

• How to prove validity?

Pascal Bercher

- With truth tables (that's the definition; but takes too long)
- With Natural deduction (often much quicker, but 'harder')

●000			
		Introduction	
Australian			
University	Pascal Bercher		1.22
			 -
Introduction	Semantic Tableaux Proof Idea	All Simplification Rules	

0		
Today: Motiv	ration	

- When you were asked to prove X ⊢ A with Natural Deduction (ND), then... you were able to do so! The proof existed!
- Why? Because you were only proving valid sequents!
- Why is that problematic?
 - Because you cannot *decide* validity with ND!
 - Suppose somebody asks: Is $X \vdash A$ valid, what do you do?
 - You can attempt ND, but if you fail: then why? Did you just not try hard enough? Or isn't it possible?
- Today: We learn a second proof system, which cannot only prove validity (if it's valid), but it can also *disprove* validity (if it's invalid)!
- We call this: *deciding validity*.
- ightarrow This is the Semantic Tableaux proof system!

2.22

Semantic Tableaux Proof Idea troduction 0000 00000000 **Recap on Definitions** • Hopefully everyone recalls the meaning of $X \models A$: It means that A logically follows from the formulae in X, i.e., that sequent is *valid*, which is defined in terms of truth tables: Each interpretation that makes all formulae in X true also also makes A true. • Or: There is no interpretation that makes X true, but not A. Semantic Tableaux Proof Idea • So what did $X \vdash A$ mean again? • It was actually just *short* for $X \vdash_{ND} A$. • It meant: A can be derived from X using Natural Deduction. Yoshi will show that this implies validity, but technically it was just referring to Natural Deduction and manipulating formulae. • Today, we learn how to decide validity using Semantic Tableaux. • Depending on context, $X \vdash A$ might stand for either Natural Deduction $(X \vdash_{ND} A)$ or Semantic Tableaux $(X \vdash_{ST} A)$. Australia Australia Vational National Pascal Bercher 4.22 Pascal Bercher

	Semantic Tableaux Proof Idea		Summary 00
Seman	tic Tableaux as "Proof by Co	ntradiction"	

- For the fourth time today (sorry...), what's validity?
 - Each interpretation that makes all formulae in *X* true also makes *A* true.
 - Or: There is no interpretation that makes *X* true, but not *A*.
- So what's that "inverted" property, i.e., not valid or invalid?
 - There exists an interpretation such that:
 - it makes all formulae in X true
 - but it does not make A true!
 - If that leads to a contradiction, the sequent was valid!
 - If we find such an interpretation, we have a counterexample! :)

validity.

 Semantic tableaux has its name because its proof technique mirrors/directly exploits the definition of validity of a sequent.

Each interpretation that makes all formulae in X true also makes

Or: There is no interpretation that makes X true, but not A.

• We pursue proof by contradiction to exploit this definition!

• General idea: Assume the sequent is invalid and detect a

contradiction. From this contradiction we can infer that our

assumption of invalidity must be wrong, and we can conclude

 An additional advantage: If we don't get a contradiction we can even prove invalidity! (Which Natural Deduction can't!)

Semantic Tableaux Proof Idea

• So recall what $X \models A$ means:

A true.

Australia

Pascal Bercher

National

5.22

Vational

Pascal Bercher

13.22

15.22

Introduction	Semantic Tableaux Proof Ide	All Simplification Rules	Examples! 0000	Summary 00
Rule Se	t (And, Or, Not)			
And	Elimination:	Or Elimination:	Negation Elimina	ation:
- -	$\begin{array}{c} \mathbf{I}: A \land B \\ \hline \mathbf{I} \bullet \mathbf{A} \bullet \mathbf{T} \bullet B \end{array}$	$\frac{\mathbf{I}: A \lor B}{\mathbf{T}, A \vdash \mathbf{T}, B}$	$\frac{T:\neg A}{\Box}$	
1	: A, I: B		F: A	
_	$F: A \land B$	F: <i>A</i> ∨ <i>B</i>	F: ¬ <i>A</i>	
F:	: A F : B	F: A , F: B	T : <i>A</i>	
	4 <i>B</i> ∧	A B \	A ¬	
	0 0	0 0 0	0 1	
(1 0	
	1 0 0			
	-	I		
Australian National University	Pascal Bercher			15.22
Introduction	Semantic Tableaux Proof Ide	a All Simplification Rules	Examples!	Summarv
0000	00000000	000	0000	00
		Evempleel		
Australian				
University	Pascal Bercher			17.22

troduction Semantic Tableaux Proof Idea All Simplification Rules Examples! Summar oco ococococo oco oco oco oco Rule Set (Implication)

Implication Elimination:

T: $A ightarrow B$	A	В	\rightarrow
F: <i>A</i> T: <i>B</i>	0	0	1
	0	1	1
$F: A \rightarrow B$	1	0	0
T: <i>A</i> , F: <i>B</i>	1	1	1

- Note that $X \vdash A$ iff $X \models A$ intuitively holds, because these rules mimic the truth tables *exactly*.
- Also keep in mind that we only write X ⊢ A instead of X ⊢_{ND} A or X ⊢_{ST} A since the applied proof system is clear from context.

University	Pascal Bercher			16.22
			Examples!	
Example	(for a valid Seque	nt)		
	dash p ightarrow (q ightarrow ho)		
	(1) F : $p \rightarrow ($	q ightarrow p) 🗸	F: A ightarrow B	
	(2) T: p	from (1)	T: <i>A</i> , F: <i>B</i>	
	(3) F: $q ightarrow \mu$	o √ from (1)		
	(4) T: q	from (3)		
	(5) F: p	from (3)		
• T	his sequent is va	lid, because all branches s	show a contradiction	on!

- Here, there was no branching. Normally, we have ≥ 2 branches, and *all* have to show a contradiction.
- We also did not use any assumptions here (that would have been labeled *true* (**T**)), because there weren't any.

Australian

duction		Semantic Tableaux Proof Idea	All Simplification Rules	Examples!	Sumn 00
Comr	nei	nts About Previous Proof(s)			
	•	In the beginning (when only the choice of which implication	the first lines were sl on to simplify.	hown) we had	
	•	We chose line (2), because always good to postpone bra don't "duplicate" work.	its rule does not brar anching as long as p	nch, and it's ossible so we	
	•	We detected an <i>open branc</i> further reductions were pose	<i>h</i> , i.e., a complete pa sible.	th where no	
		 Via "collecting" the truth a branch we can construct That interpretation is a w 	assignments to atoms a an interpration. itness that:	along the open	
		 that there exists an in and, thus (by definitio This means that the s 	terpretation that makes <i>X</i> n), that <i>A</i> does not follow equent is <i>invalid</i> .	true but not <i>A</i> , logically from <i>X</i> .	
	•	Also note that we have a co appears true and false withi	ntradiction whenever n the same branch. V	some <i>formula</i> Ve do not nee	d to

 National University
 Pascal Bercher
 20.22

 troduction
 Semantic Tableaux Proof Idea
 All Simplification Rules
 Examples!
 Summary

 000
 00000000
 000
 000
 0
 0

Content of this Lecture

Australian

wait until it is atomic.

- We covered *Semantic Tableaux*, which "mimics" the definition of validity.
- All rules required to simplify formulae as required.
- You learned (or realized) that:
 - Natural Deduction cannot decide validity.
 - Semantic Tableaux can decide validity.
- $\rightarrow~$ We covered the entire Logic Notes sections:
 - More about propositional logic: Semantic tableaux