Algorithms (COMP3600/6466) Data Structures: Binary Search Trees

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Tuesday, 29.8.2023

About me!

(Dr.) Pascal (Bercher) (Co-Convenor)

https://comp.anu.edu.au/people/pascal-bercher/

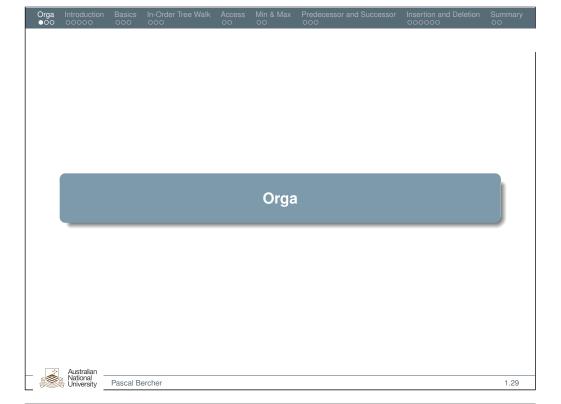
- Studies: Computer Science (with minor Cognitive Science)
- PhD: Computer Science: Hierarchical Planning
- Research:
 - problem classes: Hierarchical Task Network (HTN) Planning
 - research areas: Heuristic Search, Complexity Theory
- Teaching:

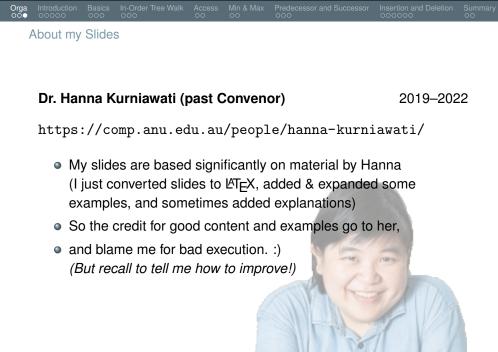
Pascal Bercher

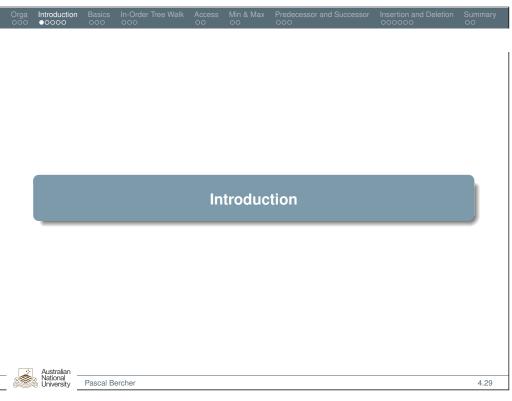
- Convenor of Logic (2021, 2022)
- Convenor of Foundations of Computing (2022, 2024)
- Convenor of Theory of Computation (2023)
- Lecturer of Algorithms (2021), Co-convenor (now! 2023)
 - I will teach weeks 6 to 8 and 12 (33%).
 - Spotted errors in the slides? Ideas for improvement?

2.29

→ please, let me know! (Drop an email.)







Abstract Data Structures

How to achieve low runtime? Via suitable abstract data structures.

- Abstract data structures can be thought of as a mathematical model for data representation.
- An abstract data structure consists of:
 - A container that holds a key as well as the data, so-called satellite data (can be ignored for our purposes).
 - A set of operations on the data (cf. previous slide). These operations are defined based on their behavior (input/output relation and their runtime) rather than by any exact implementation.

Motivation

What do we want to achieve? Low runtime (average and worst case) for any of the typical data management operations:

- insertion
- deletion
- access (i.e., more general search)
- min/max (i.e., specialized search)

What does data mean? Anything, but represented by Integers! Why?

- They serve as keys to reference the actual (satellite) data.
- Keys for some data might be derived from identifiers like personal names, date of birth, production year, etc.
- One application of storing and processing data is Al planning and Al search. The key of a search node might be the goal distance (i.e., heuristic value), and its data the actual content (e.g., "state").

5.29

Overview of Covered Data Structures

Data structures covered:

- Binary Search Trees (today, week 6)
- Heaps (also today, week 6)
- AVL Trees (tomorrow, week 6)
- Red/Black Trees (week 7)
- Hash Tables (week 8)

 Orga
 Introduction ooo 0
 Basics ooo
 In-Order Tree Walk oo 0
 Access Min & Max oo 0
 Predecessor and Successor Insertion and Deletion oo 0
 Summary oo 0

Which operations should be supported by *Binary Search Trees*?

- Search
 - → Does the given key exist in the tree?
- List all data
 - → List all existing keys in a specific order.
- Min, Max
 - → What's the minimum (resp. maximum) key in the tree?
- Successor, Predecessor
 - → What's the smallest value greater than the given key in the tree?
 - \rightarrow What's the highest value smaller than the given key in the tree?
- Insert, Delete
 - → Insert the given key into the tree, or remove it from it.

All these operations except "list all data" should run in O(h), where h is the height of the search tree.

Pascal Bercher

8.29

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

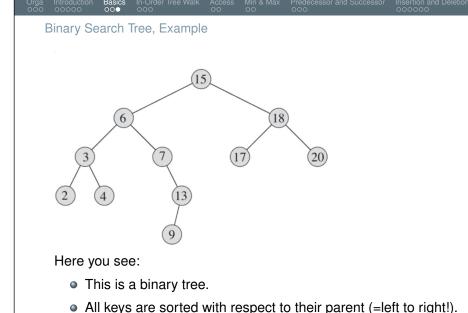
Binary Search Tree

A binary search tree is a tree $\mathcal{T}=(N,E)$ consisting of a finite set of nodes N and edges $E\subseteq N\times N$, such that each node has at most two children, i.e., for all $x\in N$ holds $|\{x'\in N\mid x\in N, (x,x')\in E\}|\leq 2$.

Implementation and Notation:

- Each node $x \in N$ has four values:
 - Its key x.key, (note: all keys are distinct!)
 - parent x.p,
 - left child x.left, and right child x.right
- The root node is the only one without parent, x.p = NIL
- With *h* we refer to the *height* of the tree, i.e., the length of the longest path (number of edges). (Also referred to as depth.)
- With n we refer to the number of nodes |N|.
- For all $x \in N$ holds:
 - For all x' in the tree rooted in x.left holds x'.key < x.key
 - For all x' in the tree rooted in x.right holds x'.key > x.key

Orga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary Occord Occident Summary Occident Summary



It has a height of 4.

Runtime Complexity

Let T(n) be the runtime of this algorithm. Want to show $T(n) \in \Theta(n)$.

- $T(n) \in \Omega(n)$ since each node is visited at least once.
- We show $T(n) \in O(n)$ (via induction).

Can assume T(n) = T(k) + T(n-k-1) + 1, where k is the number of nodes in the root's left subtree and T(1) = 1.

Induction hypothesis:

 $T(n) \le c \cdot n$ with constant $c \ge 1$.

Base case:

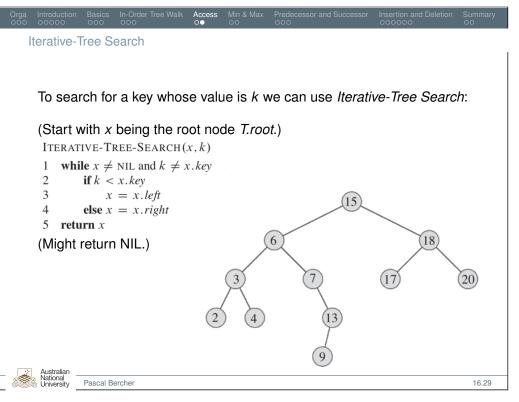
$$T(1) = 1 \le c \cdot 1.$$
 (Alt.: $T(1) = 1 \in O(1) \in O(n)$)

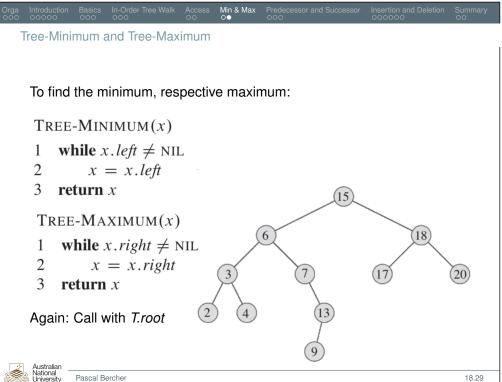
Induction step: (Alt.:
$$T(n+1) = O(k) + O(n-k) + O(1) \in O(n)$$
) $T(n+1) = T(k) + T(n+1-k-1) + 1 = T(k) + T(n-k) + 1 \le (c \cdot k) + (c \cdot (n-k)) + 1 = c \cdot n + 1 \le c \cdot (n+1)$.

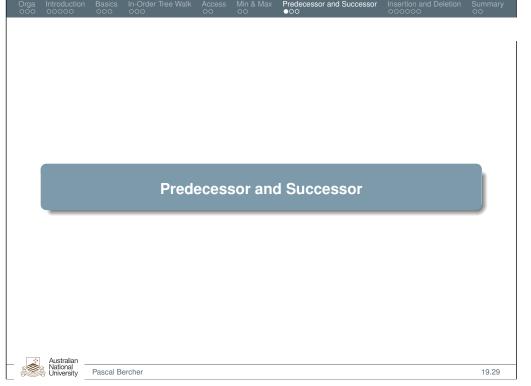
1 if $x \neq NIL$ INORDER-TREE-WALK (x.left)print x. key (15) INORDER-TREE-WALK (x.right)Homework: What happens if we: switch lines 2 & 3? (pre-order tree walk) switch lines 3 & 4? (post-order tree walk) Pascal Bercher 13.29 Access

Binary search trees allow us to output all keys in sorted order in $\Theta(n)$ via *In-Order Tree Walk*: (called with *T.root*)

INORDER-TREE-WALK (x)







Predecessor

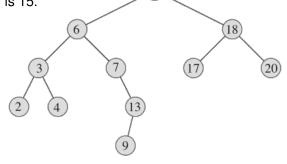
To find the predecessor of k, find node x with x.key = k. Then,

- predecessor of *k* is the maximum in the subtree rooting in *x*.*left*.
 - \rightarrow For example, predecessor of 15 is 13.
- if that subtree is empty, k's predecessor is the lowest ancestor of x whose right child is also an ancestor of x.

 \rightarrow For example, predecessor of 7 is 6 and

 \rightarrow predecessor of 17 is 15.

Each node is an ancestor of itself.



20.29

Insertion and Deletion

Successor

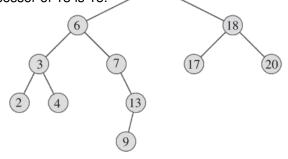
To find the successor of k, find node x with x.key = k. Then,

- successor of *k* is the minimum in the subtree rooting in *x.right*.
 - \rightarrow For example, successor of 15 is 17.
- if that subtree is empty, k's successor is the lowest ancestor of x whose left child is also an ancestor of x.

 \rightarrow For example, successor of 17 is 18 and

 \rightarrow For example, successor of 13 is 15.

Each node is an ancestor of itself.



Pascal Bercher

21.29

Tree-Insert

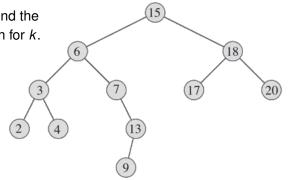
New values always get inserted as leaves.

Suppose we want to insert a key k using a node called z. Thus, z.key = k, z.left = NIL, z.right = NIL.

How to insert?

Traverse the tree to find the correct (leaf!) position for k.

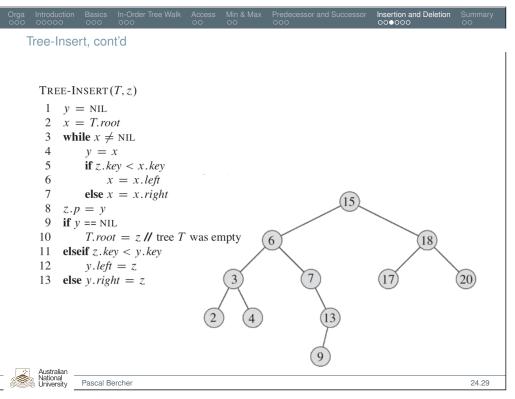
Add z to the tree.



22.29

Pascal Bercher

23.29

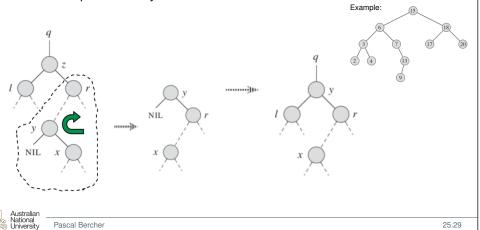


rga Introduction Basics In-Order Tree Walk Access Min & Max Predecessor and Successor Insertion and Deletion Summary

Deletion

To delete node z with key k, we have three cases:

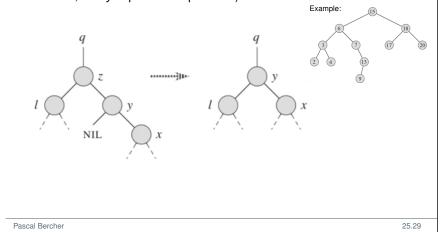
- If z has two children: Consider its successor y (y must be in z's right sub tree and it does not have a left child).
 - If y is not z's right child, first replace y by its right child an then replace z with y.



Deletion

To delete node z with key k, we have three cases:

- If z has two children: Consider its successor y (y must be in z's right sub tree and it does not have a left child).
 - If y is z's right child, replace z with y. (z's left child becomes y's left child, and y replaced z's position.)

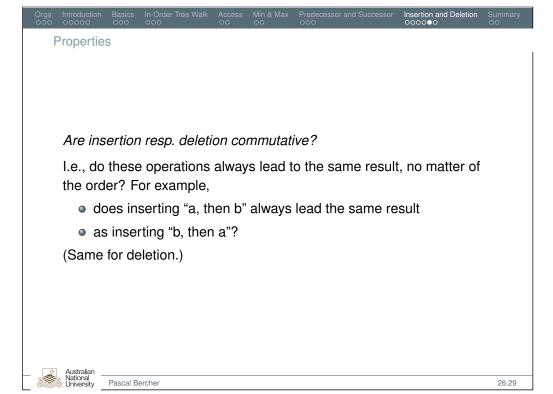


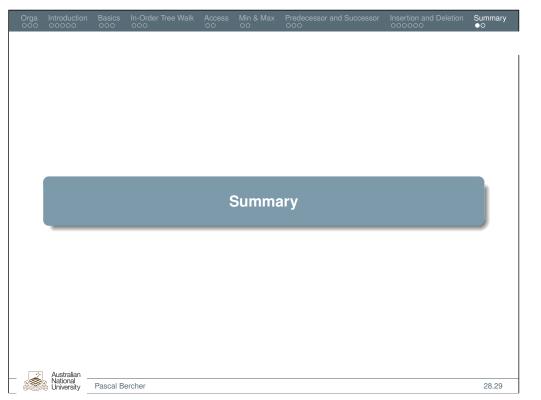
Deletion

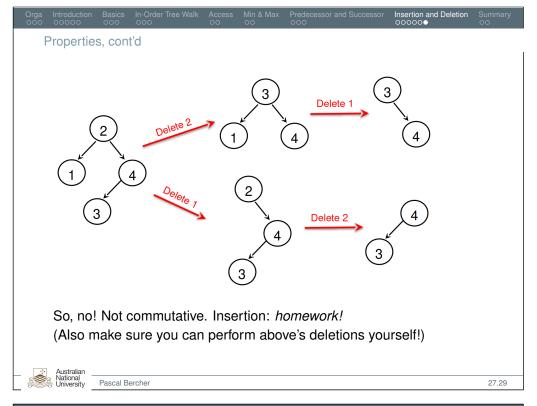
To delete node z with key k, we have three cases:

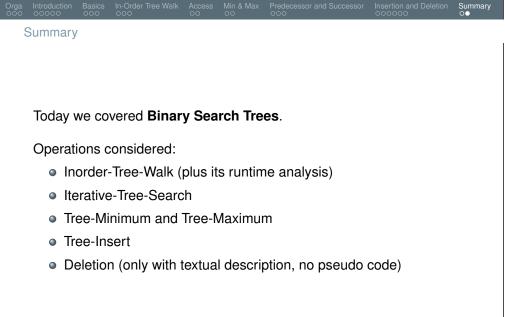
- If z has no children: Remove z and modify its parent to replace z with NIL.
- If z has one child: Elevate the child to take z's position in the tree by modifying its parent to replace z with z's child.
- If z has two children: Consider its successor y (y must be in z's right sub tree and it does not have a left child).
 - If y is z's right child, replace z with y. (z's left child becomes y's left child, and y replaced z's position.)
 - If y is not z's right child, first replace y by its right child an then replace z with y.
 - \rightarrow The requirement to find a successor causes deletion to take O(h) rather than constant time.

Pascal Bercher 25.29









29.29