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Motivation

How to model that in propositional logic?

@ All logicians are rational

| Australian

premises
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians }conclusion
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Introduction
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Motivation

How to model that in propositional logic?
@ All logicians are rational alLr
premises
@ Some philosophers are not rational - sPr

@ Thus, not all philosophers are logicians —aPL }conclusion

(We could have also used p, g, and r above, the names above were
chosen to have more “speaking” names.)
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Motivation

How to model that in propositional logic?

@ All logicians are rational alLr
premises
@ Some philosophers are not rational - sPr

@ Thus, not all philosophers are logicians —aPL }conclusion

So, can we prove aLr, ~sPr - —aPL?
@ Nol! It’'s even three completely different propositions!
@ We need a more expressive logic!

(We could have also used p, g, and r above, the names above were
chosen to have more “speaking” names.)
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How to extend Propositional Logic?

(natural language) sentence

Logic is about making statements: Socrates is a goat
cor?s?ant preagate

In first-order logic, we:
@ can represent individual objects (people, goats, footballs, etc.)
@ and express properties and relationships between objects.
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ooe

How to extend Propositional Logic?

(natural language) sentence

Logic is about making statements: Socrates is a goat
cor?s?ant preagate

In first-order logic, we:
@ can represent individual objects (people, goats, footballs, etc.)
@ and express properties and relationships between objects.

In our example,
o the “object” Socrates can be represented by a constant,
o the “property” is a Goat can be represented by a predicate.
— For example, isGoat(Socrates)
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Summary
o

How to extend Propositional Logic?

(natural language) sentence

Logic is about making statements: "Socrates is a goat

X . constant redicate
In first-order logic, we: P

@ can represent individual objects (people, goats, footballs, etc.)
@ and express properties and relationships between objects.

In our example,

o the “object” Socrates can be represented by a constant,

o the “property” is a Goat can be represented by a predicate.
— For example, isGoat(Socrates)
=

In propositional logic, we had to use SocrateslsGoat, which is
missing some information, since it does not “relate” to another
proposition involving Socrates, like SocratesKicksGoat. (Also cf.
previous example with philosophers and logicians! Same issue!)
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Terminology And Conventions: Terminology

Term: Anything that represents an object, i.e.,

@ a constant (representing a fixed object, like the person Socrates)
@ avariable (representing a non-specified object)
@ afunction (representing a fixed object given a sequence of terms)

Intuition:
@ Constants are meant to represent concrete objects, as in
“isGoat(Socrates)”.
@ Variables are used for “more general” relationships as in:
“All logicians are rational”. They are basically placeholders.

| Australian
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Terminology And Conventions: Terminology

Term: Anything that represents an object, i.e.,

@ a constant (representing a fixed object, like the person Socrates)
@ avariable (representing a non-specified object)
@ a function (representing a fixed object given a sequence of terms)

Predicates: Express properties or relations of/between terms:

o Takes as input (or “argument”) a sequence of terms.
® The sequence length depends on the predicate, e.g., isGoat is
unary, kicks is binary, etc. (some might even be nullary!)
® This length is called arity and can be given as a subscript, e.g.,
isGoat,, kicks,, but we don’t since it’s clear from context.
@ Maps to a truth value, e.g., isGoat(Socrates) might be false, but
isGoat(Jimmy) might be true.
= The “formal semantics” (e.g., for which terms is a predicate true?)
will be given in week 7.
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Terminology And Conventions: Conventions

@ We continue to use our sequent notation!

XHA

X, YFA

X,AFB

etc. Only now they represent first-order predicate logic formulae.
@ As before we write only single letters!

® X,Y, Z for sets of formulae, and
® A, B, C for single formulae.

| Australian
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Terminology And Conventions: Conventions (cont'd)

o Capital letters are predicate symbols:
F.GH,...,P,QR,L,...

. @ ﬁuitralilan
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Terminology And Conventions: Conventions (cont'd)

o Capital letters are predicate symbols:
F.GH,...,P,QR,L,...
o Lower-case letters represent terms:

® a, b, c are (usually) used for constants, but we also use them for
free variables (as they behave in the same way).

® f, g, hare used for functions.

® vand x, y are used for variables.

® tis used for terms (i.e., any of the above).

l ﬁu?ralilan
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Deduction

Terminology And Conventions: Conventions (cont'd)

o Capital letters are predicate symbols:
F.GH,...,P,QR,L,...
o Lower-case letters represent terms:

® a, b, c are (usually) used for constants, but we also use them for
free variables (as they behave in the same way).

® f, g, hare used for functions.

® vand x, y are used for variables.

® tis used for terms (i.e., any of the above).

@ For the sake of simplicity, we do not use parentheses, e.g.,
F(a), G(b), and R(a, b) become Fa, Gb, and Rab, respectively.
@ Now it’s clear that the arity is clear from the context! E.g.,

® Farepresents a predicate F with arity 1 (with term a), and
® Rab represents a predicate R with arity 2 (with terms a and b).
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First-Order Formulae: Introduction

Example:

@ All vulcans are logicians.
o Let’s reformulate that step by step:

. @ ﬁu?ralilan
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B



al Deduction

First-Order Formulae: Introduction

Example:
@ All vulcans are logicians.

o Let’s reformulate that step by step:
¢ Take any vulcan, call it x, then x is a logician. (x is a variable!)

] ﬁu?ralilan
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al Deduction

First-Order Formulae: Introduction

Example:
@ All vulcans are logicians.

o Let’s reformulate that step by step:

¢ Take any vulcan, call it x, then x is a logician. (x is a variable!)
¢ Take any vulcan, call it x, then Lx.
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First-Order Formulae: Introduction

Example:
@ All vulcans are logicians.

o Let’s reformulate that step by step:

¢ Take any vulcan, call it x, then x is a logician. (x is a variable!)
¢ Take any vulcan, call it x, then Lx.
® For every object x, such that x is a Vulcan, Lx holds.
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First-Order Formulae: Introduction

Example:

@ All vulcans are logicians.
o Let’s reformulate that step by step:

¢ Take any vulcan, call it x, then x is a logician. (x is a variable!)
¢ Take any vulcan, call it x, then Lx.

® For every object x, such that x is a Vulcan, Lx holds.

® For every object x, such that Vx holds, Lx holds.
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First-Order Formulae: Introduction

Example:

@ All vulcans are logicians.
o Let’s reformulate that step by step:
¢ Take any vulcan, call it x, then x is a logician. (x is a variable!)
Take any vulcan, call it x, then Lx.
For every object x, such that x is a Vulcan, Lx holds.
For every object x, such that Vix holds, Lx holds.

@ Now we need special syntax for that “every object”!
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First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

=l ﬁu?ralilan
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First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

@ Even more formally: \ (ox W )Lx

quantity indicator variable sort indicator
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First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

@ Even more formally: \ (ox W )Lx

quantity indicator variable sort indicator

What other quantifiers could possibly exist?
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Introduction

First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

@ Even more formally: \ (ox W )Lx

quantity indicator variable sort indicator

What other quantifiers could possibly exist?
@ SOME(x : Vx)Ex (“some vulcans are emotional”)
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Introduction

First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

@ Even more formally: \ (ox W )Lx

quantity indicator variable sort indicator

What other quantifiers could possibly exist?
@ SOME(x : Vx)Ex (“some vulcans are emotional”)
© FEW(x : Vx)Ex (“afew vulcans are emotional”)
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| Deduction

First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

@ Even more formally: \ (ox W )Lx

quantity indicator variable sort indicator

What other quantifiers could possibly exist?
@ SOME(x : Vx)Ex (“some vulcans are emotional”)
© FEW(x : Vx)Ex (“afew vulcans are emotional”)
@ MOST(x : Lx)—Vx (“most logicians are not vulcans”)
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Deduction

First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!

@ Even more formally: \ (ox W )Lx

quantity indicator variable sort indicator

What other quantifiers could possibly exist?
@ SOME(x : Vx)Ex (“some vulcans are emotional”)
© FEW(x : Vx)Ex (“afew vulcans are emotional”)
@ MOST(x : Lx)—Vx (“most logicians are not vulcans”)
@ ONE(x : Lx)(Ex A Vx) (“One logician is an emotional vulcan”)
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First-Order Formulae: Possible Quantifiers

We want to “quantify” the objects we talk about.
o For every object x, such that Vx holds, Lx holds.
@ More formally: ALL(x : Vx) Lx
———

quantifier!
@ Even more formally: \ (ox W )Lx
quantity indicator variable sort indicator
What quantifiers do exist? (In our predicate logic!)
@ Just two!
o ALL(x : A)B,ie., Y(x:A)B
@ SOME(x : A)B,i.e,, 3(x : A)B

“SOME” means “at least one”, so “J” is also called “exists”
“ALL", i.e., V, is called the “universal” quantifier

Pascal Bercher 9.48
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First-Order Formulae: Example (from before)

Propositional logic (not working):
@ All logicians are rational
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians

Predicate logic (works!):
@ All logicians are rational
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians
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Introduction

First-Order Formulae: Example (from before)

Propositional logic (not working):
@ All logicians are rational aLr
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians

Predicate logic (works!):
@ All logicians are rational V(x : Lx)Rx
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians
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Introduction

First-Order Formulae: Example (from before)

Propositional logic (not working):
@ All logicians are rational
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians

Predicate logic (works!):
@ All logicians are rational
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians

| Australian

aLr

—sPr

V(x : Lx)Rx
3(x : Px)-Rx
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Introduction

First-Order Formulae: Example (from before)

Propositional logic (not working):
@ All logicians are rational
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians

Predicate logic (works!):
@ All logicians are rational
@ Some philosophers are not rational
@ Thus, not all philosophers are logicians

| Australian

aLr

—sPr

—aPL

V(x : Lx)Rx
3(x : Px)-Rx
=V(x : Px)Lx
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| Deduction

First-Order Formulae: Example (from before)

Propositional logic (not working):

@ All logicians are rational aLr
@ Some philosophers are not rational —sPr
@ Thus, not all philosophers are logicians —aPL

Predicate logic (works!):

@ All logicians are rational V(x : Lx)Rx
@ Some philosophers are not rational J(x : Px)-Rx
@ Thus, not all philosophers are logicians =V(x : Px)Lx

But how to prove “V(x : Lx)Rx, 3(x : Px)-Rx F =V(x : Px)Lx"?
@ Natural Deduction @ Semantic Tableau

] Iélu?trahan
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Examples: Some Small Examples

@ All goats are hairy. V(x : Gx)Hx

. @ ﬁuitralilan
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Examples: Some Small Examples

@ All goats are hairy. V(x : Gx)Hx
@ Some footballers are hairy. A(x : Fx)Hx

. @ ﬁu?ralilan
- uﬁimty Pascal Bercher 11.48
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Examples: Some Small Examples

@ All goats are hairy. V(x : Gx)Hx
@ Some footballers are hairy. A(x : Fx)Hx
o No goats are footballers.  —3(x: Gx)Fx = V(x: Gx)—Fx

_ [7‘ Au?tralllan
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Introduction i ic ral Deduction

Examples: Some Small Examples

@ All goats are hairy. V(x : Gx)Hx
@ Some footballers are hairy. A(x : Fx)Hx
o No goats are footballers.  —=3(x: Gx)Fx = V(x: Gx)-Fx

You can see here that negations before formulae invert the
outer-most quantifier an get moved before the inner formula
(which might again be a quantified formula).

You can prove this “rule”, but you can’t use it!

| Australian
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Predicate Logic
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Examples: More Complicated Examples

@ Every hairy footballer kicks a goat.
° V(x:Hx AFx)3(y : Gy)Kxy

- @ ﬁuitralilan
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Examples: More Complicated Examples

@ Every hairy footballer kicks a goat.
° V(x:Hx AFx)3(y : Gy)Kxy
® J(x: Gx)V(y : Hy A Fy)Kyx
¢ Are these the same?

| Australian
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Examples: More Complicated Examples

@ Every hairy footballer kicks a goat.

° V(x:Hx AFx)3(y : Gy)Kxy

® J(x: Gx)V(y : Hy A Fy)Kyx

® Are these the same?

® In the first formula, each footballer may kick his/her own goat!
In the second, all footballers kick the same goat!*
* 1 claim that this model is wrong! This is not what the sentence is
saying; the second formula is more/too specific.

J onal
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Deduction

Examples: More Complicated Examples

@ Every hairy footballer kicks a goat.

° V(x:Hx AFx)3(y : Gy)Kxy

® J(x: Gx)V(y : Hy A Fy)Kyx

® Are these the same?

® In the first formula, each footballer may kick his/her own goat!
In the second, all footballers kick the same goat!*
* 1 claim that this model is wrong! This is not what the sentence is
saying; the second formula is more/too specific.

@ Only hairy footballers kick goats.
® VY(x: Fx A3(y : Gy)Kxy)Hx

Pascal Bercher 12.48
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Examples: More Complicated Examples

@ Every hairy footballer kicks a goat.

° V(x:Hx AFx)3(y : Gy)Kxy

® J(x: Gx)V(y : Hy A Fy)Kyx

® Are these the same?

® In the first formula, each footballer may kick his/her own goat!
In the second, all footballers kick the same goat!*
* 1 claim that this model is wrong! This is not what the sentence is
saying; the second formula is more/too specific.

@ Only hairy footballers kick goats.
® VY(x: Fx A3(y : Gy)Kxy)Hx
° V(x:3(y: Gy)Kxy)(Hx A Fx)

ﬁu?rahlan
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Examples: More Complicated Examples

@ Every hairy footballer kicks a goat.
® V(x: Hx A Fx)3(y : Gy)Kxy
® J(x: Gx)V(y : Hy A Fy)Kyx
® Are these the same?
® In the first formula, each footballer may kick his/her own goat!
In the second, all footballers kick the same goat!*
* 1 claim that this model is wrong! This is not what the sentence is
saying; the second formula is more/too specific.
@ Only hairy footballers kick goats.
® VY(x: Fx A3(y : Gy)Kxy)Hx
° V(x:3(y: Gy)Kxy)(Hx A Fx)
® The first model means: “All footballers that kick a goat are hairy.”
The second: “Anything that kicks a goat is a hairy footballer.”
But which one is right? (Hard to tell, language is vaguel)

Pascal Bercher 12.48
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Examples: Note on Interpreting Natural Language

@ Modeling a proposition with logic often reveals how vague
language is! (And that we may make implicit assumptions)
@ “Only hairy footballers kick goats.” What is meant here?

® Among all footballers, only the hairy ones kick goats.
® Among all human beings, only hairy footballers kick goats.

| Australian
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Deduction

Examples: Note on Interpreting Natural Language

@ Modeling a proposition with logic often reveals how vague
language is! (And that we may make implicit assumptions)
@ “Only hairy footballers kick goats.” What is meant here?
® Among all footballers, only the hairy ones kick goats.
® Among all human beings, only hairy footballers kick goats.
@ “Only unmotivated students don’t study.” What is meant here?

® Among all students, only the unmotivated ones don’t study.
® Among all human beings (or all aliens, spirits, . .. ?), only
unmotivated students don’t study.

| Australian
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Examples: Note on Interpreting Natural Language

@ Modeling a proposition with logic often reveals how vague
language is! (And that we may make implicit assumptions)
@ “Only hairy footballers kick goats.” What is meant here?
® Among all footballers, only the hairy ones kick goats.
® Among all human beings, only hairy footballers kick goats.
@ “Only unmotivated students don’t study.” What is meant here?
® Among all students, only the unmotivated ones don’t study.
® Among all human beings (or all aliens, spirits, . .. ?), only
unmotivated students don’t study.
@ We normally rely on context to figure out what's meant. But when
you are (t)asked to formalize something you need to be as formal
as possible.
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Examples: Translating a Natural Language Text into Predicate Logics

Anyone who sees a hairy footballer sees someone who kicks a
non-footballer.

Sounds horribly complicated, but let’s do it step by step!

[7w Australian
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Introduction

Examples: Translating a Natural Language Text into Predicate Logics

Anyone who sees a hairy footballer sees someone who kicks a
non-footballer.

Sounds horribly complicated, but let’s do it step by step!

V(x : x sees a hairy footballer)
(x sees someone who kicks a non-footballer)

| Australian
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| Deduction

Examples: Translating a Natural Language Text into Predicate Logics

Anyone who sees a hairy footballer sees someone who kicks a
non-footballer.

Sounds horribly complicated, but let’s do it step by step!

V(x : x sees a hairy footballer)
x sees someone who kicks a non-footballer)

(
V(x: 3y : Hy A Fy)Sxy)
( 3(y : y kicks a non-footballer)Sxy )
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Deduction

Examples: Translating a Natural Language Text into Predicate Logics

Anyone who sees a hairy footballer sees someone who kicks a
non-footballer.

Sounds horribly complicated, but let’s do it step by step!

V(x : x sees a hairy footballer)
x sees someone who kicks a non-footballer)

(
V(x : 3(y : Hy A Fy)Sxy)
( 3(y : y kicks a non-footballer)Sxy )
(
(

B V(x:3(y : Hy A Fy)Sxy)
Ay: 3Fz:-Fz2)Kyz )Sxy )
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Examples: Translation: More examples! (From You)

Novel/recent idea:
@ We create a new forum for the formalization of Natural Language!
@ We can use it to create some examples to practice this!

©

One thread will be one Natural Language
— plus the attempt(s) to formalize it!

@ Feedback can be provided by other students;
and maybe occasionally by Lecturers
@ The idea is basically an asynchronious online learning group

@ And some of the completed/correct (most funny?) examples
could be preserved for next generations!

@ (I'm thinking of additional bonus material just like the many
practice sequents in the Logic Notes; see the link in the bonus
material sequence.)

| Australian
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Well-formed Formulae: Restrictions on Formulae, cont'd

Recap of Propositional Logic:

o Wellformed formula: (pV q) — (P A Q)
(though it’s not a tautology/theorem, but that’s not the point)

@ Non-wellformed formula: (p V — g) A g—)

So what about Predicate Logic?

@ Connectives and subformulae are used in the same way as for
Propositional Logic.

@ Some additional restrictions (next slide)

| Australian
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eduction

Well-formed Formulae: Restrictions on Formulae

Predicate Logic:
@ Example for two well-formed formulae:

° VY(x: Fx)3(y : Gy)Kxy Each footballer kicks a goat
° A(x: Fx)3A(y : Gy)Kxy Some footballer kicks a goat

@ What about (V(x : Fx)3(y : Gy)Kxy) A (3(x : Fx)3(y : Gy)Kxy)?
— Still allowed! After all, you can put them together with A/l

Australian
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Deduction

Well-formed Formulae: Restrictions on Formulae

Predicate Logic:
@ Example for two well-formed formulae:
° VY(x: Fx)3(y : Gy)Kxy Each footballer kicks a goat
° A(x: Fx)3A(y : Gy)Kxy Some footballer kicks a goat
@ What about (V(x : Fx)3(y : Gy)Kxy) A (3(x : Fx)3(y : Gy)Kxy)?
— Still allowed! After all, you can put them together with A/l
@ So, are there any restrictions?
® Let A and B (well-formed) formulae and x free in A or B, then
> V(x : A)Band 3(x : A)B are (well-formed) formulae.

® l.e., we don'’t allow quantification over non-used variables!
® (We don’t provide a complete specification of what’s well-formed,
just as we didn’t for propositional logic.)

Australian
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Introduction Predicate Logic

From Restricted Quantifiers to Unrestricted Quantifiers: Main Idea

So far, we were only considering restricted quantifiers:
o J(x: Px)—Rx (Some philosophers are not rational)
@ V(x: Lx)Rx (All logicians are rational)

But now — to make life easier! —we don’t make restrictions anymore!
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Introduction

From Restricted Quantifiers to Unrestricted Quantifiers: Main Idea

So far, we were only considering restricted quantifiers:
o J(x: Px)—Rx (Some philosophers are not rational)
@ V(x: Lx)Rx (All logicians are rational)

But now — to make life easier! —we don’t make restrictions anymore!

We cheat to get around having a sort restriction:
J(x : xis athing)Gx isthesameas 3(x: Fx — Fx)Gx
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Introduction

From Restricted Quantifiers to Unrestricted Quantifiers: Main Idea

So far, we were only considering restricted quantifiers:
o J(x: Px)—Rx (Some philosophers are not rational)
@ V(x: Lx)Rx (All logicians are rational)

But now — to make life easier! —we don’t make restrictions anymore!

We cheat to get around having a sort restriction:
J(x : xis athing)Gx isthesameas 3(x: Fx — Fx)Gx

Example:
@ Something is hairy:
® J(x: Fx — Fx)Hx
® So we could also just
write Ix Hx
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| Deduction

From Restricted Quantifiers to Unrestricted Quantifiers: Main Idea

So far, we were only considering restricted quantifiers:
o J(x: Px)—Rx (Some philosophers are not rational)
@ V(x: Lx)Rx (All logicians are rational)

But now — to make life easier! —we don’t make restrictions anymore!

We cheat to get around having a sort restriction:
J(x : xis athing)Gx isthesameas 3(x: Fx — Fx)Gx

Example:
@ Something is hairy: @ Some goats are hairy:
® J(x: Fx — Fx)Hx ® 3(x: Gx)Hx
® So we could also just ® So we can just write

write Ix Hx dx Gx N Hx
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From Restricted Quantifiers to Unrestricted Quantifiers: Eliminating Sort Indicator

Did we lose something when switching to unrestricted quantifiers?

No! (So, we can just use unrestricted logic instead!)
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Introduction

From Restricted Quantifiers to Unrestricted Quantifiers: Eliminating Sort Indicator

Did we lose something when switching to unrestricted quantifiers?

No! (So, we can just use unrestricted logic instead!)

o Existential quantified formulae become conjunctions:
E.g., 3(x : Gx)Hx (some goats are hairy) becomes Ix Gx A Hx
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| Deduction

From Restricted Quantifiers to Unrestricted Quantifiers: Eliminating Sort Indicator

Did we lose something when switching to unrestricted quantifiers?

No! (So, we can just use unrestricted logic instead!)

o Existential quantified formulae become conjunctions:
E.g., 3(x : Gx)Hx (some goats are hairy) becomes Ix Gx A Hx

@ Universally quantified formulae become implications:
E.g., V(x : Gx)Hx (all goats are hairy) becomes Vx Gx — Hx
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| Deduction

From Restricted Quantifiers to Unrestricted Quantifiers: Eliminating Sort Indicator

Did we lose something when switching to unrestricted quantifiers?

No! (So, we can just use unrestricted logic instead!)

o Existential quantified formulae become conjunctions:
E.g., 3(x : Gx)Hx (some goats are hairy) becomes Ix Gx A Hx

@ Universally quantified formulae become implications:
E.g., V(x : Gx)Hx (all goats are hairy) becomes Vx Gx — Hx

Thus, from now on, we will use non-restricted formulae instead.
(But in the second half of the course we will re-visit restricted
quantifiers again.)
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Introduction c Natural Deduction

Introduction

@ Instead of re-doing all our previous rules, we will just provide
additional ones!
® Two new rules for V (introduction and elimination)
® Two new rules for 3 (introduction and elimination)
@ We still perform natural deduction for propositional logic in
intermediate steps.
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Substitutions: Introduction

Our Natural Deduction rules will exploit substitutions.

Definition:
@ Let Abe aformula and t; and t, be terms.
° Ag is the result of substituting each free (unbound) t> in Aby t.

] ﬁu?ralilan
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Introduction Predic J Natural Deduction i ntifiers
0000 (

Substitutions: Introduction

Our Natural Deduction rules will exploit substitutions.

Definition:
@ Let Abe aformula and t; and t> be terms.
° Ag is the result of substituting each free (unbound) t, in A by t;.
@ Any mnemonic? How do | remember what gets substituted by
what?

® Gravity falls!
° A} is the result of A after the t; “fell down” crushing .

| Australian
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Substitutions: Examples (and Conventions)

o Let A= 3x(Px — Rx). s AY = 3y(Py — Ry)?
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Substitutions: Examples (and Conventions)

o Let A= 3x(Px — Rx). s AY = 3y(Py — Ry)?
® No! Recall that x is required to be free/unbound in Al
® Since there are no free variables, so A, = A here.

Pascal Bercher 23.48



Introduction Natural Deduction
000 00 0000

Substitutions: Examples (and Conventions)

o Let A= 3x(Px — Rx). s AY = 3y(Py — Ry)?
® No! Recall that x is required to be free/unbound in Al
® Since there are no free variables, so A, = A here.
o Let A= Fx A 3x(Fx A Gx). What's A} now?
° It's Fy A 3x(Fx A Gx)!
® Because we only substitute free/unbound variables!
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Natural Deduction
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Substitutions: Examples (and Conventions)

o Let A= 3x(Px — Rx). s AY = 3y(Py — Ry)?
® No! Recall that x is required to be free/unbound in Al
® Since there are no free variables, so A, = A here.
o Let A= Fx A 3x(Fx A Gx). What's A} now?
° It's Fy A 3x(Fx A Gx)!
® Because we only substitute free/unbound variables!
@ You won’t have to take much care as we will use a convention to
use the constant letters a, b, ¢ for free variables in all our proofs.

o E.g., you might see something like A = Fa A 3x(Fx A Gx),
but never something like Fx A 3x(Fx A Gx) or even Ja(Fa A Ga).

Pascal Bercher 23.48
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Substitutions: Examples (and Conventions)

o Let A= 3x(Px — Rx). s AY = 3y(Py — Ry)?
® No! Recall that x is required to be free/unbound in Al
® Since there are no free variables, so A, = A here.
o Let A= Fx A 3x(Fx A Gx). What's A} now?
° It's Fy A 3x(Fx A Gx)!
® Because we only substitute free/unbound variables!
@ You won’t have to take much care as we will use a convention to
use the constant letters a, b, ¢ for free variables in all our proofs.

o E.g., you might see something like A = Fa A 3x(Fx A Gx),
but never something like Fx A 3x(Fx A Gx) or even Ja(Fa A Ga).

@ We use this because constants “behave” just like free variables.
In fact, the Logic notes never even use free variables! It only uses
bound variables and constants (called names there).
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Universal Quantifiers
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Universal Elimination: Introduction

o Let's assume we want to say that the age of all humans is smaller
than 130:  Vx age(x) < 130

. [:\; ﬁu?ralilan
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Deduction i Summary

Universal Elimination: Introduction

o Let’'s assume we want to say that the age of all humans is smaller
than 130:  Vx age(x) < 130

@ If we had one constant for each individual (person), we could
conclude: age(a) < 130 A age(b) < 130 A age(c) < 130 A ...
(Though that’s clearly not practical! And maybe not even possible
if we reason about infinitely many objects like numbers.)
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Deduction

Universal Elimination: Introduction

o Let’'s assume we want to say that the age of all humans is smaller
than 130:  Vx age(x) < 130

@ If we had one constant for each individual (person), we could
conclude: age(a) < 130 A age(b) < 130 A age(c) < 130 A ...
(Though that’s clearly not practical! And maybe not even possible
if we reason about infinitely many objects like numbers.)

@ So we could also conclude age(x) < 130 for any x!
We thus use a (free) variable in our rule!
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Universal Elimination: Introduction

o Let’'s assume we want to say that the age of all humans is smaller
than 130:  Vx age(x) < 130

@ If we had one constant for each individual (person), we could
conclude: age(a) < 130 A age(b) < 130 A age(c) < 130 A ...
(Though that’s clearly not practical! And maybe not even possible
if we reason about infinitely many objects like numbers.)

@ So we could also conclude age(x) < 130 for any x!
We thus use a (free) variable in our rule!
@ So, what will the Universal-Elimination rule look like?
Vx Fx Vx A

VE more general: —
Fv A,

We do however need a side condition here to make sure our
newly introduced term doesn’t cause trouble.
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Universal Elimination: Side Condition

Assume we had no side condition:

Vx A . . XFVxA
—VE in sequent notation: —— VE
A, XE A,

Let’s consider this sequent: ¥Yx 3y(y > x) = 3y(y > y)
@ Should that be valid? No! No number is larger than itself!

| Australian
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Deduction

Universal Elimination: Side Condition

Assume we had no side condition:

Vx A . . XFVxA
—VE in sequent notation: —— VE
A, XE A,

Let’s consider this sequent: ¥Yx 3y(y > x) = 3y(y > y)
@ Should that be valid? No! No number is larger than itself!
@ But we can prove it! (If there’s no side condition!) A
—
ar (1) Vx3y(y >x) A Vx Jy (y > X)VE
Jy (v >y)
~—_————

AL=A)
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Introduction

Universal Elimination: Side Condition

Assume we had no side condition:

Vx A . . XFVxA
—VE in sequent notation: —— VE
A, XE A,

Let’s consider this sequent: ¥Yx 3y(y > x) = 3y(y > y)
@ Should that be valid? No! No number is larger than itself!

@ But we can prove it! (If there’s no side condition!) A
—
ar (1) Vx3y(y >x) A Vx Jy (y > X)VE
ar (@ Jy(y>y) 1VE Iy (y>vy)
~—_———
A=A,
- v

niversity ~ Pascal Bercher 26.48
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Universal Elimination: Side Condition

Assume we had no side condition:

Vx A . . XFVxA
—VE in sequent notation: —— VE
A, XE A,

Let’s consider this sequent: ¥Yx 3y(y > x) = 3y(y > y)
@ Should that be valid? No! No number is larger than itself!

@ But we can prove it! (If there’s no side condition!) A
—
ar (1) Vx3y(y >x) A Vx Jy (y > X)VE
ar (@ Jy(y>y) 1VE Jy (y > y)
—_——
So what'’s missing? A=A

@ The “instantiation of x” (the new variable name) must be free!
(We don’t want it to get captured by another quantifier!)

@ This is different from what we demanded for substitutions.

Australian
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Universal Elimination: The 1-step Rule

So, in conclusion:
Universal Elimination Rule:

XEFVxA o o
————VE onlyiftis notbound in A,!
XEA

X

As mentioned earlier (slide 23), you are not in risk of making that
mistake as long as you adhere our convention: use a, b, ¢, for free
variables!
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Deduction

Universal Elimination: The 1-step Rule

So, in conclusion:
Universal Elimination Rule:

XEFVxA o o
————VE onlyiftis notbound in A,!
XEA

X

As mentioned earlier (slide 23), you are not in risk of making that
mistake as long as you adhere our convention: use a, b, ¢, for free
variables!

Important note:
Recall that often you apply the rule from bottom to top!

o E.g., you might have some line X (i) Jy(y > a), and then
@ you apply VE to (i) to obtain: X (i-1) Vx3Jy(y > x)!
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Universal Introduction: Introduction
o For the introduction of the universal quantifier, we would like to
have, conceptually, a rule like the following:

Fa Fb Fc
Vx Fx

But that’'s again infeasible, and potentially even impossible!
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| Deduction

Universal Introduction: Introduction
o For the introduction of the universal quantifier, we would like to
have, conceptually, a rule like the following:

Fa Fb Fc
Vx Fx

But that’'s again infeasible, and potentially even impossible!

How about: Fa v/ ? (as above, ais a constant)
Vx Fx

That rule is wrong! Just because Aristotle is (was) a footballer,
doesn’t mean that everybody is!

But it might work for “typical objects”... (a variable)

] Iélu?trahan
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Universal Introduction: Typical Objects

o What’s a typical object? (A free variable)

@ Remember the “undergraduate school” when you have to proof
some property of all triangles.

=

® Step 2: “some fancyﬂproof“

* Step 1: Let ABC= be a triangle.

® Step 3: Thus, ABC has property P. Thus P holds for all triangles!

o Why is that correct? Since we did not make any assumptions for
ABC other than it being a triangle! E.g., we did not demand that it
has a 90-degree angle or any other special case! We gave it a
name (ABC), but that was also arbitrary!
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Universal Introduction: The 1-step Rule

@ So, we need an “object without any assumption” to generalize its
property (formula) to the general case.
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Universal Introduction: The 1-step Rule

@ So, we need an “object without any assumption” to generalize its
property (formula) to the general case.

@ But how to express this “no assumptions”?
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Universal Introduction: The 1-step Rule

@ So, we need an “object without any assumption” to generalize its
property (formula) to the general case.

@ But how to express this “no assumptions”?

VI with side condition:

") Fv
VI more general: ~
Vx Fx Vx A,

provided the variable v does not occur in any assumption that A
depends upon.
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Universal Introduction: The 1-step Rule

@ So, we need an “object without any assumption” to generalize its
property (formula) to the general case.

@ But how to express this “no assumptions”?

° Fv o o
v/ more general: vl with side condition:

Vx Fx Vx A

v
provided the variable v does not occur in any assumption that A
depends upon.

@ Universal Introduction Rule: (in sequent notation)

XEA , only if v does not occur in X!
X EVx Ay

l Iélu?trahan
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: XEA y onlyif v does not occur in X!
X EVx Ay

So,canweuse FV v/ to prove Faristotle - Vx Fx?
Vx Fx

Let’s try!

Faristotle - Vx Fx
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: XEA y onlyif v does not occur in X!
X EVx Ay

So,canweuse FV v/ to prove Faristotle - Vx Fx?
Vx Fx

Let’s try!

Faristotle - Vx Fx
ay (1) Faristotle A
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: XEA y onlyif v does not occur in X!
X EVx Ay
So,canweuse FV v/ to prove Faristotle - Vx Fx?
Vx Fx
Let’s try!
Faristotle - Vx Fx
1) Faristotle A XeA Wi
aristotle —_—
o () X F Vx A
ay (n) Vx Fx Only if v does
not occur in X!
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: XEA y onlyif v does not occur in X!
X EVx Ay

So,canweuse FV v/ to prove Faristotle - Vx Fx?
Vx Fx

Let’s try! Does not work: Rule fails for two reasons!

Faristotle - Vx Fx
1) Faristotle A XA Vi
aristotle Er—
ar (1) Fan X Vx A
ay (n) Vx Fx Only if v does
not occur in X!
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Universal Introduction: More on our Assumption and Side-Conditions

So we have: XEA y onlyif v does not occur in X!
X EVx Ay

So,canweuse FV v/ to prove Faristotle - Vx Fx?
Vx Fx

@ Two reasons this “proof” (luckily) fails:
® The side condition states that v = aristotle (which is gets
substituted) does not occur in X, but X is oy = Faristotle,
so the side condition is violated.
® Also, in our rule above v represents a variable. So it’s not
applicable here anyway. Recall: Just because Aristotle plays
football, not everybody does!
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More on Syntax: Meaning of a, b, ¢, ... in Proofs

Important:

@ Note that the Logic Notes (and Yoshi as well!) refer to constants
as “names”.

@ More importantly, note that we only use a, b, c, etc. as constants
in the explanations for rules here in the lecture. For convenience,
in all exercises, including those given in the lecture, these letters
do not represent constants!

@ Instead, in formal proofs, these letters (again: a, b, c, ...) will
represent our “typical objects” — like the triangle ABC from before!

@ These “typical objects” are (free, i.e., unbound) variables.

@ In fact, you will never deal with constants in proofs!
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Uﬁi'v‘é??ny Pascal Bercher 32.48




Universal Quantifiers
®0

Example Proofs: Example 1

Vx Fx,¥x Gx F ¥x (Fx A Gx)

@ ﬁuitralilan
M uﬁi\llqef(‘gny Pascal Bercher 33.48




Universal Quantifiers
®0

Example Proofs: Example 1

Vx Fx,¥x Gx F ¥x (Fx A Gx)

Q (1) Vx Fx A
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Universal Quantifiers
®0

Example Proofs: Example 1

Vx Fx,¥x Gx F ¥x (Fx A Gx)

Q (1) Vx Fx A
Q2 (2) VxGx A

. @ ﬁuitralilan
M uﬁig(‘gny Pascal Bercher 33.48



Example Proofs:

Vx Fx,¥x Gx F ¥x (Fx A Gx)

Qq
(673

XEA
—VI
XEVx Ay

Only if v does
not occur in X!

Qq, Q2

Vx (Fx A Gx)

Pascal Bercher




Introduction re Natural Deduction

Example Proofs: Example 1

Vx Fx,¥x Gx F ¥x (Fx A Gx)

XEA

Qi (1) Vx Fx A —

as @) Vx Gx A X VXA,
Only if v does
not occur in X!
XEVxA

ay,ae (n-1) FaA Ga VT

’ XHA
ar, o (n) Vx (Fx A Gx) (n-1)VI ol

o [:\w ﬁu?ralilan
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Example Proofs: Example 1

Vx Fx,¥x Gx F ¥x (Fx A Gx)

Q (1) Vx Fx A
Q2 (2) VxGx A
oy (8) Fa 1VE

XEA
—VI
XEVx Ay

Only if v does
not occur in X!

ay,ae (n-1) FaA Ga
ar, o (n) Vx (Fx A Gx) (n-1)VI

XFVYxA
X+ A

Pascal Bercher
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Example Proofs: Example 1

Vx Fx,¥x Gx F ¥x (Fx A Gx)

O (1) Vx Fx A
(o7} (2) Vx Gx A
Qi (3) Fa 1VE
Qo 4) Ga 2VE

XEA
— VI
X Vx A}

Only if v does
not occur in X!

ay,ae (n-1) FaA Ga
ar, o (n) Vx (Fx A Gx) (n-1)VI

=] Australian
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Introduction

Example Proofs:

Vx Fx,¥x Gx F ¥x (Fx A Gx)

Example 1

XEA
—VI
XEvx Ay

Only if v does
not occur in X!

| Australian
<S¢ National
3 University

Q (1) Vx Fx A

Q2 (2) VxGx A

Q (3) Fa 1VE
Qp (4) Ga 2VE
Qaq, O (5) Fan Ga 3,4 NI
at,ae (n-1) FaAN Ga

ar, o (n) Vx (Fx A Gx) (n-1)VI

XFVYxA
X+ A

Pascal Bercher
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Introduction

Example Proofs:

Vx Fx,¥x Gx F ¥x (Fx A Gx)

Example 1

Qi (1) Vx Fx A

Qz (2) Vx Gx A

Qi (3) Fa 1VE

Q2 4) Ga 2VE

Qaq, O (5) FaA Ga 3,4 Al
v.ap (6) Yx(Fx A Gx) 5WL

at,ae (n-1) FaAN Ga

ar, o (n) Vx (Fx A Gx) (n-1)VI

| Australian
== National

XEA
— VI
X Vx A}

Only if v does
not occur in X!

XEVxA
XE A,

9 University ~ Pascal Bercher
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Example Proofs:

Vx Fx,Vx Gx b Vx (Fx A\ Gx)

Qq
Q2
63
Q2

Qq, Q2
Qq, Q2

A

A
1VE
2VE
3.4 NI

Vx (Fx AN Gx) 5VI

Did we adhere all side conditions?

XEA
—VI
XEVx Ay

Only if v does
not occur in X!

XFVYxA
X+ A

Pascal Bercher
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Example Proofs:

Vx Fx,¥x Gx F ¥x (Fx A Gx)

e

Example 1

Vx Fx
Vx Gx
Fa
Ga

Fa N Ga

A

A
1VE
2VE
3.4 NI

Vx (Fx AN Gx) 5VI

Did we adhere all side conditions? Yes!

@ X Aof the VI rule corresponds to line 5,

which is oy, an = Fa A Ga,
@ variable v corresponds to a, and

@ although a (of course!) occurs in Fa A Ga, itis not in
X ={aq,a2} = {Vx Fx,Vx Gx}, so all good!
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Example Proofs: Example 2
Vx (Fx — Yy Fy) - Vx (=Fx — Yy —=Fy)
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Example Proofs: Example 2
Vx (Fx — Yy Fy) - Vx (=Fx — Yy —=Fy)
o (1) Vx(Fx — Yy Fy) A
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Example Proofs: Example 2
Vx (Fx — Yy Fy) - Vx (=Fx — Yy —=Fy)

o (1) Vx(Fx — Yy Fy) A
XEFA
—VI
XEVx A,
Only if v does
not occur in X!
o7 (n)  Vx (=Fx — Vy =Fy)
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Introduction

Example Proofs: Example 2
Vx (Fx — Yy Fy) - Vx (=Fx — Yy —=Fy)

o (1) Vx(Fx — Yy Fy) A
XEA

—VI
XEVx A,
Only if v does
not occur in X!

Qo (n-1) —-Fa— Yy -Fy

o7 (n)  Vx (=Fx — Yy =Fy) (n-1)VI

- [:\w ﬁu?ralilan
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Introduction

Example Proofs: Example 2
Vx (Fx — Yy Fy) - Vx (=Fx — Yy —=Fy)
o (1) Vx(Fx — Yy Fy) A
Qi (2) —Fa A

XEA
—VI
X F¥x A

Only if v does
not occur in X!

aq,a (N-2) Yy -Fy
o (n-1) —Fa— Yy ~Fy (n-2)[ccz] !
Q4 (n)  Vx (=Fx = Yy —=Fy) (n-1)VI

| ﬁu?ralilan
3 Uﬁi\lggsaity Pascal Bercher 34.48




Deduction

Example Proofs: Example 2
Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)
o (1) Vx(Fx — Yy Fy) A
Qi (2) —Fa A

Why did we substitute y by b rather than by a?

@ X+ Acorresponds to —Fb,

@ The variable v in the rule (which is b in our case!)
may not occur in X, which works for us since
X ={ay, a0} = {¥x (Fx = Vy Fy),~Fa}

@ So choosing v = a would not have been possible,
since a occurs in ap = —Fal

Qaq, Q2 (n-3) -Fb

aq,a (N-2) Yy -Fy (n-3) VI
Qu (n-1) —-Fa— Yy Fy (n-2)[ao] —1
o n) Vx(=Fx — Vy—=Fy) (n-1)Vl

Australian

XHA
—V
XEVx A,

Only if v does
not occur in X!
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Introduction

Summary

Example Proofs: Example 2
Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

o7 (1) Vx(Fx — Yy Fy) A

az (2) —Fa A X,BFA Y BF-A

a8 Fb A xyr-s ™

XEHA

—VI
XEVx A,
Only if v does
not occur in X!

ai,ap (n-3) —Fb x,y[as] RAA

aq,a (N-2) Yy -Fy (n-3) VI

QU (n-1) —-Fa— Yy Fy (n-2)[ae] —/

1o (n)  Vx (=Fx — Yy =Fy) (n-1)VI
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Introduction

Summary

Example Proofs: Example 2
Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

o (1) Vx(Fx — Yy Fy) A
az (2) —Fa A X,BFA Y BF-A
o3 (3) Fb A X YE-B RAA
o (4) Fb—VyFy 1VE ’
XEA
—VI
XEVx A,
Only if v does
not occur in X!
XEVxA
anap (0-8) —Fb xylos] RAA | XAl "
aq,a  (N-2) Yy —=Fy (n-3) VI
Qi (n-1) —-Fa— Vy-Fy (n-2)[ax] —1
o n) Vx(=Fx — Vy—Fy) (n-1)Vl
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Introduction redica \ al Deduction Universal Quantifiers Existential Quantifiers Summary
000 O 00 ple J [e fe]e

Example Proofs: Example 2
Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

o (1) Vx(Fx — Yy Fy) A

az (2) —Fa A X,BFA Y BF-A

o3 (3) Fb A X YE-B RAA

a (4) Fb—VyFy 1VE ’

ay,a3  (B) Vy Fy 3,4 —E XE A
—V
XEVx A,
Only if v does
not occur in X!
XEVYxA

ai,ap (n-3) —Fb xylos] RAA | XAl "

aq,a (N-2) Yy -Fy (n-3) VI

Qq (n-1) —Fa— Yy —Fy (n-2)[a] —1

o n) Vx(=Fx — Vy—=Fy) (n-1)Vl
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Introduction redica \ al Deduction Universal Quantifiers Existential Quantifiers Summary
000 O 00 ple J [e fe]e

Example Proofs: Example 2
Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

o (1) Vx(Fx — Yy Fy) A
az (2) —Fa A X,BFA Y BF-A
a8 Fb A xyr-s ™
o 4) Fb—Vy Fy 1VE ’
ay,az3  (B) Vy Fy 3,4 —E XE A
6) Fa 5VE —Vi
05 (6) X F Vx A
Only if v does
not occur in X!
XEVYxA
ai,as (n-3) —Fb xylos] RAA | XAl "
aq,a  (N-2) Yy —=Fy (n-3) VI
Qq (n-1) —Fa— Yy Fy (n-2)[ae] —1
12 n) Vx(=Fx — Vy—Fy) (n-1)Vl

ﬁu?rahlan
3 Uﬁi\llqerigity Pascal Bercher 34.48




Introduction

Example Proofs:

Example 2

Universal Quantifiers E
[e]e 0e O

Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

oy (1) Vx(Fx — Yy Fy)
Qo (2) —Fa

a3 (3) Fb

Q (4 Fb—VyFy
ar,az  (5) VyFy

aq,03 (6) Fa

a1, Qi (7) —-Fb

aq, Q2 (n-3) -Fb

ai,ap  (n-2) Vy -Fy

o (n-1) —-Fa— Vy-Fy
o n) Vx (=Fx — Vy —Fy)

Australian

ential Quantifiers

Summary

A

A X,BFA Y,BF-A

A RAA

X, Y+ B

1VE

3.4 —E XE A

5VE ————vi

2.6las] RAA | X VXA
Only if v does
not occur in X!
XEVYxA

x,y[az] RAA Xk Af(

(n-3) VI

(n-2)[az] =/

(n-1) VI

National
3 University

Pascal Bercher
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Introduction

Example Proofs:

Example 2

Universal Quantifiers E
[e]e 0e O

Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

ential Quantifiers

Summary

Qq (1) Vx(Fx — Yy Fy) A

az (2) ~—Fa A |X,BFA Y,BF-A

a3 (3) Fb A X Y- B RAA

o (4) Fb—VyFy 1VE ’

ar,a3  (5) VyFy 3,4 —E - A

Qq, 03 (6) Fa 5VE — VI

ay, a2 (7) —Fb 26[as] RAA | X T VXA

a0z (8) Yy —Fy 7V Only if v does
not occur in X!

XEVxA

at,az (n3) —Fb xylas] RAA | "X A

aq,an (N-2) Yy -Fy (n-3) VI

Q;q (n-1) —Fa— Vy Fy (n-2)[aa] —1

o n) Vx (=Fx — Vy—=Fy) (n-1)Vl




Introduction

Example Proofs:

Example 2

Universal Quantifiers E
[e]e 0e O

Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)

ential Quantifiers

Summary

o (1) Vx(Fx — Yy Fy) A

az (2) —Fa A X,BFA Y BF-A

as () Fb A XY+ B das

o7 (4 Fb—VyFy 1VE ’

ar,az  (5) VyFy 3.4 —E XFA

ay,a3 (6) Fa 5VE I IRVNTAL

at,as (7)) —Fb 26las] RAA | X VXA

a, a2 (8) Yy —Fy 7V Only if v does

ay (9) —Fa—Vy—Fy 8[ae] —/ not occur in X!
XEVxA

aq, Q2 (n-3) -Fb XsY[a3] RAA TA;

aq,an (N-2) Yy -Fy (n-3) VI

Q;q (n-1) —Fa— Vy Fy (n-2)[aa] —1

o n) Vx (=Fx — Vy—=Fy) (n-1)Vl

3 ﬁ%ﬁf}%ﬁ: Pascal Bercher 34.48




Introduction

Example 2

Universal Quantifiers E
00 plel) ©

ential Quantifiers

Summary

Example Proofs:
Vx (Fx — Yy Fy) b ¥x (=Fx — Yy =Fy)
oy (1) Vx(Fx — Yy Fy)
Qs @) —Fa
Qs (3) Fb
Q (4 Fb—VyFy
aj,az  (5) VyFy
aq,03 (6) Fa
a1, Qi (7) —-Fb
aq, a0 (8) Vy—Fy
Qq (9) —Fa—Vy-Fy
oy (10) Vx (=Fx — Yy =Fy)
aq, Q2 (n-3) -Fb
ai,ap  (n-2) Vy -Fy
o (n-1) —-Fa— Yy -Fy
oy n) Vx (=Fx — Vy —Fy)

Australian

A
A |X,BFA Y,BF-A
A RAA
X,YF -B
1VE
3,4 —E XA
5VE ——v
2.6las] RAA | X VXA
7l Only if v does
8lae] —/ not occur in X!
9Vl
XEVxA
xylas] RAA | x - AL
(n-3) VI
(n-2)[az] =/
(n-1) VI

National
3 University
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| Deduction

Existential Introduction: Introduction

@ Recall that you can “imagine” the universal quantifier V like:
age(a) < 130 A age(b) < 130 A age(c) < 130 A ...

. [:\; ﬁu?ralilan
&/@% Uﬁi:g(?ny Pascal Bercher 36.48




Deduction Existentia

O@0000C

Existential Introduction: Introduction

@ Recall that you can “imagine” the universal quantifier V like:
age(a) < 130 A age(b) < 130 A age(c) < 130 A ...

@ The existential quantifier 3 can similarly interpreted as:
age(a) > 100 V age(b) > 100 V age(c) > 100V ...
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Deduction

Existential Introduction: Introduction

@ Recall that you can “imagine” the universal quantifier V like:
age(a) < 130 A age(b) < 130 A age(c) < 130 A ...

@ The existential quantifier 3 can similarly interpreted as:
age(a) > 100 V age(b) > 100 V age(c) > 100V ...

@ Thus, conceptually, we would expect something like the following
rule: (a, b, ... are again constants)

FaVv FbV Fc\/...al
dx Fx

Au?rahan
lational
niversity ~ Pascal Bercher
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Existential Introduction: The 1-step Rule (part I)

o Existential Introduction Rule:

Fv Al i t X+ Al
31 more general: x g N sequen — X5
Ix Fx Ix A notation: XF3xA

| Australian
— g ]
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| Deduction

Existential Introduction: The 1-step Rule (part )

o Existential Introduction Rule:

Fv 31 more general: A in sequent XA,
dx Fx " XA notation: XFEdx A

@ This rule assumes a non-empty “universe” (the objects that we
reason about, more later when we formally deal with the
semantics), i.e., that there exists at least one “object” that the
terms represent. This is one of several assumptions in classical
logic, though there are other important properties as well.

] Qu?rahan
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| Deduction

Existential Introduction: The 1-step Rule (part )

o Existential Introduction Rule:

Fv 31 more general: A in sequent XA,
dx Fx " XA notation: XFEdx A

@ This rule assumes a non-empty “universe” (the objects that we
reason about, more later when we formally deal with the
semantics), i.e., that there exists at least one “object” that the
terms represent. This is one of several assumptions in classical
logic, though there are other important properties as well.

@ Just like VE, this rule also has a side condition!
Let’s see in an example which and why.

] Ie‘lu?rahan
ational
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Existential Q

Introduction
00000

Existential Introduction: Side Condition

Assume we had no side condition:

Al , , XA
=) in sequent notation: —3l
dx A XFdxA

Let’s consider this sequent: Vy (y = y) - 3xVy (y = x)
@ Should that be valid? No! There is not just one number! :)

] ﬁu?ralilan
Uﬁi\lloenrsaity Pascal Bercher 38.48




Deduction i mmary

Existential Introduction: Side Condition

Assume we had no side condition:

Al , , XA
=) in sequent notation: —3l
dx A XFdxA

Let's consider this sequent: Vy (y = y) F IxVy (y = x)
@ Should that be valid? No! There is not just one number! :)
@ But we can prove it! (If there’s no side condition!)

ar (1) Vy(y=y) A

J onal
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Deduction

Existential Introduction: Side Condition

Assume we had no side condition:

Al , , XA
=) in sequent notation: —3l
dx A XFdxA

Let's consider this sequent: Vy (y = y) F IxVy (y = x)
@ Should that be valid? No! There is not just one number! :)
@ But we can prove it! (If there’s no side condition!)

ar (1) Vy(y=y) A
ar () IxVy(y=x) 13l

Australian

|
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Introduction r Natural Deduction iver: ier: Existential Quantifiers

Existential Introduction: Side Condition

Assume we had no side condition:

Al , _ XA
=) in sequent notation: —3l
dx A XF3dxA

Let’s consider this sequent: Vy (y = y) - 3xVy (y = x)
@ Should that be valid? No! There is not just one number! :)

@ But we can prove it! (If there’s no side condition!) A=A
——
ar (1) Vy(y=y) A Yy (y =)

ar (2 IXVy(y=x) 13l m
So what'’s the problem? T
@ We were quantifying an already bound variable! (The right y.)
@ We were missing: The x in A must be free (as y) in A}.

@ Not any issue at all as long as you follow our convention!

Australian

3] 8ﬁitxlloe?gity Pascal Bercher 38.48



Existential Introduction: The 1-step Rule (part Il)

So, in conclusion:
Existential Introduction Rule:

X+ Al L _
———>-31 onlyif tis not bound in Al

XF3dxA
As mentioned earlier (slide 23), you are not in risk of making that
wrong as long as you adhere our convention: use a, b, c, for free
variables!

] ﬁu?ralilan
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Deduction

Existential Introduction: The 1-step Rule (part Il)

So, in conclusion:
Existential Introduction Rule:

XF A

———>-31 onlyif tis not bound in Al
XFE3dxA

As mentioned earlier (slide 23), you are not in risk of making that
wrong as long as you adhere our convention: use a, b, c, for free
variables!

Important note:
Recall that often you apply the rule from bottom to top!

o E.g., you might have some line X (i) 3y(Fa — Fy), and then
@ you apply 3/ to (i) to obtain: X (i-1) Fa — Fa!

Australian
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tural Deduction Un It ers Existential Quantifiers
[ ) [e O®@00 o)

Existential Elimination: Introduction

@ We want to eliminate the existential quantifier. So can we just use

Ix Fx Vx Fx
JE? Recall:

the following rule? VE |

_ [7‘ Au?tralllan
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Introduction r 3 J ral Deduction

Existential Elimination: Introduction

@ We want to eliminate the existential quantifier. So can we just use

Ix Fx Vx Fx
JE? Recall:

the following rule? VE |

v

@ So, no! Because we don’t know which object has that property!
(You can try to “prove” some invalid sequent when having this
(wrong) rule available!)

| Australian

|
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| Deduction

Existential Elimination: Introduction, cont'd

@ The idea behind the rule is the following:
[Fy]

dx Fx B
—————JE fora‘“typical” y.

@ The idea is similar to disjunction elimination: In AV B, we don’t
know whether A or B is true, so we assume both and show that
either way the derivation can be done.

@ Here, we show it for “some instance” that does not pose further
restrictions (and then discharge it since we know that such an
“instance” exists due to the assumption dx Fx).

| Australian
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Introduction r 3 J ral Deduction

Existential Elimination: The 1-step Rule

Existential Elimination Rule:

X = 3x Af YAt BHE Provided t does not occur
X, Y+B in B or any formulain Y.

@ Note what’s written here: The assumption formula A in sequent 2
can be regarded an “instantiation” of the derivation in sequent 1
by substituting x by a term.

l ﬁu?rahlan
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Deduction

Existential Elimination: The 1-step Rule

Existential Elimination Rule:

X = 3x Af YAt BHE Provided t does not occur
X, Y+B in B or any formulain Y.

@ Note what’s written here: The assumption formula A in sequent 2
can be regarded an “instantiation” of the derivation in sequent 1
by substituting x by a term.

@ We need the side condition so that our choice of the “instance” of
x is still “general”.

@ Otherwise we might be able to derive simply because we chose a
specific special case!

@ Again, you can try to prove an invalid sequent, which you might
be able to if you violate that side condition!

Australian
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Existential Quantifiers
€000

Examples: Example 1

FVx3dy (Fx — Fy)

@ ﬁuitralilan
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Introduction A - Natural Deduction

Examples: Example 1

FVx 3dy (Fx — Fy) XL A

—VI
XEVx Ay

Only if v does
not occur in X!

(n)  Vx3y (Fx — Fy)

| Australian
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Natural Deduction

Examples: Example 1

FVx 3dy (Fx — Fy) XL A

—V/
XEVx Ay

Only if v does
not occur in X!

(n-1) 3y (Fa— Fy) .
() Vx3y (Fx = Fy) (n-1)VI XEA
XEF3dxA

. [:\1 ﬁu?ralilan
Muﬁimty Pascal Bercher 43.48
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Introduction

Examples: Example 1

FVx 3dy (Fx — Fy)

QU (1) Fa A

(n-1) 3y (Fa— Fy)
(n)  Vx3y (Fx — Fy) (n-1)VI

XEFA
—VI
X EVx A

Only if v does
not occur in X!

XF A
X3

XF3dxA

[*‘ Australian
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Introduction

Examples: Example 1

FVx3dy (Fx — Fy)

ar (1) Fa A
@ Fa— Fa 1[aq] =
(n-1) 3y (Fa— Fy)
(n)  Vx3y (Fx — Fy) (n-1)VI

XEHA
— VI
X Vx A}

Only if v does
not occur in X!

XF A
X3

XF3dxA

[7‘ Australian

< National
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Existential Quantifiers
@ >®000

Summary

Introduction

Examples: Example 1

FVx 3dy (Fx — Fy)

a; (1) Fa A
(2) Fa— Fa 1] =1
) Iy (Fa— Fy) 23/

(n-1) 3y (Fa— Fy)
(n)  Vx3y (Fx — Fy) (n-1)VI

@ Wait a minute! Didn’t we say that Al,
replaces all occurrences of x in A by t?

So, going from line (2) Fa — Fa
to line (3) dy (Fa — Fy) is wrong, right?

Australian

XEA
—VI
XEVx A

Only if v does

not occur in X!

X+ A

—d/
XF3IxA

National
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Introduction Predicate Logic Natural Deduction

Existential Quantifiers
@ >®000

Summary

Examples: Example 1

FVx 3dy (Fx — Fy)

a; (1) Fa A
(2) Fa— Fa 1] =1
) Iy (Fa— Fy) 23/

(n-1) 3y (Fa— Fy)
(n)  Vx3y (Fx — Fy) (n-1)VI

@ Wait a minute! Didn’t we say that Al,
replaces all occurrences of x in A by t?

So, going from line (2) Fa — Fa
to line (3) dy (Fa — Fy) is wrong, right?

@ No! We didreplace all x (here: y) by t (here: a)! (See illustration.)

Australian

XEA
—VI
XEVx A

Only if v does
not occur in X!

X+ A

—d/
XE3IxA

Al=A2

——
Fa— Fa

A

e — i
Jy (Fa— Fy)
——

National
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Introduction redicate Q ers Existential Quantifiers Summary
0000 0 I 000000008000

Examples: Example 1

FVx 3y (Fx — Fy) XHA
RAREARY
01 (1) Fa A X EVx A,
(g) ga T: Fa . ;[g;l —l Only if v does
® Jy(Fa— Fy) not occur in X!
(n_1) E|y(Fa_>Fy) Xl_Al
(n)  Vx3y (Fx — Fy) (n-1)VI A,
XF3dxA

_ & ﬁu?ralilan
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Existential Quantifiers
0000

Examples: Example 2

3Ix (Fx A Gx) = 3x Fx A 3x Gx

@ ﬁuitralilan
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Deduction

Examples: Example 2

Xb3xA  YAFB
3Ix (Fx A Gx) = 3x Fx A 3x Gx X,Y+B =

ar (1) Ix(FAXAGx) A Provided t does not occur in
B orany formulain'Y.

ay  (n)  Ix Fx A dx Gx

— & Australian
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Introduction

Examples:

Ix

(e}
Qap

Natural Deduction

Example 2

XEA YVARB
(Fx A Gx) F 3x Fx A 3x Gx X,Y+B
(1) Ix(FxAGx) A Provided t does not occur in
(2) FaANG@Ga A B orany formulain'Y.

ap
Qq

| Australian

(n-1) Ix Fx A Ix Gx
(n)  Ix AxAdx Gx 1,(n-1)[ag] IE

- » National
2= N

9 University ~ Pascal Bercher 4448



Introduction redicate Logic v Q ers Existential Quantifiers Summary
000 00 YO000000 0000 ( 000000000800

Examples: Example 2

XE3IxA Y, Ab B,
Ix (Fx A Gx) F 3x Fx A 3x Gx X,Y+B
ar (1) Ix(FAXAGx) A Provided t does not occur in
ax (2) FaAGa A B orany formulain'Y.
a (3) Fa 2 NE
XF A /
XFdx A

as (n-1) dx Fx A dx Gx
ai  (n) Ix FxAdx Gx 1,(n-1)[a] IE

(] ﬁu?ralilan
i
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Introduction redicate Logic v Q ers Existential Quantifiers Summary
000 00 YO000000 0000 ( 000000000800

Examples: Example 2

XE3IxA Y, Ab B,
Ix (Fx A Gx) F 3x Fx A 3x Gx X,Y+B
ar (1) Ix(FAXAGx) A Provided t does not occur in
ax (2) FaAGa A B orany formulain'Y.
a (3) Fa 2 AE
s (4)  Ix Fx 34l

XF A /
XFdx A

as (n-1) dx Fx A dx Gx
ai  (n) Ix FxAdx Gx 1,(n-1)[a] IE

(] ﬁu?ralilan
i
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Introduction

atural Deduction al Q Existential Quantifiers Summary
I 000000000800

Examples: Example 2

X+3xA  Y,AFB
Ix (Fx A Gx) F 3x Fx A 3x Gx X,Y+B &
ar (1) Ix(FxAGx) A Provided t does not occur in
a (2) FaANGa A B orany formulainY.
o (3) Fa 2 AE
s (4)  Ix Fx 34l
a, (5) Ga 2 NE XA /

XFdx A

as (n-1) dx Fx A dx Gx
ai  (n) Ix FxAdx Gx 1,(n-1)[a] IE

o ; Au?ralilan
{
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Examples: Example 2

XF3xA  Y,AFB
Ix (Fx A Gx) F 3x Fx A 3x Gx X,Y+B 5
ar (1) Ix(FxAGx) A Provided t does not occur in
a (2) FaANGa A B orany formulainY.
o (3) Fa 2 AE
s (4)  Ix Fx 34l
a, (5) Ga 2 NE XA
ap  (6) dx Gx 53/ XE3dx A I

as (n-1) dx Fx A dx Gx
ai  (n) Ix FxAdx Gx 1,(n-1)[a] IE

o ; ﬁu?ralilan
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Examples: Example 2

XF3xA  Y,AFB
Ix (Fx A Gx) F 3x Fx A 3x Gx X,Y+B &
ar (1) Ix(FxAGx) A Provided t does not occur in
a (2) FaANGa A B orany formulainY.
o (3) Fa 2 AE
s (4)  Ix Fx 34l
a, (5) Ga 2 NE XA
ap  (6) dx Gx 53/ XFE3dx A I
ax (7)) IxFxAIxGx 4,6 N

as (n-1) dx Fx A dx Gx
ai  (n) Ix FxAdx Gx 1,(n-1)[a] IE

o }’i ﬁu?ralilan
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Examples: Example 2

XF3xA  Y,AFB

Ix (Fx A Gx) F 3x Fx A 3x Gx X,Y+B 5
a; (1) Ix(FxAGx) A Provided t does not occur in
a (2) FaANGa A B orany formulainY.
o (3) Fa 2 AE
s (4)  Ix Fx 34l
a, (5) Ga 2 NE XA
ax  (6) Ix Gx 53 XEax A
ax (7)) IxFxAIxGx 4,6 N

; E

as (n-1) dx Fx A dx Gx
i (n) Ix FxAdx Gx 1,(n-1)[ae] IE

(3] ﬁu?rahlan
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Examples: Example 3: On Logicians and Philosophers

Remember from the beginning:

@ All logicians are rational V(x : Lx)Rx
@ Some philosophers are not rational J(x : Px)—Rx
@ Thus, not all philosophers are logicians =V(x : Px)Lx

Now, in our unsorted predicate logic, this is:

@ All logicians are rational Vx Lx — Rx

@ Some philosophers are not rational dx Px A =Rx

@ Thus, not all philosophers are logicians —Vx Px — Lx
— oL, R

University ~ Pascal Bercher 45.48
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A ~Rx - =Vx Px — Lx

@ ﬁuitralilan
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A ~Rx - =Vx Px — Lx

Q1 (1) VxLx—Rx A
Qo (20 IxPxA-Rx A

- @ ﬁuitralilan
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A ~Rx - =Vx Px — Lx

o (1) VxLx—Rx A X 3x Af Y,A-B
Qo (20 IxPxA-Rx A X,Y+B

JE

Provided t does not occur in
B orany formulainy.

a1, Qi (n)  —Vx(Px — Lx)

. [:\w ﬁu?ralilan
8\&“"&7//% Uﬁi\g;saity Pascal Bercher 46.48
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VxLx—Rx A X 3x Af Y,A-B
a (2) IxPxA-Rx A X.YFB FE
Qag (3) PaAn-Ra A

Provided t does not occur in
B orany formulainy.

Q1,03 (n-1) =¥x(Px — Lx)
a1, az ()  —Vx(Px — Lx) 2,(n-1)ag] 3E

3 University ~ Pascal Bercher 46.48
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Examples:

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

&

National
= University

A

A

Q1 (1) VxLx — Rx

Qo (20 IxPxA-Rx A
Qs (3 PaA—-Ra

Q1,03 (n-1) =¥x(Px — Lx)
aq, Q2 (n)

Australian

Example 3: On Logicians and Philosophers (cont'd)

X 3x Af

Y,A- B

X,YFB

JE

Provided t does not occur in

B orany formulainy.

X,BFA Y,BF-A

X, Y+ -B

RAA

=Vx(Px — Lx) 2,(n-1)[cag] 3E

Pascal Bercher

46.48
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Examples:

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

Example 3: On Logicians and Philosophers (cont'd)

Existential Quantifiers Summary
000000000000

o (1) VYxLx—Rx A X F 3x Af Y,A-B

s (2) IxPxA-Rx A X.YFB FE

Qs (3) PaA-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in
B orany formulainy.
X,BFA Y,BF—-A

RAA
X, Y+ -B
o1, O3 (n-1)  =Vx(Px — Lx) x,y[as] RAA
a1, Qo (n)  —Vx(Px — Lx) 2,(n-1)[ag] 3E

#|  Australian
National
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VYxLx—Rx A X F 3x Af Y,A-B
s (2) IxPxA-Rx A X.YFB FE
Qg (3) PaA-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in
Q4 (5) Pa— La 4VE B orany formulainy.

X,BFA Y,BF-A
X,Y+ —B

RAA

o1, O3 (n-1)  =Vx(Px — Lx) x,y[as] RAA
ay, Qo (n)  —Vx(Px — Lx) 2,(n-1)[as] IE

3] Uﬁu‘\lloenrsaulty Pascal Bercher 46.48
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Examples:

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

Existential Quantifiers Summary
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Example 3: On Logicians and Philosophers (cont'd)

XF3xA  Y,A-B
X,Y+B

JE

Provided t does not occur in
B orany formulainy.

X,BFA Y,BF-A

RAA
X, YF-B

Q1 (1) VxLx—Rx A

Qo (20 IxPxA-Rx A

a3 (3) PaAn-Ra A

Q4 4) VxPx—lLx A

Q4 (5) Pa— La 4VE

Q3 (6) Pa 3NE

o, O3 (n-1)  =Vx(Px — Lx) x,y[as] RAA
o, Qi (n)  —Vx(Px — Lx) 2,(n-1)[ag] 3E
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Examples:

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

Existential Quantifiers Summary
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Example 3: On Logicians and Philosophers (cont'd)

o (1) VYxLx—Rx A X F 3x Af Y,A-B

s (2) IxPxA-Rx A X.YFB FE

Qg (3) PaA-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in

Q4 (5) Pa— La 4VE B orany formulainy.

Qs (6) Pa 3 NE

s, g 7) La 56| XBFA  Y.BEA
X, Y+ -B

o, O3 (n-1)  =Vx(Px — Lx) x,y[as] RAA

Qaq, o (n)  —Vx(Px — Lx) 2,(n-1)[ag] 3E
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VYxLx—Rx A X F 3x Af Y,A-B

s (2) IxPxA-Rx A X.YFB FE

Qg (3) PaAn-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in
Q4 (5) Pa— La 4VE B orany formulainy.

Qs (6) Pa 3 NE

s, o (7) La 56| XBFA  Y.BEA
o (8) La— Ra 1VE X, YF-B

o1, O3 (n-1) =¥x(Px — Lx) x,y[as] RAA
ay, ap (n)  —Vx(Px — Lx) 2,(n-1)[as] IE

|
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VYxLx—Rx A X F 3x Af Y,A-B

s (2) IxPxA-Rx A X.YFB FE

Qg (3) PaA-—-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in

Q4 (5) Pa— La 4VE B orany formulainy.

Qs (6) Pa 3NE

s, o (7) La 56| XBFA  Y.BEA
o (8) La— Ra 1VE X, YF-B

aq, 03,04 (9) Ra 7,8 —E

o, O3 (n-1)  =Vx(Px — Lx) x,y[as] RAA
ay, as (n)  —Vx(Px — Lx) 2,(n-1)[as] IE

|
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VYxLx—Rx A X F 3x Af Y,A-B

s (2) IxPxA-Rx A X.YFB FE

Qg (3) PaA-—-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in
Q4 (5) Pa— La 4VE B orany formulainy.

Qs (6) Pa 3 NE

s, o (7) La 56| XBFA  Y.BEA
o (8) La— Ra 1VE X, YF-B

aq, 03,04 (9) Ra 7,8 —E

Qs (10) —Ra 3 NE

o1, O3 (n-1) =¥x(Px — Lx) x,y[as] RAA
ay, ap (n)  —Vx(Px — Lx) 2,(n-1)[as] IE

|
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Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VYxLx—Rx A X F 3x Af Y,A-B
s (2) IxPxA-Rx A X.YFB FE
Qg (3) PaA-—-Ra A

Qy 4) VxPx—lLx A Provided t does not occur in
Q4 (5) Pa— La 4VE B orany formulainy.

Qs (6) Pa 3 NE

s, o (7) La 56| XBFA  Y.BEA
o (8) La— Ra 1VE X, YF-B

aq, 03,04 (9) Ra 7,8 —E

Qs (10) —Ra 3 NE

Qaq, a3 (11) —Vx Px — Lx 9,10[cy] RAA

o1, O3 (n-1) =¥x(Px — Lx) x,y[as] RAA
ay, ap (n)  —Vx(Px — Lx) 2,(n-1)[as] IE

|
3] Uﬁi‘\llqerigity Pascal Bercher 46.48




Introduction redica J atur: iversa e Existential Quantifiers Su
000 o) ( fo] 0o0e [e)e

Examples: Example 3: On Logicians and Philosophers (cont'd)

Vx Lx — Rx,3x Px A =Rx - =Vx Px — Lx

o (1) VYxLx—Rx A X 3x Af Y,A-B
s (2) IxPxA-Rx A X.YFB FE
Qg (3) PaA-Ra A
Qy 4) VxPx—lLx A Provided t does not occur in
Q4 (5) Pa— La 4VE B orany formulainy.
Qs (6) Pa 3 NE
s, o (7) La 56| XBFA  Y.BEA
o (8) La— Ra 1VE X, YF—-B
aq, 03,04 (9) Ra 7,8 —E
Qs (10) —Ra 3 NE
Qaq, a3 (11) —Vx Px — Lx 9,10[cy] RAA

, 2, 11[ag) IE
o, O3 (n-1) =Vx(Px — Lx) xy a4]] RAA
Qaq, Qo (n)  —Vx(Px — Lx) 2,(n-1)[ag] 3E
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Content of this Lecture

@ We introduced predicate logic:

® with restricted quantifiers (we re-visit this later)
¢ and with unrestricted quantifiers (default!)

- [:\‘ ﬁu?ralilan
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Content of this Lecture

@ We introduced predicate logic:
® with restricted quantifiers (we re-visit this later)
® and with unrestricted quantifiers (default!)

@ Predicate logic can reason about objects!
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Content of this Lecture

@ We introduced predicate logic:
® with restricted quantifiers (we re-visit this later)
¢ and with unrestricted quantifiers (default!)
@ Predicate logic can reason about objects!
@ Natural deduction for predicate logics, with additional rules for:

® Introduction and Elimination rules for V and 3
® For the rest we keep using the rules from propositional logics!

| Australian

|
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Content of this Lecture

@ We introduced predicate logic:
® with restricted quantifiers (we re-visit this later)
® and with unrestricted quantifiers (default!)
@ Predicate logic can reason about objects!
@ Natural deduction for predicate logics, with additional rules for:
® Introduction and Elimination rules for V and 3
® For the rest we keep using the rules from propositional logics!
@ Many side conditions...

® Substitutions: only rename free variables
® VE and 3I: Just make sure to follow naming conventions :)
® vVl and JE: They are more complicated, look them up!

l Qu?rahan
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Content of this Lecture

@ We introduced predicate logic:
® with restricted quantifiers (we re-visit this later)
¢ and with unrestricted quantifiers (default!)

@ Predicate logic can reason about objects!
@ Natural deduction for predicate logics, with additional rules for:
® Introduction and Elimination rules for V and 3
® For the rest we keep using the rules from propositional logics!
@ Many side conditions...
® Substitutions: only rename free variables
® VE and 3I: Just make sure to follow naming conventions :)
® vVl and JE: They are more complicated, look them up!
— The entire Logic Notes sections:
® 4: Expressing Generality
> except “Properties of relations”

> and except “Functions”
> (You should read them anyway, in particular “Functions”!)

| Australian
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