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Motivation

How to model that in propositional logic?

All logicians are rational

aLr

Some philosophers are not rational

¬ sPr

 premises

Thus, not all philosophers are logicians

¬aPL

}
conclusion

So, can we prove aLr ,¬sPr ⊢ ¬aPL?

No! It’s even three completely different propositions!

We need a more expressive logic!

(We could have also used p, q, and r above, the names above were
chosen to have more “speaking” names.)

Pascal Bercher 2.48
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How to extend Propositional Logic?

Logic is about making statements:

(natural language) sentence︷ ︸︸ ︷
Socrates︸ ︷︷ ︸

constant

is a goat︸ ︷︷ ︸
predicateIn first-order logic, we:

can represent individual objects (people, goats, footballs, etc.)

and express properties and relationships between objects.

In our example,

the “object” Socrates can be represented by a constant,

the “property” is a Goat can be represented by a predicate.

⇒ For example, isGoat(Socrates)

⇒ In propositional logic, we had to use SocratesIsGoat , which is
missing some information, since it does not “relate” to another
proposition involving Socrates, like SocratesKicksGoat . (Also cf.
previous example with philosophers and logicians! Same issue!)

Pascal Bercher 3.48
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Predicate Logic
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Terminology And Conventions: Terminology

Term: Anything that represents an object, i.e.,

a constant (representing a fixed object, like the person Socrates)
a variable (representing a non-specified object)
a function (representing a fixed object given a sequence of terms)

Intuition:
Constants are meant to represent concrete objects, as in
“isGoat(Socrates)”.
Variables are used for “more general” relationships as in:
“All logicians are rational”. They are basically placeholders.

Predicates: Express properties or relations of/between terms:
Takes as input (or “argument”) a sequence of terms.

• The sequence length depends on the predicate, e.g., isGoat is
unary, kicks is binary, etc. (some might even be nullary!)

• This length is called arity and can be given as a subscript, e.g.,
isGoat1, kicks2, but we don’t since it’s clear from context.

Maps to a truth value, e.g., isGoat(Socrates) might be false, but
isGoat(Jimmy) might be true.

⇒ The “formal semantics” (e.g., for which terms is a predicate true?)
will be given in week 7.

Pascal Bercher 5.48
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Terminology And Conventions: Conventions

We continue to use our sequent notation!
• X ⊢ A
• X ,Y ⊢ A
• X ,A ⊢ B
• etc. Only now they represent first-order predicate logic formulae.

As before we write only single letters!
• X, Y, Z for sets of formulae, and
• A, B, C for single formulae.

Pascal Bercher 6.48
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Terminology And Conventions: Conventions (cont’d)

Capital letters are predicate symbols:
F ,G,H, . . . ,P,Q,R, L, . . .

Lower-case letters represent terms:

• a, b, c are (usually) used for constants, but we also use them for
free variables (as they behave in the same way).

• f , g, h are used for functions.
• v and x , y are used for variables.
• t is used for terms (i.e., any of the above).

For the sake of simplicity, we do not use parentheses, e.g.,
F(a), G(b), and R(a, b) become Fa, Gb, and Rab, respectively.
Now it’s clear that the arity is clear from the context! E.g.,

• Fa represents a predicate F with arity 1 (with term a), and
• Rab represents a predicate R with arity 2 (with terms a and b).

Pascal Bercher 7.48
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First-Order Formulae: Introduction

Example:

All vulcans are logicians.
Let’s reformulate that step by step:

• Take any vulcan, call it x , then x is a logician. (x is a variable!)
• Take any vulcan, call it x , then Lx .
• For every object x , such that x is a Vulcan, Lx holds.
• For every object x , such that Vx holds, Lx holds.

Now we need special syntax for that “every object”!

Pascal Bercher 8.48
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First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.

For every object x , such that Vx holds, Lx holds.

More formally: ALL(x : Vx)︸ ︷︷ ︸
quantifier!

Lx

Even more formally: ∀︸︷︷︸
quantity indicator

( x︸︷︷︸
variable

: Vx︸︷︷︸
sort indicator

)Lx

Pascal Bercher 9.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.

For every object x , such that Vx holds, Lx holds.

More formally: ALL(x : Vx)︸ ︷︷ ︸
quantifier!

Lx

Even more formally: ∀︸︷︷︸
quantity indicator

( x︸︷︷︸
variable

: Vx︸︷︷︸
sort indicator

)Lx

Pascal Bercher 9.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.

For every object x , such that Vx holds, Lx holds.

More formally: ALL(x : Vx)︸ ︷︷ ︸
quantifier!

Lx

Even more formally: ∀︸︷︷︸
quantity indicator

( x︸︷︷︸
variable

: Vx︸︷︷︸
sort indicator

)Lx

What other quantifiers could possibly exist?

SOME(x : Vx)Ex (“some vulcans are emotional”)

FEW (x : Vx)Ex (“a few vulcans are emotional”)

MOST (x : Lx)¬Vx (“most logicians are not vulcans”)

ONE(x : Lx)(Ex ∧ Vx) (“One logician is an emotional vulcan”)
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What quantifiers do exist? (In our predicate logic!)

Just two!

ALL(x : A)B, i.e., ∀(x : A)B

SOME(x : A)B, i.e., ∃(x : A)B

“SOME” means “at least one”, so “∃” is also called “exists”
“ALL”, i.e., ∀, is called the “universal” quantifier
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First-Order Formulae: Example (from before)

Propositional logic (not working):

All logicians are rational

aLr

Some philosophers are not rational

¬sPr

Thus, not all philosophers are logicians

¬aPL

Predicate logic (works!):

All logicians are rational

∀(x : Lx)Rx

Some philosophers are not rational

∃(x : Px)¬Rx

Thus, not all philosophers are logicians

¬∀(x : Px)Lx

But how to prove “∀(x : Lx)Rx ,∃(x : Px)¬Rx ⊢ ¬∀(x : Px)Lx”?

Natural Deduction Semantic Tableau

Pascal Bercher 10.48
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Examples: Some Small Examples

All goats are hairy. ∀(x : Gx)Hx

Some footballers are hairy. ∃(x : Fx)Hx

No goats are footballers. ¬∃(x : Gx)Fx ≡ ∀(x : Gx)¬Fx

You can see here that negations before formulae invert the
outer-most quantifier an get moved before the inner formula
(which might again be a quantified formula).

You can prove this “rule”, but you can’t use it!

Pascal Bercher 11.48
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Examples: More Complicated Examples

Every hairy footballer kicks a goat.
• ∀(x : Hx ∧ Fx)∃(y : Gy)Kxy

• ∃(x : Gx)∀(y : Hy ∧ Fy)Kyx
• Are these the same?
• In the first formula, each footballer may kick his/her own goat!

In the second, all footballers kick the same goat!∗
∗ I claim that this model is wrong! This is not what the sentence is
saying; the second formula is more/too specific.

Only hairy footballers kick goats.

• ∀(x : Fx ∧ ∃(y : Gy)Kxy)Hx
• ∀(x : ∃(y : Gy)Kxy)(Hx ∧ Fx)
• The first model means: “All footballers that kick a goat are hairy.”

The second: “Anything that kicks a goat is a hairy footballer.”
But which one is right? (Hard to tell, language is vague!)

Pascal Bercher 12.48
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Examples: Note on Interpreting Natural Language

Modeling a proposition with logic often reveals how vague
language is! (And that we may make implicit assumptions)
“Only hairy footballers kick goats.” What is meant here?

• Among all footballers, only the hairy ones kick goats.
• Among all human beings, only hairy footballers kick goats.

“Only unmotivated students don’t study.” What is meant here?

• Among all students, only the unmotivated ones don’t study.
• Among all human beings (or all aliens, spirits, . . . ?), only

unmotivated students don’t study.

We normally rely on context to figure out what’s meant. But when
you are (t)asked to formalize something you need to be as formal
as possible.

Pascal Bercher 13.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Examples: Note on Interpreting Natural Language

Modeling a proposition with logic often reveals how vague
language is! (And that we may make implicit assumptions)
“Only hairy footballers kick goats.” What is meant here?

• Among all footballers, only the hairy ones kick goats.
• Among all human beings, only hairy footballers kick goats.

“Only unmotivated students don’t study.” What is meant here?
• Among all students, only the unmotivated ones don’t study.
• Among all human beings (or all aliens, spirits, . . . ?), only

unmotivated students don’t study.

We normally rely on context to figure out what’s meant. But when
you are (t)asked to formalize something you need to be as formal
as possible.

Pascal Bercher 13.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Examples: Note on Interpreting Natural Language

Modeling a proposition with logic often reveals how vague
language is! (And that we may make implicit assumptions)
“Only hairy footballers kick goats.” What is meant here?

• Among all footballers, only the hairy ones kick goats.
• Among all human beings, only hairy footballers kick goats.

“Only unmotivated students don’t study.” What is meant here?
• Among all students, only the unmotivated ones don’t study.
• Among all human beings (or all aliens, spirits, . . . ?), only

unmotivated students don’t study.

We normally rely on context to figure out what’s meant. But when
you are (t)asked to formalize something you need to be as formal
as possible.

Pascal Bercher 13.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Examples: Translating a Natural Language Text into Predicate Logics

Anyone who sees a hairy footballer sees someone who kicks a
non-footballer.

Sounds horribly complicated, but let’s do it step by step!

1 ∀(x : x sees a hairy footballer)
(x sees someone who kicks a non-footballer)

2 ∀(x : ∃(y : Hy ∧ Fy)Sxy)
( ∃(y : y kicks a non-footballer)Sxy )

3 ∀(x : ∃(y : Hy ∧ Fy)Sxy)
( ∃(y : ∃(z : ¬Fz)Kyz )Sxy )

Pascal Bercher 14.48
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Examples: Translation: More examples! (From You)

Novel/recent idea:

We create a new forum for the formalization of Natural Language!

We can use it to create some examples to practice this!

One thread will be one Natural Language
– plus the attempt(s) to formalize it!

Feedback can be provided by other students;
and maybe occasionally by Lecturers

The idea is basically an asynchronious online learning group

And some of the completed/correct (most funny?) examples
could be preserved for next generations!

(I’m thinking of additional bonus material just like the many
practice sequents in the Logic Notes; see the link in the bonus
material sequence.)
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Well-formed Formulae: Restrictions on Formulae, cont’d

Recap of Propositional Logic:

Wellformed formula: (p ∨ q) → (p ∧ q)
(though it’s not a tautology/theorem, but that’s not the point)

Non-wellformed formula: (p ∨ → q) ∧ q¬)

So what about Predicate Logic?

Connectives and subformulae are used in the same way as for
Propositional Logic.

Some additional restrictions (next slide)

Pascal Bercher 16.48
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Well-formed Formulae: Restrictions on Formulae

Predicate Logic:
Example for two well-formed formulae:

• ∀(x : Fx)∃(y : Gy)Kxy Each footballer kicks a goat
• ∃(x : Fx)∃(y : Gy)Kxy Some footballer kicks a goat

What about (∀(x : Fx)∃(y : Gy)Kxy)∧ (∃(x : Fx)∃(y : Gy)Kxy)?
→ Still allowed! After all, you can put them together with ∧I!

So, are there any restrictions?

• Let A and B (well-formed) formulae and x free in A or B, then

▶ ∀(x : A)B and ∃(x : A)B are (well-formed) formulae.

• I.e., we don’t allow quantification over non-used variables!
• (We don’t provide a complete specification of what’s well-formed,

just as we didn’t for propositional logic.)

Pascal Bercher 17.48
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From Restricted Quantifiers to Unrestricted Quantifiers: Main Idea

So far, we were only considering restricted quantifiers:

∃(x : Px)¬Rx (Some philosophers are not rational)

∀(x : Lx)Rx (All logicians are rational)

But now – to make life easier! – we don’t make restrictions anymore!

We cheat to get around having a sort restriction:
∃(x : x is a thing)Gx is the same as ∃(x : Fx → Fx)Gx

Example:

Something is hairy:
• ∃(x : Fx → Fx)Hx
• So we could also just

write ∃x Hx

Some goats are hairy:
• ∃(x : Gx)Hx
• So we can just write

∃x Gx ∧ Hx

Pascal Bercher 18.48
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From Restricted Quantifiers to Unrestricted Quantifiers: Eliminating Sort Indicator

Did we lose something when switching to unrestricted quantifiers?

No! (So, we can just use unrestricted logic instead!)

Existential quantified formulae become conjunctions:
E.g., ∃(x : Gx)Hx (some goats are hairy) becomes ∃x Gx ∧ Hx

Universally quantified formulae become implications:
E.g., ∀(x : Gx)Hx (all goats are hairy) becomes ∀x Gx → Hx

Thus, from now on, we will use non-restricted formulae instead.
(But in the second half of the course we will re-visit restricted
quantifiers again.)

Pascal Bercher 19.48
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Natural Deduction

Pascal Bercher 20.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Introduction

Instead of re-doing all our previous rules, we will just provide
additional ones!

• Two new rules for ∀ (introduction and elimination)
• Two new rules for ∃ (introduction and elimination)

We still perform natural deduction for propositional logic in
intermediate steps.
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Substitutions: Introduction

Our Natural Deduction rules will exploit substitutions.

Definition:

Let A be a formula and t1 and t2 be terms.

At1
t2 is the result of substituting each free (unbound) t2 in A by t1.

Any mnemonic? How do I remember what gets substituted by
what?

• Gravity falls!
• At1

t2 is the result of A after the t1 “fell down” crushing t2.

Pascal Bercher 22.48
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Substitutions: Examples (and Conventions)

Let A = ∃x(Px → Rx). Is Ay
x = ∃y(Py → Ry)?

• No! Recall that x is required to be free/unbound in A!
• Since there are no free variables, so Ay

x = A here.

Let A = Fx ∧ ∃x(Fx ∧ Gx). What’s Ay
x now?

• It’s Fy ∧ ∃x(Fx ∧ Gx)!
• Because we only substitute free/unbound variables!

You won’t have to take much care as we will use a convention to
use the constant letters a, b, c for free variables in all our proofs.

E.g., you might see something like A = Fa ∧ ∃x(Fx ∧ Gx),
but never something like Fx ∧ ∃x(Fx ∧ Gx) or even ∃a(Fa ∧ Ga).

We use this because constants “behave” just like free variables.
In fact, the Logic notes never even use free variables! It only uses
bound variables and constants (called names there).

Pascal Bercher 23.48
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Universal Quantifiers
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Universal Elimination: Introduction

Let’s assume we want to say that the age of all humans is smaller
than 130: ∀x age(x) < 130

If we had one constant for each individual (person), we could
conclude: age(a) < 130 ∧ age(b) < 130 ∧ age(c) < 130 ∧ . . .
(Though that’s clearly not practical! And maybe not even possible
if we reason about infinitely many objects like numbers.)

So we could also conclude age(x) < 130 for any x !
We thus use a (free) variable in our rule!

So, what will the Universal-Elimination rule look like?

∀x Fx

Fv
∀E more general:

∀x A

At
x

∀E

We do however need a side condition here to make sure our
newly introduced term doesn’t cause trouble.

Pascal Bercher 25.48
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So, what will the Universal-Elimination rule look like?

∀x Fx

Fv
∀E more general:

∀x A

At
x

∀E

We do however need a side condition here to make sure our
newly introduced term doesn’t cause trouble.
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Universal Elimination: Side Condition

Assume we had no side condition:

∀x A

At
x

∀E in sequent notation:
X ⊢ ∀x A

X ⊢ At
x

∀E

Let’s consider this sequent: ∀x ∃y(y > x) ⊢ ∃y(y > y)

Should that be valid? No! No number is larger than itself!

But we can prove it! (If there’s no side condition!)

α1 (1) ∀x ∃y(y > x) A
α1 (2) ∃y(y > y) 1 ∀E

So what’s missing?

The “instantiation of x” (the new variable name) must be free!
(We don’t want it to get captured by another quantifier!)

This is different from what we demanded for substitutions.
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Universal Elimination: The 1-step Rule

So, in conclusion:

Universal Elimination Rule:

X ⊢ ∀x A

X ⊢ At
x

∀E only if t is not bound in At
x !

As mentioned earlier (slide 23), you are not in risk of making that
mistake as long as you adhere our convention: use a, b, c, for free
variables!

Important note:
Recall that often you apply the rule from bottom to top!

E.g., you might have some line X (i) ∃y(y > a), and then

you apply ∀E to (i) to obtain: X (i-1) ∀x∃y(y > x)!

Pascal Bercher 27.48
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Universal Introduction: Introduction

For the introduction of the universal quantifier, we would like to
have, conceptually, a rule like the following:

Fa Fb Fc . . .

∀x Fx
∀I

But that’s again infeasible, and potentially even impossible!

How about: Fa

∀x Fx
∀I

? (as above, a is a constant)

That rule is wrong! Just because Aristotle is (was) a footballer,
doesn’t mean that everybody is!

But it might work for “typical objects”... (a variable)

Pascal Bercher 28.48
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Universal Introduction: Typical Objects

What’s a typical object? (A free variable)
Remember the “undergraduate school” when you have to proof
some property of all triangles.

• Step 1: Let ABC=
B

A

C

a

b

c

α

α

β

β

be a triangle.

• Step 2: “some fancy proof”

• Step 3: Thus, ABC has property P. Thus P holds for all triangles!

Why is that correct? Since we did not make any assumptions for
ABC other than it being a triangle! E.g., we did not demand that it
has a 90-degree angle or any other special case! We gave it a
name (ABC), but that was also arbitrary!
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Universal Introduction: The 1-step Rule

So, we need an “object without any assumption” to generalize its
property (formula) to the general case.

But how to express this “no assumptions”?

Fv

∀x Fx
∀I more general:

A

∀x Ax
v
∀I with side condition:

provided the variable v does not occur in any assumption that A
depends upon.

Universal Introduction Rule: (in sequent notation)

X ⊢ A

X ⊢ ∀x Ax
v
∀I

only if v does not occur in X !

Pascal Bercher 30.48
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: X ⊢ A

X ⊢ ∀x Ax
v
∀I

only if v does not occur in X !

So, can we use Fv

∀x Fx
∀I

to prove Faristotle ⊢ ∀x Fx?

Let’s try!

Does not work: Rule fails for two reasons!

Faristotle ⊢ ∀x Fx

α1 (1) Faristotle A
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: X ⊢ A

X ⊢ ∀x Ax
v
∀I

only if v does not occur in X !

So, can we use Fv

∀x Fx
∀I

to prove Faristotle ⊢ ∀x Fx?

Two reasons this “proof” (luckily) fails:
• The side condition states that v = aristotle (which is gets

substituted) does not occur in X , but X is α1 = Faristotle,
so the side condition is violated.

• Also, in our rule above v represents a variable. So it’s not
applicable here anyway. Recall: Just because Aristotle plays
football, not everybody does!
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More on Syntax: Meaning of a, b, c, . . . in Proofs

Important:

Note that the Logic Notes (and Yoshi as well!) refer to constants
as “names”.

More importantly, note that we only use a, b, c, etc. as constants
in the explanations for rules here in the lecture. For convenience,
in all exercises, including those given in the lecture, these letters
do not represent constants!

Instead, in formal proofs, these letters (again: a, b, c, . . . ) will
represent our “typical objects” – like the triangle ABC from before!

These “typical objects” are (free, i.e., unbound) variables.

In fact, you will never deal with constants in proofs!
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Example Proofs: Example 1

∀x Fx ,∀x Gx ⊢ ∀x (Fx ∧ Gx)

α1 (1) ∀x Fx A
α2 (2) ∀x Gx A
α1 (3) Fa 1 ∀E
α2 (4) Ga 2 ∀E
α1, α2 (5) Fa ∧ Ga 3,4 ∧I
α1, α2 (6) ∀x (Fx ∧ Gx) 5 ∀I
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Example Proofs: Example 1
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α2 (4) Ga 2 ∀E
α1, α2 (5) Fa ∧ Ga 3,4 ∧I
α1, α2 (6) ∀x (Fx ∧ Gx) 5 ∀I

Did we adhere all side conditions?

Yes!

X ⊢ A of the ∀I rule corresponds to line 5,
which is α1, α2 ⊢ Fa ∧ Ga,

variable v corresponds to a, and

although a (of course!) occurs in Fa ∧ Ga, it is not in
X = {α1, α2} = {∀x Fx , ∀x Gx}, so all good!
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Example Proofs: Example 2
∀x (Fx → ∀y Fy) ⊢ ∀x (¬Fx → ∀y ¬Fy)

α1 (1) ∀x (Fx → ∀y Fy) A
α2 (2) ¬Fa A
α3 (3) Fb A
α1 (4) Fb → ∀y Fy 1 ∀E
α1, α3 (5) ∀y Fy 3,4 →E
α1, α3 (6) Fa 5 ∀E
α1, α2 (7) ¬Fb 2,6[α3] RAA
α1, α2 (8) ∀y ¬Fy
α1 (9) ¬Fa → ∀y ¬Fy
α1 (10) ∀x (¬Fx → ∀y ¬Fy)

α1, α2 (n-3) ¬Fb
α1, α2 (n-2) ∀y ¬Fy
α1 (n-1) ¬Fa → ∀y ¬Fy
α1 (n) ∀x (¬Fx → ∀y ¬Fy)
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Existential Quantifiers
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Existential Introduction: Introduction

Recall that you can “imagine” the universal quantifier ∀ like:
age(a) < 130 ∧ age(b) < 130 ∧ age(c) < 130 ∧ . . .

The existential quantifier ∃ can similarly interpreted as:
age(a) > 100 ∨ age(b) > 100 ∨ age(c) > 100 ∨ . . .

Thus, conceptually, we would expect something like the following
rule: (a, b, ... are again constants)

Fa ∨ Fb ∨ Fc ∨ . . .

∃x Fx
∃I

Pascal Bercher 36.48
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Existential Introduction: The 1-step Rule (part I)

Existential Introduction Rule:

Fv

∃x Fx
∃I more general:

At
x

∃x A
∃I

in sequent
notation:

X ⊢ At
x

X ⊢ ∃x A
∃I

This rule assumes a non-empty “universe” (the objects that we
reason about, more later when we formally deal with the
semantics), i.e., that there exists at least one “object” that the
terms represent. This is one of several assumptions in classical
logic, though there are other important properties as well.

Just like ∀E , this rule also has a side condition!
Let’s see in an example which and why.

Pascal Bercher 37.48
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Existential Introduction: Side Condition

Assume we had no side condition:

At
x

∃x A
∃I in sequent notation:

X ⊢ At
x

X ⊢ ∃x A
∃I

Let’s consider this sequent: ∀y (y = y) ⊢ ∃x∀y (y = x)

Should that be valid? No! There is not just one number! :)

But we can prove it! (If there’s no side condition!)

α1 (1) ∀y (y = y) A
α1 (2) ∃x∀y(y = x) 1 ∃I

So what’s the problem?

We were quantifying an already bound variable! (The right y .)

We were missing: The x in A must be free (as y ) in Ay
x .

Not any issue at all as long as you follow our convention!

Pascal Bercher 38.48
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At
x≡Ay

x︷ ︸︸ ︷
∀y (y = y)

∃x ∀y (y = x)︸ ︷︷ ︸
A

∃I
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Existential Introduction: The 1-step Rule (part II)

So, in conclusion:

Existential Introduction Rule:

X ⊢ At
x

X ⊢ ∃x A
∃I only if t is not bound in At

x

As mentioned earlier (slide 23), you are not in risk of making that
wrong as long as you adhere our convention: use a, b, c, for free
variables!

Important note:
Recall that often you apply the rule from bottom to top!

E.g., you might have some line X (i) ∃y(Fa → Fy), and then

you apply ∃I to (i) to obtain: X (i-1) Fa → Fa!

Pascal Bercher 39.48
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Existential Elimination: Introduction

We want to eliminate the existential quantifier. So can we just use

the following rule?
∃x Fx

Fv
∃E ? Recall:

∀x Fx

Fv
∀E !

So, no! Because we don’t know which object has that property!
(You can try to “prove” some invalid sequent when having this
(wrong) rule available!)

Pascal Bercher 40.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Existential Elimination: Introduction

We want to eliminate the existential quantifier. So can we just use

the following rule?
∃x Fx

Fv
∃E ? Recall:

∀x Fx

Fv
∀E !

So, no! Because we don’t know which object has that property!
(You can try to “prove” some invalid sequent when having this
(wrong) rule available!)

Pascal Bercher 40.48



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Existential Elimination: Introduction, cont’d

The idea behind the rule is the following:

∃x Fx

[Fy ]
...
B

B
∃E for a “typical” y .

The idea is similar to disjunction elimination: In A ∨ B, we don’t
know whether A or B is true, so we assume both and show that
either way the derivation can be done.

Here, we show it for “some instance” that does not pose further
restrictions (and then discharge it since we know that such an
“instance” exists due to the assumption ∃x Fx).
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Existential Elimination: The 1-step Rule

Existential Elimination Rule:

X ⊢ ∃x Ax
t Y ,A ⊢ B

X ,Y ⊢ B
∃E Provided t does not occur

in B or any formula in Y .

Note what’s written here: The assumption formula A in sequent 2
can be regarded an “instantiation” of the derivation in sequent 1
by substituting x by a term.

We need the side condition so that our choice of the “instance” of
x is still “general”.

Otherwise we might be able to derive simply because we chose a
specific special case!

Again, you can try to prove an invalid sequent, which you might
be able to if you violate that side condition!
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Examples: Example 1
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So, going from line (2) Fa → Fa
to line (3) ∃y (Fa → Fy) is wrong, right?

No! We did replace all x (here: y ) by t (here: a)! (See illustration.)
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Examples: Example 2

∃x (Fx ∧ Gx) ⊢ ∃x Fx ∧ ∃x Gx

α1 (1) ∃x (Fx ∧ Gx) A
α2 (2) Fa ∧ Ga A
α2 (3) Fa 2 ∧E
α2 (4) ∃x Fx 3 ∃I
α2 (5) Ga 2 ∧E
α2 (6) ∃x Gx 5 ∃I
α2 (7) ∃x Fx ∧ ∃x Gx 4,6 ∧I
α1 (8) ∃x Fx ∧ ∃x Gx 1,7[α2] ∃E
α2 (n-1) ∃x Fx ∧ ∃x Gx
α1 (n) ∃x Fx ∧ ∃x Gx

Pascal Bercher 44.48
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Examples: Example 3: On Logicians and Philosophers

Remember from the beginning:

All logicians are rational ∀(x : Lx)Rx

Some philosophers are not rational ∃(x : Px)¬Rx

Thus, not all philosophers are logicians ¬∀(x : Px)Lx

Now, in our unsorted predicate logic, this is:

All logicians are rational ∀x Lx → Rx

Some philosophers are not rational ∃x Px ∧ ¬Rx

Thus, not all philosophers are logicians ¬∀x Px → Lx

Pascal Bercher 45.48
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Examples: Example 3: On Logicians and Philosophers (cont’d)

∀x Lx → Rx ,∃x Px ∧ ¬Rx ⊢ ¬∀x Px → Lx

α1 (1) ∀x Lx → Rx A
α2 (2) ∃x Px ∧ ¬Rx A
α3 (3) Pa ∧ ¬Ra A
α4 (4) ∀x Px → Lx A
α4 (5) Pa → La 4 ∀E
α3 (6) Pa 3 ∧E
α3, α4 (7) La 5,6 →E
α1 (8) La → Ra 1 ∀E
α1, α3, α4 (9) Ra 7,8 →E
α3 (10) ¬Ra 3 ∧E
α1, α3 (11) ¬∀x Px → Lx 9,10[α4] RAA
α1, α2 (12) ¬∀x Px → Lx 2,11[α3] ∃E
α1, α3 (n-1) ¬∀x(Px → Lx)
α1, α2 (n) ¬∀x(Px → Lx)

Pascal Bercher 46.48
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X ,Y ⊢ B
∃E

Provided t does not occur in
B or any formula in Y .
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α1, α2 (12) ¬∀x Px → Lx 2,11[α3] ∃E

α1, α3 (n-1) ¬∀x(Px → Lx) x,y[α4] RAA
α1, α2 (n) ¬∀x(Px → Lx) 2,(n-1)[α3] ∃E
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X ,Y ⊢ B
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Provided t does not occur in
B or any formula in Y .
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X ,Y ⊢ ¬B
RAA
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Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Content of this Lecture

We introduced predicate logic:
• with restricted quantifiers (we re-visit this later)
• and with unrestricted quantifiers (default!)

Predicate logic can reason about objects!
Natural deduction for predicate logics, with additional rules for:

• Introduction and Elimination rules for ∀ and ∃
• For the rest we keep using the rules from propositional logics!

Many side conditions...

• Substitutions: only rename free variables
• ∀E and ∃I: Just make sure to follow naming conventions :)
• ∀I and ∃E : They are more complicated, look them up!

→ The entire Logic Notes sections:

• 4: Expressing Generality

▶ except “Properties of relations”
▶ and except “Functions”
▶ (You should read them anyway, in particular “Functions”!)

Pascal Bercher 48.48
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