Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: First-Order Logic — Introduction and Natural Deduction

Pascal Bercher

Al Group
School of Computing
College of Engineering and Computer Science
the Australian National University

21 & 22 March 2022

000

cate Logic Natural Deduction

niversal Quantifiers

Existential Quantific

Summar

Motivation

How to model that in propositional logic?

All logicians are rational

aLr

premises

Some philosophers are not rational

¬ sPr

 \bullet Thus, not all philosophers are logicians $\neg \textit{aPL}$

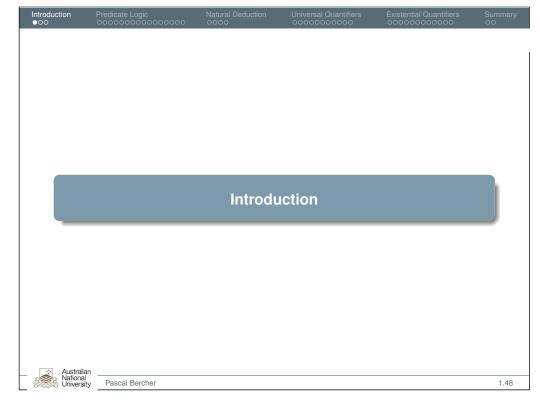
conclusion

2.48

So, can we prove aLr, $\neg sPr \vdash \neg aPL$?

- No! It's even three completely different propositions!
- We need a more expressive logic!

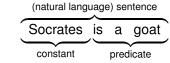
(We could have also used p, q, and r above, the names above were chosen to have more "speaking" names.)



Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

How to extend Propositional Logic?

Logic is about making statements:



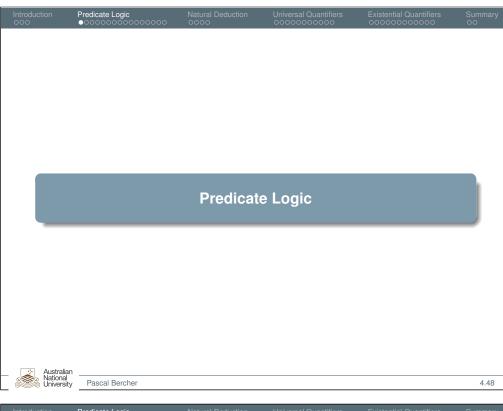
In first-order logic, we:

- can represent individual objects (people, goats, footballs, etc.)
- and express properties and relationships between objects.

In our example,

- the "object" Socrates can be represented by a constant,
- the "property" is a Goat can be represented by a predicate.
- ⇒ For example, isGoat(Socrates)
- ⇒ In propositional logic, we had to use SocratesIsGoat, which is missing some information, since it does not "relate" to another proposition involving Socrates, like SocratesKicksGoat. (Also cf. previous example with philosophers and logicians! Same issue!)

Pascal Bercher 3.48



 Introduction
 Predicate Logic
 Natural Deduction
 Universal Quantifiers
 Existential Quantifiers
 Summary

Terminology And Conventions: Terminology

Term: Anything that represents an object, i.e.,

- a constant (representing a fixed object, like the person Socrates)
- a variable (representing a non-specified object)
- a function (representing a fixed object given a sequence of terms)

Predicates: Express properties or relations of/between terms:

- Takes as input (or "argument") a sequence of terms.
 - The sequence length depends on the predicate, e.g., *isGoat* is unary, *kicks* is binary, etc. (some might even be nullary!)
 - This length is called arity and can be given as a subscript, e.g., isGoat₁, kicks₂, but we don't since it's clear from context.
- Maps to a truth value, e.g., isGoat(Socrates) might be false, but isGoat(Jimmy) might be true.
- ⇒ The "formal semantics" (e.g., for which terms is a predicate true?) will be given in week 7.

Australian National Pascal Bercher 5.48

duction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Terminology And Conventions: Terminology

Term: Anything that represents an object, i.e.,

- a constant (representing a fixed object, like the person Socrates)
- a variable (representing a non-specified object)
- a function (representing a fixed object given a sequence of terms)

Intuition:

- Constants are meant to represent concrete objects, as in "isGoat(Socrates)".
- Variables are used for "more general" relationships as in:
 "All logicians are rational". They are basically placeholders.

Pascal Bercher

uction Predicate Logic

Deduction Universal

Existential Quantifiers

Summ

Terminology And Conventions: Terminology

Term: Anything that represents an object, i.e.,

- a constant (representing a fixed object, like the person Socrates)
- a variable (representing a non-specified object)
- a function (representing a fixed object given a sequence of terms)

Predicates: Express properties or relations of/between terms:

- Takes as input (or "argument") a sequence of terms.
 - The sequence length depends on the predicate, e.g., isGoat is unary, kicks is binary, etc. (some might even be nullary!)
 - This length is called *arity* and can be given as a subscript, e.g., *isGoat*₁, *kicks*₂, but we don't since it's clear from context.
- Maps to a truth value, e.g., isGoat(Socrates) might be false, but isGoat(Jimmy) might be true.
- ⇒ The "formal semantics" (e.g., for which terms is a predicate true?) will be given in week 7.

Pascal Bercher

Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Terminology And Conventions: Conventions

- We continue to use our sequent notation!
 - X ⊢ A
 - $X, Y \vdash A$
 - X, A ⊢ B
 - etc. Only now they represent first-order predicate logic formulae.
- As before we write only single letters!
 - X, Y, Z for sets of formulae, and
 - A, B, C for *single* formulae.

Pascal Bercher

6.48

itroduction Predicate Logic

latural Deductior

Universal Quantifier

Existential Quantifiers 000000000000 Summary

First-Order Formulae: Introduction

Example:

- All vulcans are logicians.
- Let's reformulate that step by step:
 - Take any vulcan, call it x, then x is a logician. (x is a variable!)
 - Take any vulcan, call it x, then Lx.
 - For every object x, such that x is a Vulcan, Lx holds.
 - For every object x, such that Vx holds, Lx holds.
- Now we need special syntax for that "every object"!

atroduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Terminology And Conventions: Conventions (cont'd)

Capital letters are predicate symbols:

 $F, G, H, \ldots, P, Q, R, L, \ldots$

- Lower-case letters represent terms:
 - a, b, c are (usually) used for constants, but we also use them for free variables (as they behave in the same way).
 - f, g, h are used for functions.
 - v and x, y are used for variables.
 - t is used for terms (i.e., any of the above).
- For the sake of simplicity, we do not use parentheses, e.g., F(a), G(b), and R(a,b) become Fa, Gb, and Rab, respectively.
- Now it's clear that the arity is clear from the context! E.g.,
 - Fa represents a predicate F with arity 1 (with term a), and
 - *Rab* represents a predicate *R* with arity 2 (with terms *a* and *b*).

Pascal Bercher

.

7.48

o ooo**o•o**oooooo oo

Pascal Bercher

We want to "quantify" the objects we talk about.

• For every object x, such that Vx holds, Lx holds.

• More formally: $\underbrace{ALL(x : Vx)}_{\text{quantifier!}} Lx$

First-Order Formulae: Possible Quantifiers

• Even more formally: \forall $(\underbrace{x}:\underbrace{Vx})Lx$ quantity indicator variable sort indicator

What other quantifiers could possibly exist?

- SOME(x : Vx)Ex ("some vulcans are emotional")
- FEW(x : Vx)Ex ("a few vulcans are emotional")
- $MOST(x : Lx) \neg Vx$ ("most logicians are not vulcans")
- $ONE(x : Lx)(Ex \wedge Vx)$ ("One logician is an emotional vulcan")

duction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

First-Order Formulae: Possible Quantifiers

We want to "quantify" the objects we talk about.

- For every object x, such that Vx holds, Lx holds.
- More formally: $\underbrace{ALL(x : Vx)}_{quantifier!} Lx$
- Even more formally: \forall $(\underbrace{x} : \underbrace{Vx})Lx$ quantity indicator variable sort indicator

What quantifiers do exist? (In our predicate logic!)

- Just two!
- ALL(x : A)B, i.e., $\forall (x : A)B$
- SOME(x : A)B, i.e., $\exists (x : A)B$

"SOME" means "at least one", so " \exists " is also called "exists" "ALL", i.e., \forall , is called the "universal" quantifier

Pascal Bercher

Deduction Universal Quantification

Existential Quantifiers

Summary 00

9.48

Examples: Some Small Examples

All goats are hairy.

 $\forall (x : Gx) Hx$

Some footballers are hairy.

 $\exists (x : Fx)Hx$

- No goats are footballers.
- $\neg \exists (x : Gx) Fx \equiv \forall (x : Gx) \neg Fx$

You can see here that negations before formulae invert the outer-most quantifier an get moved before the inner formula (which might again be a quantified formula).

You can prove this "rule", but you can't use it!

Australia National Universi

Pascal Bercher 11.48

First-Order Formulae: Example (from before)

Propositional logic (not working):

All logicians are rational

aLr

Some philosophers are not rational

¬sPr

Thus, not all philosophers are logicians

 $\neg aPL$

Predicate logic (works!):

All logicians are rational

 $\forall (x : Lx)Rx$

Some philosophers are not rational

 $\exists (x : Px) \neg Rx$

Thus, not all philosophers are logicians

 $\neg \forall (x: Px) Lx$

But how to prove " $\forall (x : Lx)Rx, \exists (x : Px) \neg Rx \vdash \neg \forall (x : Px)Lx$ "?

Natural Deduction

Semantic Tableau

Pascal Bercher

Existential Quantifiers

.

10.48

Examples: More Complicated Examples

- Every hairy footballer kicks a goat.
 - $\forall (x : Hx \land Fx) \exists (y : Gy) Kxy$
 - $\exists (x : Gx) \forall (y : Hy \land Fy) Kyx$
 - Are these the same?
 - In the first formula, each footballer may kick his/her own goat!
 In the second, all footballers kick the same goat!*
 - * I claim that this model is *wrong*! This is not what the sentence is saying; the second formula is more/too specific.
- Only hairy footballers kick goats.
 - $\forall (x : Fx \land \exists (y : Gy)Kxy)Hx$
 - $\forall (x : \exists (y : Gy)Kxy)(Hx \land Fx)$
 - The first model means: "All footballers that kick a goat are hairy."
 The second: "Anything that kicks a goat is a hairy footballer."
 But which one is right? (Hard to tell, language is vague!)

Examples: Note on Interpreting Natural Language

- Modeling a proposition with logic often reveals how vague language is! (And that we may make implicit assumptions)
- "Only hairy footballers kick goats." What is meant here?
 - Among all footballers, only the hairy ones kick goats.
 - Among all human beings, only hairy footballers kick goats.
- "Only unmotivated students don't study." What is meant here?
 - Among all students, only the unmotivated ones don't study.
 - Among all *human beings* (or all aliens, spirits, ...?), only unmotivated students don't study.
- We normally rely on context to figure out what's meant. But when you are (t)asked to formalize something you need to be as formal as possible.

Examples: Translation: More examples! (From You)

Novel/recent idea:

- We create a new forum for the formalization of Natural Language!
- We can use it to create some examples to practice this!
- One thread will be one Natural Language
 - plus the attempt(s) to formalize it!
- Feedback can be provided by other students; and maybe occasionally by Lecturers
- The idea is basically an asynchronious online learning group
- And some of the completed/correct (most funny?) examples could be preserved for next generations!
- (I'm thinking of additional bonus material just like the many practice sequents in the Logic Notes; see the link in the bonus material sequence.)

Pascal Bercher

Examples: Translating a Natural Language Text into Predicate Logics

Anyone who sees a hairy footballer sees someone who kicks a non-footballer.

Sounds horribly complicated, but let's do it step by step!

- $\forall (x : x \text{ sees a hairy footballer})$ (x sees someone who kicks a non-footballer)
- $\exists \forall (x : \exists (y : Hy \land Fy)Sxy)$ ($\exists (y : y \text{ kicks a non-footballer}) Sxy$)
- $\exists \forall (x : \exists (y : Hy \land Fy)Sxy)$ $\exists (y: \exists (z: \neg Fz) Kyz) Sxy$

Pascal Bercher

Well-formed Formulae: Restrictions on Formulae, cont'd

Recap of Propositional Logic:

- Wellformed formula: $(p \lor q) \to (p \land q)$ (though it's not a tautology/theorem, but that's not the point)
- Non-wellformed formula: $(p \lor \to q) \land q \neg)$

So what about Predicate Logic?

- Connectives and subformulae are used in the same way as for Propositional Logic.
- Some additional restrictions (next slide)

ction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Well-formed Formulae: Restrictions on Formulae

Predicate Logic:

• Example for two well-formed formulae:

• $\forall (x:Fx)\exists (y:Gy)Kxy$ Each footballer kicks a goat • $\exists (x:Fx)\exists (y:Gy)Kxy$ Some footballer kicks a goat

- What about $(\forall (x : Fx) \exists (y : Gy) Kxy) \land (\exists (x : Fx) \exists (y : Gy) Kxy)$?
 - \rightarrow Still allowed! After all, you can put them together with $\land I!$
- So, are there any restrictions?
 - Let A and B (well-formed) formulae and x free in A or B, then $\forall (x : A)B$ and $\exists (x : A)B$ are (well-formed) formulae.
 - I.e., we don't allow quantification over non-used variables!
 - (We don't provide a complete specification of what's well-formed, just as we didn't for propositional logic.)

Pascal Bercher

troduction Pred

Predicate Logic

Natural Deduction

niversal Quantifiers

Existential Quantifier

Summary

From Restricted Quantifiers to Unrestricted Quantifiers: Eliminating Sort Indicator

Did we lose something when switching to unrestricted quantifiers?

No! (So, we can just use unrestricted logic instead!)

- Existential quantified formulae become conjunctions: E.g., $\exists (x : Gx)Hx$ (some goats are hairy) becomes $\exists x \ Gx \land Hx$
- Universally quantified formulae become implications: E.g., $\forall (x:Gx)Hx$ (all goats are hairy) becomes $\forall x Gx \rightarrow Hx$

Thus, from now on, we will use non-restricted formulae instead. (But in the second half of the course we will re-visit restricted quantifiers again.)

Australian National University

Pascal Bercher 19.48

From Restricted Quantifiers to Unrestricted Quantifiers: Main Idea

So far, we were only considering restricted quantifiers:

• $\exists (x : Px) \neg Rx$ (Some philosophers are not rational)

• $\forall (x : Lx)Rx$ (All logicians are rational)

But now – to make life easier! – we don't make restrictions anymore!

We cheat to get around having a sort restriction:

 $\exists (x : x \text{ is a thing}) Gx$ is the same as $\exists (x : Fx \to Fx) Gx$

Example:

- Something is hairy:
 - $\exists (x : Fx \to Fx)Hx$
 - So we could also just write ∃x Hx
- Some goats are hairy:
 - $\exists (x : Gx)Hx$
 - So we can just write $\exists x \ Gx \land Hx$

Pascal Bercher

Natural Deduction

Universal Q

Existential Quantifie

Sumn

18.48

Natural Deduction

Introduction

- Instead of re-doing all our previous rules, we will just provide additional ones!
 - Two new rules for ∀ (introduction and elimination)
 - Two new rules for \exists (introduction and elimination)
- We still perform natural deduction for propositional logic in intermediate steps.

21.48

Substitutions: Examples (and Conventions)

- Let $A = \exists x (Px \to Rx)$. Is $A_x^y = \exists y (Py \to Ry)$?
 - No! Recall that x is required to be free/unbound in A!
 - Since there are no free variables, so $A_x^y = A$ here.
- Let $A = Fx \wedge \exists x (Fx \wedge Gx)$. What's A_x^y now?
 - It's $Fy \wedge \exists x (Fx \wedge Gx)!$
 - Because we only substitute free/unbound variables!
- You won't have to take much care as we will use a convention to use the constant letters a, b, c for free variables in all our proofs.
- E.g., you might see something like $A = Fa \wedge \exists x (Fx \wedge Gx)$, but *never* something like $Fx \wedge \exists x (Fx \wedge Gx)$ or even $\exists a (Fa \wedge Ga)$.
- We use this because constants "behave" just like free variables. In fact, the Logic notes never even use free variables! It only uses bound variables and constants (called names there).

Substitutions: Introduction

Our Natural Deduction rules will exploit substitutions.

Definition:

- Let A be a formula and t₁ and t₂ be terms.
- $A_{t_0}^{t_1}$ is the result of substituting each free (unbound) t_2 in A by t_1 .
- Any mnemonic? How do I remember what gets substituted by what?
 - Gravity falls!
 - $A_{t_0}^{t_1}$ is the result of A after the t_1 "fell down" crushing t_2 .

Pascal Bercher

22.48

Universal Quantifiers

Universal Quantifiers

Pascal Bercher

Universal Elimination: Introduction

- Let's assume we want to say that the age of all humans is smaller than 130: $\forall x \ age(x) < 130$
- If we had one constant for each individual (person), we could conclude: $age(a) < 130 \land age(b) < 130 \land age(c) < 130 \land \dots$ (Though that's clearly not practical! And maybe not even possible if we reason about infinitely many objects like numbers.)
- So we could also conclude age(x) < 130 for any x!We thus use a (free) variable in our rule!
- So, what will the Universal-Elimination rule look like?

$$\frac{\forall x \ Fx}{Fv} \forall E \qquad \text{more general:} \qquad \frac{\forall x \ A}{A_x^t} \forall E$$

We do however need a side condition here to make sure our newly introduced term doesn't cause trouble.

25.48

Universal Elimination: The 1-step Rule

So, in conclusion:

Universal Elimination Rule:

$$\frac{X \vdash \forall x \ A}{X \vdash A_x^t} \forall E \quad \text{only if } t \text{ is not bound in } A_x^t!$$

As mentioned earlier (slide 23), you are not in risk of making that mistake as long as you adhere our convention: use a, b, c, for free variables!

Important note:

Recall that often you apply the rule from bottom to top!

- E.g., you might have some line X (i) $\exists y(y > a)$, and then
- you apply $\forall E$ to (i) to obtain: X (i-1) $\forall x \exists y (y > x)$!

Universal Elimination: Side Condition

Assume we had no side condition:

$$\frac{\forall x \ A}{A_x^t} \forall E \qquad \text{in sequent notation:} \qquad \frac{X \vdash \forall x \ A}{X \vdash A_x^t} \forall E$$

Let's consider this sequent: $\forall x \ \exists y (y > x) \vdash \exists y (y > y)$

- Should that be valid? No! No number is larger than itself!
- But we can prove it! (If there's no side condition!)

So what's missing?

- The "instantiation of x" (the new variable name) must be free! (We don't want it to get captured by another quantifier!)
- This is different from what we demanded for substitutions.

26.48

Universal Introduction: Introduction

• For the introduction of the universal quantifier, we would like to have, conceptually, a rule like the following:

$$\frac{Fa \quad Fb \quad Fc \quad \dots}{\forall x \quad Fx} \forall I$$

But that's again infeasible, and potentially even impossible!

? (as above, a is a constant) How about:

That rule is wrong! Just because Aristotle is (was) a footballer, doesn't mean that everybody is!

But it might work for "typical objects"... (a variable)

iction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Universal Introduction: Typical Objects

- What's a typical object? (A free variable)
- Remember the "undergraduate school" when you have to proof some property of all triangles.

• Step 2: "some fancy proof"

- Step 3: Thus, ABC has property P. Thus P holds for all triangles!
- Why is that correct? Since we did not make any assumptions for ABC other than it being a triangle! E.g., we did not demand that it has a 90-degree angle or any other special case! We gave it a name (ABC), but that was also arbitrary!

Pascal Bercher

Pascal Bercher

29.48

ntroduction Predicate Logic Natural Deduction **Universal Quantifiers** Existential Quantifiers Sur

Universal Introduction: More on our Assumption and Side-Conditions

So we have: $\frac{X \vdash A}{X \vdash \forall x A_{v}^{X}} \forall I$ only if v does not occur in X!

So, can we use $\frac{Fv}{\forall x \ Fx} \forall I$ to prove $Faristotle \vdash \forall x \ Fx$?

Let's try! Does not work: Rule fails for two reasons!

Faristotle
$$\vdash \forall x \ Fx$$
 α_1 (1) Faristotle A
 α_1 (n) $\forall x \ Fx$

$$\overline{\frac{X \vdash A}{X \vdash \forall x A_{v}^{x}} \forall I}$$

Only if v does not occur in X!

Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Universal Introduction: The 1-step Rule

- So, we need an "object without any assumption" to generalize its property (formula) to the general case.
- But how to express this "no assumptions"?

•
$$\frac{Fv}{\forall x \ Fx} \forall I$$
 more general: $\frac{A}{\forall x \ A_v^x} \forall I$ with side condition:

provided the variable v does not occur in any assumption that A depends upon.

• Universal Introduction Rule: (in sequent notation)

$$\frac{X \vdash A}{X \vdash \forall x A_v^X} \forall I \quad \text{only if } v \text{ does not occur in } X!$$

Pascal Berche

30.48

roduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summa

Universal Introduction: More on our Assumption and Side-Conditions

So we have: $\frac{X \vdash A}{X \vdash \forall x A_x^x} \forall I$ only if v does not occur in X!

So, can we use $\frac{Fv}{\forall x \ Fx} \forall I$ to prove $Faristotle \vdash \forall x \ Fx$?

- Two reasons this "proof" (luckily) fails:
 - The side condition states that v = aristotle (which is gets substituted) does not occur in X, but X is $\alpha_1 = Faristotle$, so the side condition is violated.
 - Also, in our rule above v represents a variable. So it's not applicable here anyway. Recall: Just because Aristotle plays football, not everybody does!

More on Syntax: Meaning of a, b, c, ... in Proofs

Important:

- Note that the Logic Notes (and Yoshi as well!) refer to constants as "names".
- More importantly, note that we only use a, b, c, etc. as constants in the explanations for rules here in the lecture. For convenience, in all exercises, including those given in the lecture, these letters do not represent constants!
- Instead, in formal proofs, these letters (again: a, b, c, ...) will represent our "typical objects" – like the triangle ABC from before!
- These "typical objects" are (free, i.e., unbound) variables.
- In fact, you will never deal with constants in proofs!

 $X \vdash A$

 $\overline{X \vdash \forall x A_v^x} \forall I$

Only if v does

not occur in X!

32.48

33.48

Example Proofs: Example 1

$$\forall x \ Fx, \forall x \ Gx \vdash \forall x \ (Fx \land Gx)$$

- $lpha_{ extsf{1}}$
- $\forall x \ Fx$ (1)

Universal Quantifiers

- α_2
- $\forall x \ Gx$

1 ∀*E*

2 ∀*E*

3,4 ∧/

 $lpha_{1}$ α_2

 α_1, α_2

 α_1, α_2

- Fa Ga
- (5) Fa ∧ Ga
- - $\forall x (Fx \land Gx) \quad 5 \forall I$

Did we adhere all side conditions? Yes!

- $X \vdash A$ of the $\forall I$ rule corresponds to line 5, which is $\alpha_1, \alpha_2 \vdash Fa \land Ga$,
- variable v corresponds to a, and
- although a (of course!) occurs in $Fa \wedge Ga$, it is not in $X = \{\alpha_1, \alpha_2\} = \{\forall x \ Fx, \forall x \ Gx\}, \text{ so all good!}$

Universal Quantifiers

Example Proofs: Example 1

$$\forall x \ Fx, \forall x \ Gx \vdash \forall x \ (Fx \land Gx)$$

- $lpha_{ extsf{1}}$
- $\forall x \ Fx$

- α_2 $lpha_{1}$
- $\forall x \ Gx$ (3) Fa
- 1 ∀*E* 2 ∀*E*

- α_2 α_1, α_2
- (4) Ga (5) Fa ∧ Ga
- 3,4 ∧/

$$\alpha_1, \alpha_2$$
 (6) $\forall x (Fx \land Gx)$ 5 $\forall I$ α_1, α_2 (n-1) $Fa \land Ga$

$$\alpha_1, \alpha_2$$
 (n) $\forall x (Fx \land Gx)$ (n-1) $\forall I$

$$\frac{X \vdash A}{X \vdash \forall x \ A_v^X} \forall I$$

Only if v does not occur in X!

$$\frac{X \vdash \forall x \; A}{X \vdash A_x^t} \forall E$$

Pascal Bercher

Universal Quantifiers

33.48

Example Proofs: Example 2

$$\forall x (Fx \rightarrow \forall y Fy) \vdash \forall x (\neg Fx \rightarrow \forall y \neg Fy)$$

$$lpha_{ extsf{1}}$$

- (1) $\forall x (Fx \rightarrow \forall y Fy)$

- α_2
- $\neg Fa$

Why did we substitute y by b rather than by a?

- $X \vdash A$ corresponds to $\neg Fb$,
- The variable v in the rule (which is b in our case!) may not occur in X, which works for us since $X = \{\alpha_1, \alpha_2\} = \{\forall x (Fx \rightarrow \forall y Fy), \neg Fa\}$
- So choosing v = a would not have been possible, since a occurs in $\alpha_2 = \neg Fa!$

Only if v does not occur in X!

$$\alpha_1, \alpha_2$$
 (n-3) $\neg Fb$

$$\alpha_1, \alpha_2$$
 (n-2) $\forall y \neg Fy$

$$lpha_{1}$$

$$(n-1) \quad \neg Fa \rightarrow \forall y \ \neg Fy$$

$$(n-2)[\alpha_2] \rightarrow I$$

$$lpha_{ extsf{1}}$$

$$\forall x (\neg Fx \rightarrow \forall y \neg Fy) \quad (n-1) \ \forall I$$

Pascal Bercher

	Predicate Log		Universal Quantifiers	Existential Quantifiers Summary
Example	Proofs:	Example 2		
$\forall x \ (Fx o \forall y \ Fy) \vdash \forall x \ (\neg Fx o \forall y \ \neg Fy)$				
$lpha_{1}$	(1)	$\forall x (Fx \rightarrow \forall y Fy)$	Α	
$lpha_{ extsf{2}}$	(2)	$\neg Fa$	A $X, B \vdash$	$A \qquad Y, B \vdash \neg A \qquad RAA$
$lpha_{3}$	(3)	Fb	Α -	$X, Y \vdash \neg B$
$lpha_{ extsf{1}}$	(4)	$Fb o \forall y \; Fy$	1 ∀ <i>E</i>	.,
$lpha_{ extsf{1}}, lpha_{ extsf{3}}$	(5)	∀y Fy	3,4 <i>→E</i>	$X \vdash A$
$lpha_{ extsf{1}}, lpha_{ extsf{3}}$	(6)	Fa	5 ∀ <i>E</i>	$ \overline{X \vdash \forall x A_{v}^{x}} \forall I $
	(7)		2,6[$lpha_3$] RAA	X + VX My
	` '	$\forall y \ \neg Fy$	7 ∀/	Only if v does
$lpha_{1}$, ,	$\neg Fa \rightarrow \forall y \ \neg Fy$		not occur in X!
$lpha_{1}$	(10)	$\forall x \ (\neg Fx \to \forall y \ \neg Fy)$	9 ∀/	
				$\left \frac{X \vdash \forall x A}{\longrightarrow} \forall E \right $
	(n-3)		$x,y[\alpha_3]$ RAA	$X \vdash A_X^t$
		$\forall y \neg Fy$	(n-3) ∀ <i>I</i>	
· ·	` '	$\neg Fa \rightarrow \forall y \ \neg Fy$. /	
$lpha_{ extsf{1}}$	(n)	$\forall x (\neg Fx \to \forall y \neg Fy)$) (n-1) ∀ <i>I</i>	
Australian National University	Pascal Bero	cher		34.48

Existential Introduction: Introduction

- Recall that you can "imagine" the universal quantifier \forall like: $age(a) < 130 \land age(b) < 130 \land age(c) < 130 \land \dots$
- The existential quantifier \exists can similarly interpreted as: $age(a) > 100 \lor age(b) > 100 \lor age(c) > 100 \lor \dots$
- Thus, conceptually, we would expect something like the following rule: (a, b, ... are again constants)

$$\frac{\mathit{Fa} \vee \mathit{Fb} \vee \mathit{Fc} \vee \ldots}{\exists x \; \mathit{Fx}} \exists \mathit{I}$$

Existential Introduction: The 1-step Rule (part I)

• Existential Introduction Rule:

$$\frac{Fv}{\exists x \ Fx} \exists I$$
 more general: $\frac{A_x^t}{\exists x \ A} \exists I$ in sequent $\frac{X \vdash A_x^t}{X \vdash \exists x \ A} \exists I$

- This rule assumes a non-empty "universe" (the objects that we reason about, more later when we formally deal with the semantics), i.e., that there exists at least one "object" that the terms represent. This is one of several assumptions in *classical logic*, though there are other important properties as well.
- Just like $\forall E$, this rule also has a side condition! Let's see in an example which and why.

ntroduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summ

Existential Introduction: Side Condition

Assume we had no side condition:

$$\frac{A_x^t}{\exists x \ A} \exists I \qquad \text{in sequent notation:} \qquad \frac{X \vdash A_x^t}{X \vdash \exists x \ A} \exists I$$

Let's consider this sequent: $\forall y \ (y = y) \vdash \exists x \forall y \ (y = x)$

- Should that be valid? No! There is not just one number! :)
- But we can prove it! (If there's no side condition!)

$$\begin{array}{cccc} \alpha_1 & (1) & \forall y \ (y = y) & \mathsf{A} \\ \alpha_1 & (2) & \exists x \forall y \ (y = x) & 1 \ \exists I \end{array}$$

The problem?

So what's the problem?

- We were quantifying an already bound variable! (The right y.)
- We were missing: The x in A must be free (as y) in A_x^y .
- Not any issue at all as long as you follow our convention!

Pascal Berche

ential Quantifiers S

Existential Elimination: Introduction

- We want to eliminate the existential quantifier. So can we just use
 - the following rule? $\frac{\exists x \ Fx}{Fv} \exists E$? Recall: $\frac{\forall x \ Fx}{Fv} \forall E$!
- So, no! Because we don't know which object has that property!
 (You can try to "prove" some invalid sequent when having this (wrong) rule available!)

ntroduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summary

Existential Introduction: The 1-step Rule (part II)

So, in conclusion:

Existential Introduction Rule:

$$\frac{X \vdash A_x^t}{X \vdash \exists x \; A} \exists I \quad \text{only if } t \text{ is not bound in } A_x^t$$

As mentioned earlier (slide 23), you are not in risk of making that wrong as long as you adhere our convention: use *a*, *b*, *c*, for free variables!

Important note:

Recall that often you apply the rule from bottom to top!

- E.g., you might have some line X (i) $\exists y (Fa \rightarrow Fy)$, and then
- you apply $\exists I$ to (i) to obtain: X (i-1) $Fa \rightarrow Fa$!

Pascal Berche

39.48

Introduction Predicate Logic Natural Deduction Universal Quantifiers Existential Quantifiers Summi

Existential Elimination: Introduction, cont'd

• The idea behind the rule is the following:

$$\begin{array}{ccc}
 & [Fy] \\
 & \vdots \\
 & \exists x \ Fx & B \\
 & B & \exists E \text{ for a "typical" } y
\end{array}$$

- The idea is similar to disjunction elimination: In $A \vee B$, we don't know whether A or B is true, so we assume both and show that either way the derivation can be done.
- Here, we show it for "some instance" that does not pose further restrictions (and then discharge it since we know that such an "instance" exists due to the assumption $\exists x \ Fx$).

Existential Elimination: The 1-step Rule

Existential Elimination Rule:

$$\frac{X \vdash \exists x \ A_t^x \qquad Y, A \vdash B}{X, Y \vdash B} \exists E \qquad \begin{array}{l} \text{Provided } t \text{ does not occur} \\ \text{in } B \text{ or any formula in } Y. \end{array}$$

- Note what's written here: The assumption formula A in sequent 2 can be regarded an "instantiation" of the derivation in sequent 1 by substituting x by a term.
- We need the side condition so that our choice of the "instance" of x is still "general".
- Otherwise we might be able to derive simply because we chose a specific special case!
- Again, you can try to prove an invalid sequent, which you might be able to if you violate that side condition!

42.48

43.48

Examples: Example 1

$$\begin{array}{cccc}
\vdash \forall x \; \exists y \; (Fx \to Fy) \\
\alpha_1 & (1) & Fa & A \\
(2) & Fa \to Fa & 1[\alpha_1] \to I \\
(3) & \exists y \; (Fa \to Fy) & 2 \; \exists I \\
\hline
(4) & \forall x \; \exists y \; (Fx \to Fy) & 3 \; \forall I \\
(n-1) & \exists y \; (Fa \to Fy) \\
(n) & \forall x \; \exists y \; (Fx \to Fy) & (n-1) \; \forall I
\end{array}$$

$$\frac{X \vdash A}{X \vdash \forall x \ A_v^X} \forall I$$

Only if v does not occur in X!

$$\frac{X \vdash A_X^t}{X \vdash \exists x \; A} \exists I$$

Examples: Example 1

$$\vdash \forall x \; \exists y \; (Fx \rightarrow Fy)$$

(2) $Fa \rightarrow Fa$ $1[\alpha_1] \rightarrow I$

(3) $\exists y (Fa \rightarrow Fy)$ 2 ∃/

(n-1) $\exists y (Fa \rightarrow Fy)$

• Wait a minute! Didn't we say that A_{ν}^{t} replaces all occurrences of x in A by t?

So, going from line (2) $Fa \rightarrow Fa$

to line (3) $\exists y \ (Fa \rightarrow Fy)$ is wrong, right?

(n) $\forall x \exists y (Fx \rightarrow Fy)$ (n-1) $\forall I$

 $\frac{X \vdash A}{X \vdash \forall x \ A_v^x} \forall I$

Only if v does not occur in X!

 $X \vdash \exists x \ A_t^x \qquad Y, A \vdash B \\ \exists E$

Provided t does not occur in

B or any formula in Y.

• No! We did replace all x (here: y) by t (here: a)! (See illustration.)

Pascal Bercher

43.48

3 ∃/

2 ∧*E*

Examples: Example 2

$$\exists x \ (Fx \land Gx) \vdash \exists x \ Fx \land \exists x \ Gx$$

 $\exists x (Fx \land Gx)$

Fa ∧ Ga Α 2 ∧*E*

(3) Fa α_2 $\exists x \ Fx$ α_2

(5) Ga α_2

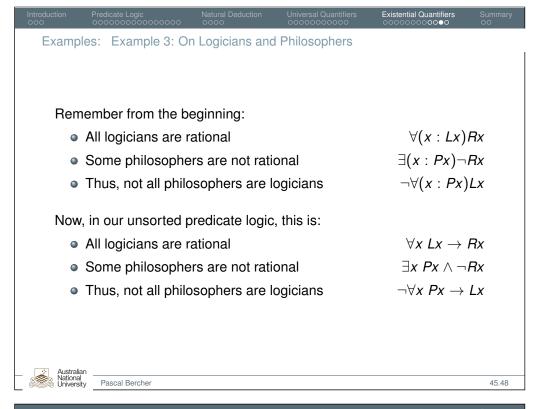
 $\exists x \ Gx$ α_2

5 ∃/ $\exists x \ Fx \land \exists x \ Gx$ 4,6 ∧/

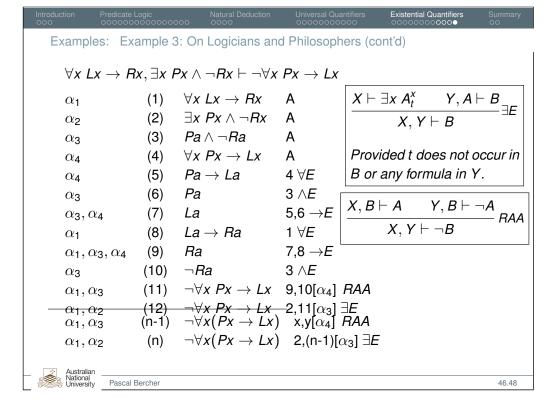
 $\exists x \ Fx \land \exists x \ Gx \ 1,7[\alpha_2] \exists E$

(n-1) $\exists x \ Fx \land \exists x \ Gx$

 $\exists x \ Fx \land \exists x \ Gx \ 1,(n-1)[\alpha_2] \ \exists E$



Summary Pascal Bercher 47.48



Content of this Lecture

- We introduced predicate logic:
 - with restricted quantifiers (we re-visit this later)
 - and with unrestricted quantifiers (default!)
- Predicate logic can reason about objects!
- Natural deduction for predicate logics, with additional rules for:
 - Introduction and Elimination rules for \forall and \exists
 - For the rest we keep using the rules from propositional logics!
- Many side conditions...
 - Substitutions: only rename free variables
 - $\forall E$ and $\exists I$: Just make sure to follow naming conventions :)
 - $\forall I$ and $\exists E$: They are more complicated, look them up!
- → The entire Logic Notes sections:
 - 4: Expressing Generality
 - except "Properties of relations"
 - and except "Functions"
 - (You should read them anyway, in particular "Functions"!)

Pascal Bercher