
Algorithms (COMP3600/6466)
Data Structures: Binary Search Trees

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Tuesday, 29.8.2023

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Orga

Pascal Bercher 1.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

About me!

(Dr.) Pascal (Bercher) (Co-Convenor)

https://comp.anu.edu.au/people/pascal-bercher/

Studies: Computer Science (with minor Cognitive Science)

PhD: Computer Science: Hierarchical Planning
Research:

• problem classes: Hierarchical Task Network (HTN) Planning
• research areas: Heuristic Search, Complexity Theory

Teaching:
• Convenor of Logic (2021, 2022)
• Convenor of Foundations of Computing (2022, 2024)
• Convenor of Theory of Computation (2023)
• Lecturer of Algorithms (2021), Co-convenor (now! 2023)

▶ I will teach weeks 6 to 8 and 12 (33%).
▶ Spotted errors in the slides? Ideas for improvement?

→ please, let me know! (Drop an email.)

Pascal Bercher 2.29

https://comp.anu.edu.au/people/pascal-bercher/

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

About my Slides

Dr. Hanna Kurniawati (past Convenor) 2019–2022

https://comp.anu.edu.au/people/hanna-kurniawati/

My slides are based significantly on material by Hanna
(I just converted slides to LATEX, added & expanded some
examples, and sometimes added explanations)

So the credit for good content and examples go to her,

and blame me for bad execution. :)
(But recall to tell me how to improve!)

Pascal Bercher 3.29

https://comp.anu.edu.au/people/hanna-kurniawati/

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Introduction

Pascal Bercher 4.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Motivation

What do we want to achieve? Low runtime (average and worst case)
for any of the typical data management operations:

insertion

deletion

access (i.e., more general search)

min/max (i.e., specialized search)

What does data mean? Anything, but represented by Integers! Why?

They serve as keys to reference the actual (satellite) data.

Keys for some data might be derived from identifiers like personal
names, date of birth, production year, etc.

One application of storing and processing data is AI planning and
AI search. The key of a search node might be the goal distance
(i.e., heuristic value), and its data the actual content (e.g., “state”).

Pascal Bercher 5.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Motivation

What do we want to achieve? Low runtime (average and worst case)
for any of the typical data management operations:

insertion

deletion

access (i.e., more general search)

min/max (i.e., specialized search)

What does data mean? Anything, but represented by Integers! Why?

They serve as keys to reference the actual (satellite) data.

Keys for some data might be derived from identifiers like personal
names, date of birth, production year, etc.

One application of storing and processing data is AI planning and
AI search. The key of a search node might be the goal distance
(i.e., heuristic value), and its data the actual content (e.g., “state”).

Pascal Bercher 5.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Abstract Data Structures

How to achieve low runtime? Via suitable abstract data structures.

Abstract data structures can be thought of as a mathematical
model for data representation.
An abstract data structure consists of:

• A container that holds a key as well as the data, so-called satellite
data (can be ignored for our purposes).

• A set of operations on the data (cf. previous slide). These
operations are defined based on their behavior (input/output
relation and their runtime) rather than by any exact
implementation.

Pascal Bercher 6.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Overview of Covered Data Structures

Data structures covered:

Binary Search Trees (today, week 6)

Heaps (also today, week 6)

AVL Trees (tomorrow, week 6)

Red/Black Trees (week 7)

Hash Tables (week 8)

Pascal Bercher 7.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Which operations should be supported by Binary Search Trees?
Search
→ Does the given key exist in the tree?

List all data
→ List all existing keys in a specific order.

Min, Max
→ What’s the minimum (resp. maximum) key in the tree?

Successor, Predecessor
→ What’s the smallest value greater than the given key in the tree?
→ What’s the highest value smaller than the given key in the tree?

Insert, Delete
→ Insert the given key into the tree, or remove it from it.

All these operations except “list all data” should run in O(h), where h is
the height of the search tree.

Pascal Bercher 8.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Basics

Pascal Bercher 9.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Binary Search Tree

A binary search tree is a tree T = (N,E) consisting of a finite set of
nodes N and edges E ⊆ N × N, such that each node has at most two
children, i.e., for all x ∈ N holds |{x ′ ∈ N | x ∈ N, (x , x ′) ∈ E}| ≤ 2.

Implementation and Notation:
Each node x ∈ N has four values:

• Its key x .key, (note: all keys are distinct!)
• parent x .p,
• left child x .left, and right child x .right

The root node is the only one without parent, x .p = NIL

With h we refer to the height of the tree, i.e., the length of the
longest path (number of edges). (Also referred to as depth.)

With n we refer to the number of nodes |N|.
For all x ∈ N holds:

• For all x ′ in the tree rooted in x .left holds x ′.key < x .key
• For all x ′ in the tree rooted in x .right holds x ′.key > x .key

Pascal Bercher 10.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Binary Search Tree

A binary search tree is a tree T = (N,E) consisting of a finite set of
nodes N and edges E ⊆ N × N, such that each node has at most two
children, i.e., for all x ∈ N holds |{x ′ ∈ N | x ∈ N, (x , x ′) ∈ E}| ≤ 2.

Implementation and Notation:
Each node x ∈ N has four values:

• Its key x .key, (note: all keys are distinct!)
• parent x .p,
• left child x .left, and right child x .right

The root node is the only one without parent, x .p = NIL

With h we refer to the height of the tree, i.e., the length of the
longest path (number of edges). (Also referred to as depth.)

With n we refer to the number of nodes |N|.
For all x ∈ N holds:

• For all x ′ in the tree rooted in x .left holds x ′.key < x .key
• For all x ′ in the tree rooted in x .right holds x ′.key > x .key

Pascal Bercher 10.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Binary Search Tree

A binary search tree is a tree T = (N,E) consisting of a finite set of
nodes N and edges E ⊆ N × N, such that each node has at most two
children, i.e., for all x ∈ N holds |{x ′ ∈ N | x ∈ N, (x , x ′) ∈ E}| ≤ 2.

Implementation and Notation:
Each node x ∈ N has four values:

• Its key x .key, (note: all keys are distinct!)
• parent x .p,
• left child x .left, and right child x .right

The root node is the only one without parent, x .p = NIL

With h we refer to the height of the tree, i.e., the length of the
longest path (number of edges). (Also referred to as depth.)

With n we refer to the number of nodes |N|.
For all x ∈ N holds:

• For all x ′ in the tree rooted in x .left holds x ′.key < x .key
• For all x ′ in the tree rooted in x .right holds x ′.key > x .key

Pascal Bercher 10.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Binary Search Tree, Example

Here you see:

This is a binary tree.

All keys are sorted with respect to their parent (=left to right!).

It has a height of 4.

Pascal Bercher 11.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

In-Order Tree Walk

Pascal Bercher 12.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Procedure

Binary search trees allow us to output all keys in sorted order in Θ(n)
via In-Order Tree Walk: (called with T.root)

Homework: What happens if we:

switch lines 2 & 3?
(pre-order tree walk)

switch lines 3 & 4?
(post-order tree walk)

Pascal Bercher 13.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Procedure

Binary search trees allow us to output all keys in sorted order in Θ(n)
via In-Order Tree Walk: (called with T.root)

Homework: What happens if we:

switch lines 2 & 3?
(pre-order tree walk)

switch lines 3 & 4?
(post-order tree walk)

Pascal Bercher 13.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Runtime Complexity

Let T (n) be the runtime of this algorithm. Want to show T (n) ∈ Θ(n).

T (n) ∈ Ω(n) since each node is visited at least once.

We show T (n) ∈ O(n) (via induction).

Can assume T (n) = T (k) + T (n − k − 1) + 1, where k is the number
of nodes in the root’s left subtree and T (1) = 1.

Induction hypothesis:
T (n) ≤ c · n with constant c ≥ 1.

Base case:
T (1) = 1 ≤ c · 1.

Induction step:
T (n + 1) = T (k) + T (n + 1 − k − 1) + 1 = T (k) + T (n − k) + 1
≤ (c · k) + (c · (n − k)) + 1 = c · n + 1 ≤ c · (n + 1).

Pascal Bercher 14.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Runtime Complexity

Let T (n) be the runtime of this algorithm. Want to show T (n) ∈ Θ(n).

T (n) ∈ Ω(n) since each node is visited at least once.

We show T (n) ∈ O(n) (via induction).

Can assume T (n) = T (k) + T (n − k − 1) + 1, where k is the number
of nodes in the root’s left subtree and T (1) = 1.

Induction hypothesis:

T (n) ≤ c · n with constant c ≥ 1.

Base case:
T (1) = 1 ≤ c · 1.

Induction step:
T (n + 1) = T (k) + T (n + 1 − k − 1) + 1 = T (k) + T (n − k) + 1
≤ (c · k) + (c · (n − k)) + 1 = c · n + 1 ≤ c · (n + 1).

Pascal Bercher 14.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Runtime Complexity

Let T (n) be the runtime of this algorithm. Want to show T (n) ∈ Θ(n).

T (n) ∈ Ω(n) since each node is visited at least once.

We show T (n) ∈ O(n) (via induction).

Can assume T (n) = T (k) + T (n − k − 1) + 1, where k is the number
of nodes in the root’s left subtree and T (1) = 1.

Induction hypothesis:
T (n) ≤ c · n with constant c ≥ 1.

Base case:
T (1) = 1 ≤ c · 1.

Induction step:
T (n + 1) = T (k) + T (n + 1 − k − 1) + 1 = T (k) + T (n − k) + 1
≤ (c · k) + (c · (n − k)) + 1 = c · n + 1 ≤ c · (n + 1).

Pascal Bercher 14.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Runtime Complexity

Let T (n) be the runtime of this algorithm. Want to show T (n) ∈ Θ(n).

T (n) ∈ Ω(n) since each node is visited at least once.

We show T (n) ∈ O(n) (via induction).

Can assume T (n) = T (k) + T (n − k − 1) + 1, where k is the number
of nodes in the root’s left subtree and T (1) = 1.

Induction hypothesis:
T (n) ≤ c · n with constant c ≥ 1.

Base case:
T (1) = 1 ≤ c · 1.

Induction step:
T (n + 1) = T (k) + T (n + 1 − k − 1) + 1 = T (k) + T (n − k) + 1
≤ (c · k) + (c · (n − k)) + 1 = c · n + 1 ≤ c · (n + 1).

Pascal Bercher 14.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Runtime Complexity

Let T (n) be the runtime of this algorithm. Want to show T (n) ∈ Θ(n).

T (n) ∈ Ω(n) since each node is visited at least once.

We show T (n) ∈ O(n) (via induction).

Can assume T (n) = T (k) + T (n − k − 1) + 1, where k is the number
of nodes in the root’s left subtree and T (1) = 1.

Induction hypothesis:
T (n) ≤ c · n with constant c ≥ 1.

Base case:
T (1) = 1 ≤ c · 1.

Induction step:
T (n + 1) = T (k) + T (n + 1 − k − 1) + 1 = T (k) + T (n − k) + 1
≤ (c · k) + (c · (n − k)) + 1 = c · n + 1 ≤ c · (n + 1).

Pascal Bercher 14.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Runtime Complexity

Let T (n) be the runtime of this algorithm. Want to show T (n) ∈ Θ(n).

T (n) ∈ Ω(n) since each node is visited at least once.

We show T (n) ∈ O(n) (via induction).

Can assume T (n) = T (k) + T (n − k − 1) + 1, where k is the number
of nodes in the root’s left subtree and T (1) = 1.

Induction hypothesis:
T (n) ≤ c · n with constant c ≥ 1.

Base case:
T (1) = 1 ≤ c · 1. (Alt.: T (1) = 1 ∈ O(1) ∈ O(n))

Induction step: (Alt.: T (n + 1) = O(k) + O(n − k) + O(1) ∈ O(n))
T (n + 1) = T (k) + T (n + 1 − k − 1) + 1 = T (k) + T (n − k) + 1
≤ (c · k) + (c · (n − k)) + 1 = c · n + 1 ≤ c · (n + 1).

Pascal Bercher 14.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Access

Pascal Bercher 15.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Iterative-Tree Search

To search for a key whose value is k we can use Iterative-Tree Search:

(Start with x being the root node T.root.)

(Might return NIL.)

Pascal Bercher 16.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Min & Max

Pascal Bercher 17.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Tree-Minimum and Tree-Maximum

To find the minimum, respective maximum:

Again: Call with T.root

Pascal Bercher 18.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Predecessor and Successor

Pascal Bercher 19.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Predecessor

To find the predecessor of k , find node x with x .key = k . Then,

predecessor of k is the maximum in the subtree rooting in x .left.
→ For example, predecessor of 15 is 13.

if that subtree is empty, k ’s predecessor is the lowest ancestor of
x whose right child is also an ancestor of x .
→ For example, predecessor of 7 is

6

and
→ predecessor of 17 is

15

.

Pascal Bercher 20.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Predecessor

To find the predecessor of k , find node x with x .key = k . Then,

predecessor of k is the maximum in the subtree rooting in x .left.
→ For example, predecessor of 15 is 13.

if that subtree is empty, k ’s predecessor is the lowest ancestor of
x whose right child is also an ancestor of x .
→ For example, predecessor of 7 is

6

and
→ predecessor of 17 is

15

.

Pascal Bercher 20.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Predecessor

To find the predecessor of k , find node x with x .key = k . Then,

predecessor of k is the maximum in the subtree rooting in x .left.
→ For example, predecessor of 15 is 13.

if that subtree is empty, k ’s predecessor is the lowest ancestor of
x whose right child is also an ancestor of x .
→ For example, predecessor of 7 is

6

and
→ predecessor of 17 is

15

.

Pascal Bercher 20.29

Each node is
an ancestor
of itself.

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Predecessor

To find the predecessor of k , find node x with x .key = k . Then,

predecessor of k is the maximum in the subtree rooting in x .left.
→ For example, predecessor of 15 is 13.

if that subtree is empty, k ’s predecessor is the lowest ancestor of
x whose right child is also an ancestor of x .
→ For example, predecessor of 7 is 6 and
→ predecessor of 17 is 15.

Pascal Bercher 20.29

Each node is
an ancestor
of itself.

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Successor

To find the successor of k , find node x with x .key = k . Then,

successor of k is the minimum in the subtree rooting in x .right.
→ For example, successor of 15 is 17.

if that subtree is empty, k ’s successor is the lowest ancestor of x
whose left child is also an ancestor of x .
→ For example, successor of 17 is

18

and
→ For example, successor of 13 is

15

.

Pascal Bercher 21.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Successor

To find the successor of k , find node x with x .key = k . Then,

successor of k is the minimum in the subtree rooting in x .right.
→ For example, successor of 15 is 17.

if that subtree is empty, k ’s successor is the lowest ancestor of x
whose left child is also an ancestor of x .
→ For example, successor of 17 is

18

and
→ For example, successor of 13 is

15

.

Pascal Bercher 21.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Successor

To find the successor of k , find node x with x .key = k . Then,

successor of k is the minimum in the subtree rooting in x .right.
→ For example, successor of 15 is 17.

if that subtree is empty, k ’s successor is the lowest ancestor of x
whose left child is also an ancestor of x .
→ For example, successor of 17 is

18

and
→ For example, successor of 13 is

15

.

Pascal Bercher 21.29

Each node is
an ancestor
of itself.

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Successor

To find the successor of k , find node x with x .key = k . Then,

successor of k is the minimum in the subtree rooting in x .right.
→ For example, successor of 15 is 17.

if that subtree is empty, k ’s successor is the lowest ancestor of x
whose left child is also an ancestor of x .
→ For example, successor of 17 is 18 and
→ For example, successor of 13 is 15.

Pascal Bercher 21.29

Each node is
an ancestor
of itself.

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Insertion and Deletion

Pascal Bercher 22.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Tree-Insert

New values always get inserted as leaves.

Suppose we want to insert a key k using a node called z. Thus,
z.key = k , z.left = NIL, z.right = NIL.

How to insert?

Traverse the tree to find the
correct (leaf!) position for k .

Add z to the tree.

Pascal Bercher 23.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Tree-Insert, cont’d

Pascal Bercher 24.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Deletion

To delete node z with key k , we have three cases:

1 If z has no children: Remove z and modify its parent to replace z
with NIL.

Pascal Bercher 25.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Deletion

To delete node z with key k , we have three cases:

2 If z has one child: Elevate the child to take z ’s position in the tree
by modifying its parent to replace z with z ’s child.

Pascal Bercher 25.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Deletion

To delete node z with key k , we have three cases:
3 If z has two children: Consider its successor y (y must be in z ’s

right sub tree and it does not have a left child).
• If y is z ’s right child, replace z with y . (z ’s left child becomes y ’s

left child, and y replaced z ’s position.)

Pascal Bercher 25.29

Example:

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Deletion

To delete node z with key k , we have three cases:
3 If z has two children: Consider its successor y (y must be in z ’s

right sub tree and it does not have a left child).
• If y is not z ’s right child, first replace y by its right child an then

replace z with y .

Pascal Bercher 25.29

Example:

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Deletion

To delete node z with key k , we have three cases:

1 If z has no children: Remove z and modify its parent to replace z
with NIL.

2 If z has one child: Elevate the child to take z ’s position in the tree
by modifying its parent to replace z with z ’s child.

3 If z has two children: Consider its successor y (y must be in z ’s
right sub tree and it does not have a left child).

• If y is z ’s right child, replace z with y . (z ’s left child becomes y ’s
left child, and y replaced z ’s position.)

• If y is not z ’s right child, first replace y by its right child an then
replace z with y .

→ The requirement to find a successor causes deletion to take O(h)
rather than constant time.

Pascal Bercher 25.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Properties

Are insertion resp. deletion commutative?

I.e., do these operations always lead to the same result, no matter of
the order? For example,

does inserting “a, then b” always lead the same result

as inserting “b, then a”?

(Same for deletion.)

Pascal Bercher 26.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Properties, cont’d

So, no! Not commutative. Insertion: homework!
(Also make sure you can perform above’s deletions yourself!)

Pascal Bercher 27.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Properties, cont’d

So, no! Not commutative. Insertion: homework!
(Also make sure you can perform above’s deletions yourself!)

Pascal Bercher 27.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Summary

Pascal Bercher 28.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Summary

Today we covered Binary Search Trees.

Operations considered:

Inorder-Tree-Walk (plus its runtime analysis)

Iterative-Tree-Search

Tree-Minimum and Tree-Maximum

Tree-Insert

Deletion (only with textual description, no pseudo code)

Pascal Bercher 29.29

	Organizational Matters
	Introduction
	Basics
	In-Order Tree Walk
	Access
	Min & Max
	Predecessor and Successor
	Insertion and Deletion
	Summary

