!).
- Some good news and bad news: This is the hardest rule in natural deduction (So practice it!)

The 1-Step Rules: When to Use that Rule

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{X, Y, Z \vdash C} \vee E
$$

- Technically, this rule is used to "eliminate" a disjunction.

The 1-Step Rules: When to Use that Rule

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{x, Y, Z \vdash C} \vee E
$$

- Technically, this rule is used to "eliminate" a disjunction.
- But in practice, we use it to prove one!

The 1-Step Rules: When to Use that Rule

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{X, Y, Z \vdash C} \vee E
$$

- Technically, this rule is used to "eliminate" a disjunction.
- But in practice, we use it to prove one!
- How is that possible?

The 1-Step Rules: When to Use that Rule

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{X, Y, Z \vdash C} \vee E
$$

- Technically, this rule is used to "eliminate" a disjunction.
- But in practice, we use it to prove one!
- How is that possible? Because we can use any formula for C !

The 1-Step Rules: When to Use that Rule

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{X, Y, Z \vdash C} \vee E
$$

- Technically, this rule is used to "eliminate" a disjunction.
- But in practice, we use it to prove one!
- How is that possible? Because we can use any formula for C !
- I.e., when we want to derive a disjunction, we can use it as C but this will also require another disjunction for the first sequent!

The 1-Step Rules: When to Use that Rule

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{X, Y, Z \vdash C} \vee E
$$

- Technically, this rule is used to "eliminate" a disjunction.
- But in practice, we use it to prove one!
- How is that possible? Because we can use any formula for C !
- I.e., when we want to derive a disjunction, we can use it as C but this will also require another disjunction for the first sequent!
- We often obtain that one via assuming it.

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

$$
\alpha_{1} \quad \text { (1) } p \vee q \quad A
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

$$
\begin{array}{llll}
\alpha_{1} & \text { (1) } & p \vee q & A \\
\alpha_{2} & \text { (2) } & p & A
\end{array}
$$

$$
\frac{X \vdash B}{X \vdash A \vee B} \vee I
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

α_{1}	(1)	$p \vee q$	A
α_{2}	(2)	p	A
α_{2}	(3)	$q \vee p$	$2 \vee I$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

α_{1}	(1)	$p \vee q$	A
α_{2}	(2)	p	A
α_{2}	(3)	$q \vee p$	$2 \vee I$
α_{3}	(4)	q	A

$$
\frac{x \vdash B}{x \vdash A \vee B} \vee I
$$

$$
\frac{X \vdash A}{X \vdash A \vee B} \vee I
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

α_{1}	(1)	$p \vee q$	A
α_{2}	(2)	p	A
α_{2}	(3)	$q \vee p$	$2 \vee I$
α_{3}	(4)	q	A
α_{3}	(5)	$q \vee p$	$4 \vee I$

$$
\frac{\frac{x \vdash B}{X \vdash A \vee B} \vee \prime}{\frac{X \vdash A}{x \vdash A \vee B} \vee \prime}
$$

| $X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C$ | |
| :---: | :---: | :---: |
| | $X, Y, Z \vdash C$ |

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

α_{1}	(1)	$p \vee q$	A
α_{2}	(2)	p	A
α_{2}	(3)	$q \vee p$	$2 \vee I$
α_{3}	(4)	q	A
α_{3}	(5)	$q \vee p$	$4 \vee I$
α_{1}	(6)	$q \vee p$	$1,3\left[\alpha_{2}\right], 5\left[\alpha_{3}\right] \vee E$

$$
\alpha_{2} \quad \text { (3) } \quad q \vee p \quad 2 \vee I
$$

$$
\begin{array}{llll}
\alpha_{3} & (4) & q & \mathrm{~A}
\end{array}
$$

$$
\alpha_{3} \quad(5) \quad q \vee p \quad 4 \vee I
$$

$$
\frac{\frac{x \vdash B}{X \vdash A \vee B} \vee I}{\frac{x \vdash A}{x \vdash A \vee B} \vee I}
$$

$\alpha_{1} \quad(6) \quad q \vee p \quad 1,3\left[\alpha_{2}\right], 5\left[\alpha_{3}\right] \vee E$

$$
\begin{array}{rlrl}
\hline X \vdash A \vee B \quad Y, A \vdash C & Z, B \vdash C \\
\hline X, Y, Z \vdash C & & X=\overbrace{\{p \vee q\}}^{\alpha_{1}} A & =\alpha_{2}=p \\
Y & =\emptyset & B=\alpha_{3}=q \\
Z & =\emptyset & C=q \vee p
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 1

- Disjunction is commutative: $p \vee q \vdash q \vee p$

α_{1}	(1)	$p \vee q$	A
α_{2}	(2)	p	A
α_{2}	(3)	$q \vee p$	$2 \vee I$
α_{3}	(4)	q	A
α_{3}	(5)	$q \vee p$	$4 \vee I$
α_{1}	(6)	$q \vee p$	$1,3\left[\alpha_{2}\right], 5\left[\alpha_{3}\right] \vee E$

$$
\frac{\frac{x \vdash B}{x \vdash A \vee B} \downarrow}{\frac{x \vdash A}{x \vdash A \vee B} \downarrow}
$$

- In line 3, the q was just some arbitrary truth value that we've added due to Disjunction-Introduction!
- Similarly in line 5 the p was arbitrary. Notably, that's not the p from assumption α_{2}.

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

Just a comment:
The analogy would have been stronger if instead of using the two assumptions
$\alpha_{1}=p$ and $\alpha_{2}=q \vee r$, only a single assumption
$\alpha_{1}^{\prime}=p \wedge(q \vee r)$ would have been used.
(You can prove the other on your own.)

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

α_{1}
(1) p

A

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

α_{1}	(1)	p	A
α_{2}	(2)	$q \vee r$	A

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

$$
\begin{array}{llll}
\alpha_{1} & \text { (1) } & p & A \\
\alpha_{2} & \text { (2) } & q \vee r & A
\end{array} \begin{array}{llll|}
\hline X \vdash A \vee B & Y, A \vdash C & Z, B \vdash C \\
X, Y, Z \vdash C \\
\hline
\end{array}
$$

$$
\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(p \wedge q) \vee(p \wedge r) \quad \mathrm{x}, \mathrm{y}[?], \mathrm{z}[?] \vee E
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

α_{1}	(1)	p	A			
α_{2}	(2)	$q \vee r$	A	$X \vdash A \vee B$	$Y, A \vdash C$	$Z, B \vdash C$
α_{3}	(3)	q	A	$X, Y, Z \vdash C$		
α_{4}	(4)	r		A		

$$
\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(\mathrm{p} \wedge q) \vee(p \wedge r) \quad \mathrm{x}, \mathrm{y}\left[\alpha_{3}\right], \mathrm{z}\left[\alpha_{4}\right] \vee E
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, egg. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

$\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(\mathrm{p} \wedge q) \vee(p \wedge r) \quad \mathrm{x}, \mathrm{y}\left[\alpha_{3}\right], \mathrm{z}\left[\alpha_{4}\right] \vee E$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

α_{1}	(1)	p		$\underline{X}+A \vee B$		$Y, A \vdash C$	$Z, B \vdash C$
α_{2}	(2)	$q \vee r$	A	$X, Y, Z \vdash C$			
α_{3}	(3)	q	A				
α_{4}	(4)	r			A		$X \vdash B$
α_{1}, α_{3}	(5)	$p \wedge q$			1,3		$\overline{X \vdash A \vee B} \vee /$
α_{1}, α_{3}	(6)	$(p \wedge q)$		$\wedge r$	5 VI		

$\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(\mathrm{p} \wedge q) \vee(p \wedge r) \quad \mathrm{x}, \mathrm{y}\left[\alpha_{3}\right], \mathrm{z}\left[\alpha_{4}\right] \vee E$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, e.g. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

α_{1}	(1)	p	A	
α_{2}	(2)	$q \vee r$	A	
α_{3}	(3)	q	A	$X \vdash A \vee B$ $Y, A \vdash C$ $X, Y, Z \vdash C$ $Z, B \vdash C$
α_{4}	(4) r	r	A	
α_{1}, α_{3}	(5)	$p \wedge q$	$1,3 \wedge I$	
α_{1}, α_{3}	(6)	$(p \wedge q) \vee(p \wedge r)$	$5 \vee I$	$\frac{X \vdash B}{X \vdash A \vee B} \vee I$
α_{1}, α_{4}	(7)	$p \wedge r$	$1,4 \wedge I$	$\frac{X \vdash A}{X \vdash A \vee B} \vee I$

$\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(\mathrm{p} \wedge q) \vee(p \wedge r) \quad \mathrm{x}, \mathrm{y}\left[\alpha_{3}\right], \mathrm{z}\left[\alpha_{4}\right] \vee E$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, egg. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

$$
\alpha_{1}, \alpha_{4} \quad \text { (7) } \quad p \wedge r \quad 1,4 \wedge I
$$

$$
\alpha_{1}, \alpha_{4} \quad \text { (8) } \quad(p \wedge q) \vee(p \wedge r) \quad 7 \vee I
$$

$$
\frac{x \vdash A}{x \vdash A \vee B} \vee I
$$

$\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(p \wedge q) \vee(p \wedge r) \quad x, y\left[\alpha_{3}\right], z\left[\alpha_{4}\right] \vee E$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 2

- Conjunction and disjunction behave just like multiplication and addition, egg. $p \cdot(q+r)=p \cdot q+p \cdot r$:

$$
p, q \vee r \vdash(p \wedge q) \vee(p \wedge r)
$$

$\alpha_{1}, \alpha_{2} \quad(\mathrm{n}) \quad(\mathrm{p} \wedge q) \vee(\mathrm{p} \wedge r) \quad \mathrm{x}, \mathrm{y}\left[\alpha_{3}\right], \mathrm{z}\left[\alpha_{4}\right] \vee E$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A

α_{1}, α_{2}
(n) $\quad(p \vee q) \rightarrow(r \vee s)$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A
α_{3}	(3)	$p \vee q$	A

$$
\begin{array}{lll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}) & (p \vee q) \rightarrow(r \vee s) \quad(\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A
α_{3}	(3)	$p \vee q$	A

$$
\frac{X \vdash A \vee B \quad Y, A \vdash C \quad Z, B \vdash C}{X, Y, Z \vdash C}
$$

$$
\begin{array}{lll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s \\
\alpha_{1}, \alpha_{2} & \text { (n) } & (p \vee q) \rightarrow(r \vee s)
\end{array} \begin{aligned}
& \mathrm{x}, \mathrm{y}[?], \mathrm{z}[?] \vee E \\
& (\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow 1
\end{aligned}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
\begin{array}{lll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s \\
\alpha_{1}, \alpha_{2} & \text { (n) } & (p \vee q) \rightarrow(r \vee s) \\
(\mathrm{n}-1)\left[\alpha_{3}\right], \mathrm{z}\left[\alpha_{5}\right] \vee I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A
α_{3}	(3)	$p \vee q$	A
α_{4}	(4)	p	A
α_{5}	(5)	q	A
α_{1}, α_{4}	(6)	r	$1,4 \rightarrow E$

$$
\begin{array}{lcll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s & 3, \mathrm{y}\left[\alpha_{4}\right], \mathrm{z}\left[\alpha_{5}\right] \vee E \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}) & (p \vee q) \rightarrow(r \vee s) & (\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A
α_{3}	(3)	$p \vee q$	A
α_{4}	(4)	p	A
α_{5}	(5)	q	A
α_{1}, α_{4}	(6)	r	$1,4 \rightarrow E$
α_{1}, α_{4}	(7)	$r \vee s$	$6 \vee I$

$$
\begin{array}{lcll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s & 3, \mathrm{y}\left[\alpha_{4}\right], \mathrm{z}\left[\alpha_{5}\right] \vee E \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}) & (p \vee q) \rightarrow(r \vee s) & (\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A
α_{3}	(3)	$p \vee q$	A
α_{4}	(4)	p	A
α_{5}	(5)	q	A
α_{1}, α_{4}	(6)	r	$1,4 \rightarrow E$
α_{1}, α_{4}	(7)	$r \vee s$	$6 \vee I$
α_{2}, α_{5}	(8)	s	$2,5 \rightarrow E$

$$
\begin{array}{lcll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s & 3, \mathrm{y}\left[\alpha_{4}\right], \mathrm{z}\left[\alpha_{5}\right] \vee E \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}) & (p \vee q) \rightarrow(r \vee s) & (\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
\begin{array}{lll}
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s) & \\
\alpha_{1} & (1) & p \rightarrow r \\
\alpha_{2} & (2) & q \rightarrow s \\
\alpha_{3} & (3) & p \vee q \\
\alpha_{4} & (4) & p \\
\mathrm{~A} \\
\alpha_{5} & (5) & q \\
\alpha_{1}, \alpha_{4} & (6) & r \\
\alpha_{1}, \alpha_{4} & (7) & r \vee s \\
\alpha_{2}, \alpha_{5} & (8) & s \\
\alpha_{2}, \alpha_{5} & (9) & r \vee s \\
\mathrm{~A} \\
\hline
\end{array}
$$

$$
\begin{array}{lcll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s & 3, \mathrm{y}\left[\alpha_{4}\right], \mathrm{z}\left[\alpha_{5}\right] \vee E \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}) & (p \vee q) \rightarrow(r \vee s) & (\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
\begin{array}{lcll}
\alpha_{1}, \alpha_{2}, \alpha_{3} & (\mathrm{n}-1) & r \vee s & 3, \mathrm{y}\left[\alpha_{4}\right], \mathrm{z}\left[\alpha_{5}\right] \vee E \\
\alpha_{1}, \alpha_{2} & (\mathrm{n}) & (p \vee q) \rightarrow(r \vee s) & (\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I
\end{array}
$$

The 1-Step Rules: Disjunction-Introduction and -Elimination, Example 3

$$
p \rightarrow r, q \rightarrow s \vdash(p \vee q) \rightarrow(r \vee s)
$$

α_{1}	(1)	$p \rightarrow r$	A
α_{2}	(2)	$q \rightarrow s$	A
α_{3}	(3)	$p \vee q$	A
α_{4}	(4)	p	A
α_{5}	(5)	q	A
α_{1}, α_{4}	(6)	r	$1,4 \rightarrow E$
α_{1}, α_{4}	(7)	$r \vee s$	$6 \vee I$
α_{2}, α_{5}	(8)	s	$2,5 \rightarrow E$
α_{2}, α_{5}	(9)	$r \vee s$	$8 \vee I$
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	(10)	$r \vee s$	$3,7\left[\alpha_{4}\right], 9\left[\alpha_{5}\right] \vee E$
α_{1}, α_{2}	(11)	$(p \vee q) \rightarrow(r \vee s)$	$10\left[\alpha_{3}\right] \rightarrow I$
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	$(\mathrm{n}-1)$	$r \vee s$	$3, \mathrm{y}\left[\alpha_{4}\right], \mathrm{z}\left[\alpha_{5}\right] \vee E$
α_{1}, α_{2}	(n)	$(p \vee q) \rightarrow(r \vee s)$	$(\mathrm{n}-1)\left[\alpha_{3}\right] \rightarrow I$

Summary

Content of this Lecture

- The remaining rules for natural deduction: negation and disjunction

Content of this Lecture

- The remaining rules for natural deduction: negation and disjunction
- Note that, this time, we had more than just 1-step rules!

Content of this Lecture

- The remaining rules for natural deduction: negation and disjunction
- Note that, this time, we had more than just 1-step rules!
\rightarrow The entire Logic Notes sections:

Content of this Lecture

- The remaining rules for natural deduction: negation and disjunction
- Note that, this time, we had more than just 1-step rules!
\rightarrow The entire Logic Notes sections:
- Propositional natural deduction: Negation

Content of this Lecture

- The remaining rules for natural deduction: negation and disjunction
- Note that, this time, we had more than just 1-step rules!
\rightarrow The entire Logic Notes sections:
- Propositional natural deduction: Negation
- Propositional natural deduction: Disjunction

Content of this Lecture

- The remaining rules for natural deduction: negation and disjunction
- Note that, this time, we had more than just 1-step rules!
\rightarrow The entire Logic Notes sections:
- Propositional natural deduction: Negation
- Propositional natural deduction: Disjunction
\rightarrow We are done now with everything until Section 2!

[^0]: ${ }^{1}$ Technically, we use the exclusive or here, but the argument remains true even if it's the non-exclusive or.

[^1]: ${ }^{1}$ Technically, we use the exclusive or here, but the argument remains true even if it's the non-exclusive or.

