
Algorithms (COMP3600/6466)
Data Structures: Heaps

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Tuesday, 29.8.2023

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Introduction

Pascal Bercher 1.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Motivation

Recap that we want to do (at least) the following operations efficiently:

access, i.e., search

min/max

insertion/deletion

Which runtime did we have for binary search trees?

O(h), where h is the tree’s height.

We now try to do better.

Pascal Bercher 2.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Motivation

Recap that we want to do (at least) the following operations efficiently:

access, i.e., search

min/max

insertion/deletion

Which runtime did we have for binary search trees?
O(h), where h is the tree’s height.

We now try to do better.

Pascal Bercher 2.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Overview

Existing operations for heaps:

Heapify to ensure/establish heap properties

Insertion

ExtractMax (i.e., find and remove maximum)

All of these operations run in O(log(n)) (instead of O(h)).

Pascal Bercher 3.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Basics

Pascal Bercher 4.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Heap

A heap is a binary tree that satisfies the heap property.
I.e., it holds:

A heap is a:
• complete binary tree, i.e., a perfect binary tree where missing

nodes might only be right-most leaves in the last level.
• Def.: perfect binary tree: all interior nodes have two children, and

and all leaves are at the same level.

Same data management as for the binary search tree:
• Each node contains a key.
• Each node may have satellite data.

Each parent node has a key greater than the keys of its children.
This is a Max-heap. Min-heaps can be defined analogously. (We
only consider Max-heaps.)

Pascal Bercher 5.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Heap

A heap is a binary tree that satisfies the heap property.
I.e., it holds:

A heap is a:
• complete binary tree, i.e., a perfect binary tree where missing

nodes might only be right-most leaves in the last level.
• Def.: perfect binary tree: all interior nodes have two children, and

and all leaves are at the same level.

Same data management as for the binary search tree:
• Each node contains a key.
• Each node may have satellite data.

Each parent node has a key greater than the keys of its children.
This is a Max-heap. Min-heaps can be defined analogously. (We
only consider Max-heaps.)

Pascal Bercher 5.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Examples

Is the following graph a heap?

Pascal Bercher 6.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Examples

Is the following graph a heap?

→ No, e.g., 15 and 18 are wrongly ordered (for a max heap).
And it’s not complete.

Pascal Bercher 6.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Examples

Is the following graph a heap?

Pascal Bercher 6.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Examples

Is the following graph a heap?

→ Yes (a Max-heap)

Pascal Bercher 6.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Efficient Implementation of Heaps

They can be stored as arrays:

(Because it’s complete!)

Pascal Bercher 7.30

PARENT(i)= ⌊i/2⌋
LEFT(i) = 2i
RIGHT(i) = 2i + 1
where i is the array position.

E.g.,
PARENT(3)= ⌊3/2⌋ = 1
LEFT(3) = 2 · 3 = 6
RIGHT(3) = 2 · 3 + 1 = 7

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Heapify

Pascal Bercher 8.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Assumptions & Terminology

The Heapify algorithm (one call!) will be used (among others) to:

Create a heap from an unsorted array, runs in O(n)

sort an array runs in O(n · log(n))

But the heapify algorithm itself is a single call, running in O(log(n)).
It assumes:

We have a node at index i and,

the heap property holds for both LEFT(i) and RIGHT(i),

but A[i] might be smaller than its children.

Pascal Bercher 9.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Assumptions & Terminology

The Heapify algorithm (one call!) will be used (among others) to:

Create a heap from an unsorted array, runs in O(n)

sort an array runs in O(n · log(n))

But the heapify algorithm itself is a single call, running in O(log(n)).
It assumes:

We have a node at index i and,

the heap property holds for both LEFT(i) and RIGHT(i),

but A[i] might be smaller than its children.

Pascal Bercher 9.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Example

To heapify a node (that’s in the tree but violating the heap property)
means to traverse the tree downwards (from it) re-ordering the
respective branch by switching places with the maximum.

Pascal Bercher 10.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Algorithm

Note that this algorithm calls itself again on one of i ’s children.

Pascal Bercher 11.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime

The runtime is (rather obviously) in O(log(n)), why?

Once heapify was called for a node x (taking constant time), it is
called for only one of its children.

How often can we invoke it again?
→ as often as there are children!

Since the height of a complete binary tree with n nodes is log(n) we
get runtime of O(log(n)).

Pascal Bercher 12.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime

The runtime is (rather obviously) in O(log(n)), why?

Once heapify was called for a node x (taking constant time), it is
called for only one of its children.

How often can we invoke it again?
→ as often as there are children!

Since the height of a complete binary tree with n nodes is log(n) we
get runtime of O(log(n)).

Pascal Bercher 12.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof)

We also obtain O(log(n)) by solving the following equation:

T (n) ≤ T (
2
3

n) + c,

where T is the actual runtime of the problem (and n the number of
nodes and c a constant).

That the equation only has a solution for T (n) ∈ O(log(n)) follows
from the Master theorem (proved earlier by Ahad).

We thus only show why the equation itself holds.

Pascal Bercher 13.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i =

1 + 2h+1 − 1 + 2h − 1 =

2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i =

1 + 2h+1 − 1 + 2h − 1 =

2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 =

2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 =

2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 = 2 · n + 1
3

− 1 =

2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 = 2 · n + 1
3

− 1 = 2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 = 2 · n + 1
3

− 1 = 2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3

≤ 2
3

n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime (alternative proof, cont’d: why does T (n) ≤ T (2
3 n) + c hold?

We know that a call to i will perform constant (c) effort and then
invoke the algorithm again for one of its children.

So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

The left subtree is one level deeper than the right.

n = 1 +
h∑

i=0

2i +
h−1∑
i=0

2i = 1 + 2h+1 − 1 + 2h − 1 = 2h(2 + 1)− 1

Now let’s bring 2h to one side: 2h = n+1
3

Now we can estimate the nodes in the left subtree: 2h+1 − 1 =

2 · 2h − 1 = 2 · n + 1
3

− 1 = 2 · (n
3
+

1
3
)− 1 =

2
3

n − 1
3
≤ 2

3
n

Pascal Bercher 14.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Insertion & Increase Key

Pascal Bercher 15.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Example

Assume a given heap. We want to insert a key and establish the
heap property again.

Intuition: Insert it at the “next free” position and move it to an
adequate position afterwards.

Name any number to insert!

Pascal Bercher 16.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Algorithm

Pascal Bercher 17.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime

Runtime of this code:

In the worst case, lines 4–6 of are called until the root is reached.

Therefore, the time complexity is O(h) = O(log(n)).

Pascal Bercher 18.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Build Heap

Pascal Bercher 19.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Build Heap – not

We could build a heap of size n by inserting n times.

However, that would lead to a runtime of O(n · log(n)).

We can do better!

Pascal Bercher 20.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Algorithm & Example

Example:

Pascal Bercher 21.30

Why do we start at the middle of the
array and walk to the left?

Because Heapify assumes that LEFT(i)
and RIGHT(i) satisfies heap properties!
So we must work bottom-up!

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime

Heapify (runtime O(log(n))) is called n
2 times, so it still appears

as O(n · log(n)).

But we claimed we could to better, O(n)!
What?! Were we wrong??

No! Not each call has runtime O(log(n))!

Our analysis actually showed O(log(hi)) for the height hi of the
“start node”. But the height changes! And there are much more
nodes on lower than on higher levels!

As an intuition, recall that in a perfect binary tree, roughly 50% of
all nodes are in the last layer, so half of our calls take constant
time!

Pascal Bercher 22.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime

Heapify (runtime O(log(n))) is called n
2 times, so it still appears

as O(n · log(n)).

But we claimed we could to better, O(n)!
What?! Were we wrong??

No! Not each call has runtime O(log(n))!

Our analysis actually showed O(log(hi)) for the height hi of the
“start node”. But the height changes! And there are much more
nodes on lower than on higher levels!

As an intuition, recall that in a perfect binary tree, roughly 50% of
all nodes are in the last layer, so half of our calls take constant
time!

Pascal Bercher 22.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h)

≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉c · h = c ·

⌊log(n)⌋∑
h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h ≤ c · n ·

⌊log(n)⌋∑
h=0

h
2h ≤ c · n ·

∞∑
h=0

h
2h ≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Number of nodes at h = 0 is
⌈ 7

20+1 ⌉ = ⌈7
2⌉ = ⌈3.5⌉ = 4

at the bottom, then ⌈ 7
21+1 ⌉ = 2

in the middle for h = 1, etc.

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h) ≤

⌊log(n)⌋∑
h=0

⌈ n
2h+1 ⌉c · h

= c ·
⌊log(n)⌋∑

h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h ≤ c · n ·

⌊log(n)⌋∑
h=0

h
2h ≤ c · n ·

∞∑
h=0

h
2h ≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h) ≤

⌊log(n)⌋∑
h=0

⌈ n
2h+1 ⌉c · h = c ·

⌊log(n)⌋∑
h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h ≤ c · n ·

⌊log(n)⌋∑
h=0

h
2h ≤ c · n ·

∞∑
h=0

h
2h ≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h) ≤

⌊log(n)⌋∑
h=0

⌈ n
2h+1 ⌉c · h = c ·

⌊log(n)⌋∑
h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h

≤ c · n ·
⌊log(n)⌋∑

h=0

h
2h ≤ c · n ·

∞∑
h=0

h
2h ≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h) ≤

⌊log(n)⌋∑
h=0

⌈ n
2h+1 ⌉c · h = c ·

⌊log(n)⌋∑
h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h ≤ c · n ·

⌊log(n)⌋∑
h=0

h
2h

≤ c · n ·
∞∑

h=0

h
2h ≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h) ≤

⌊log(n)⌋∑
h=0

⌈ n
2h+1 ⌉c · h = c ·

⌊log(n)⌋∑
h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h ≤ c · n ·

⌊log(n)⌋∑
h=0

h
2h ≤ c · n ·

∞∑
h=0

h
2h

≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Runtime, cont’d

Let T (n) be the actual runtime for a tree with n nodes.

T (n) ≤
⌊log(n)⌋∑

h=0

⌈ n
2h+1 ⌉O(h) ≤

⌊log(n)⌋∑
h=0

⌈ n
2h+1 ⌉c · h = c ·

⌊log(n)⌋∑
h=0

⌈ n
2 · 2h ⌉h

≤ c ·
⌊log(n)⌋∑

h=0

n
2h h ≤ c · n ·

⌊log(n)⌋∑
h=0

h
2h ≤ c · n ·

∞∑
h=0

h
2h ≤ c · n · 2

Thus we get T (n) ∈ O(n).

⌈ n
2h+1 ⌉ refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h = 0
is the leafs, not the root!

Pascal Bercher 23.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Extract Max

Pascal Bercher 24.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Algorithm, Example, and Runtime

The algorithm only needs to traverse a path of the tree once. Hence,
the complexity is O(log(n))

Pascal Bercher 25.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Applications

Pascal Bercher 26.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Heap Sort

To sort an array, create a heap, then extract all max values one by
one.

Complexity: O(n · log(n))

In practice, QuickSort runs faster than Heap Sort.

But the worst-case of heap sort is better!

Pascal Bercher 27.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Priority Queue

A priority queue is a data structure that maintains a set S, where each
element is associated with a key. It features the following operations:

Insert(S, x): Inserts element x into the set S

Maximum(S): Returns an element of S with the largest key

ExtractMax(S): Removes and returns an element of S with the
largest key

IncreaseKey (S, x , k): Increase the key of x to k

Common application: Search, e.g., in Automated Planning.
Here we sort by minimum, e.g., for minimal f (n) = g(n) + h(n) in A∗.

Pascal Bercher 28.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Pascal Bercher 29.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Today we covered Heaps.

Operations considered:

Heapify O(log(n))

Insertion O(log(n))

Increase-Key O(log(n))

Extract-Max O(log(n))

(Get-Max in max-heaps, Get-Min in min-heaps) O(1)

What about Search? → takes O(n)!

What about Deletion? Search, replace by right-most lowest leaf,
then heapify! → takes O(n)

Applications mentioned:

Sorting arrays O(n · log(n))

Priority Queues

Pascal Bercher 30.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Today we covered Heaps.

Operations considered:

Heapify O(log(n))

Insertion O(log(n))

Increase-Key O(log(n))

Extract-Max O(log(n))

(Get-Max in max-heaps, Get-Min in min-heaps) O(1)

What about Search?

→ takes O(n)!

What about Deletion? Search, replace by right-most lowest leaf,
then heapify! → takes O(n)

Applications mentioned:

Sorting arrays O(n · log(n))

Priority Queues

Pascal Bercher 30.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Today we covered Heaps.

Operations considered:

Heapify O(log(n))

Insertion O(log(n))

Increase-Key O(log(n))

Extract-Max O(log(n))

(Get-Max in max-heaps, Get-Min in min-heaps) O(1)

What about Search? → takes O(n)!

What about Deletion? Search, replace by right-most lowest leaf,
then heapify! → takes O(n)

Applications mentioned:

Sorting arrays O(n · log(n))

Priority Queues

Pascal Bercher 30.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Today we covered Heaps.

Operations considered:

Heapify O(log(n))

Insertion O(log(n))

Increase-Key O(log(n))

Extract-Max O(log(n))

(Get-Max in max-heaps, Get-Min in min-heaps) O(1)

What about Search? → takes O(n)!

What about Deletion?

Search, replace by right-most lowest leaf,
then heapify! → takes O(n)

Applications mentioned:

Sorting arrays O(n · log(n))

Priority Queues

Pascal Bercher 30.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Today we covered Heaps.

Operations considered:

Heapify O(log(n))

Insertion O(log(n))

Increase-Key O(log(n))

Extract-Max O(log(n))

(Get-Max in max-heaps, Get-Min in min-heaps) O(1)

What about Search? → takes O(n)!

What about Deletion? Search, replace by right-most lowest leaf,
then heapify! → takes O(n)

Applications mentioned:

Sorting arrays O(n · log(n))

Priority Queues

Pascal Bercher 30.30

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

Summary

Today we covered Heaps.

Operations considered:

Heapify O(log(n))

Insertion O(log(n))

Increase-Key O(log(n))

Extract-Max O(log(n))

(Get-Max in max-heaps, Get-Min in min-heaps) O(1)

What about Search? → takes O(n)!

What about Deletion? Search, replace by right-most lowest leaf,
then heapify! → takes O(n)

Applications mentioned:

Sorting arrays O(n · log(n))

Priority Queues

Pascal Bercher 30.30

	Introduction
	Basics
	Heapify
	Insertion & Increase Key
	Build Heap
	Extract Max
	Applications
	Summary

