Algorithms (COMP3600/6466) Data Structures: Heaps

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing The Australian National University

Tuesday, 29.8.2023

Introduction ●00	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	

Introduction

Recap that we want to do (at least) the following operations efficiently:

- access, i.e., search
- min/max
- insertion/deletion

Which runtime did we have for binary search trees?

Recap that we want to do (at least) the following operations efficiently:

- access, i.e., search
- min/max
- insertion/deletion

Which runtime did we have for binary search trees? O(h), where *h* is the tree's height.

We now try to do better.

Existing operations for heaps:

- Heapify to ensure/establish heap properties
- Insertion
- ExtractMax (i.e., find and remove maximum)

All of these operations run in O(log(n)) (instead of O(h)).

Basics ●000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	

Basics

A heap is a binary tree that satisfies the *heap property*.

I.e., it holds:

- A heap is a:
 - *complete binary tree*, i.e., a perfect binary tree where missing nodes might only be right-most leaves in the last level.
 - Def.: *perfect binary tree*: all interior nodes have two children, and and all leaves are at the same level.

A heap is a binary tree that satisfies the heap property.

I.e., it holds:

- A heap is a:
 - *complete binary tree*, i.e., a perfect binary tree where missing nodes might only be right-most leaves in the last level.
 - Def.: *perfect binary tree*: all interior nodes have two children, and and all leaves are at the same level.
- Same data management as for the binary search tree:
 - Each node contains a key.
 - Each node may have satellite data.
- Each parent node has a key greater than the keys of its children. This is a *Max-heap*. Min-heaps can be defined analogously. (We only consider Max-heaps.)

	Basics ○○●○	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	
Exam	ples					

	Basics 00●0	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	
Exami	oles					

 \rightarrow No, e.g., 15 and 18 are wrongly ordered (for a max heap). And it's not complete.

	Basics ○○●○	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	
Exam	oles					

	Basics 00●0	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	
Examp	oles					

ightarrow Yes (a Max-heap)

Efficient Implementation of Heaps

Basics

They can be stored as arrays:

(Because it's complete!)

PARENT(*i*)= $\lfloor i/2 \rfloor$ LEFT(*i*) = 2*i* RIGHT(*i*) = 2*i* + 1 where *i* is the array position.

E.g.,
PARENT(3)=
$$\lfloor 3/2 \rfloor = 1$$

Left(3) = 2 · 3 = 6
Right(3) = 2 · 3 + 1 = 7

Basics 0000	Heapify ●000000	Insertion & Increase Key	Build Heap 00000	Applications	

Heapify

The Heapify algorithm (one call!) will be used (among others) to:

- Create a heap from an unsorted array, runs in O(n)
- sort an array

runs in $O(n \cdot log(n))$

The **Heapify algorithm** (one call!) will be used (among others) to:

- Create a heap from an unsorted array, runs in O(n)
- sort an array runs in $O(n \cdot log(n))$

But the heapify algorithm itself is a single call, running in O(log(n)). It assumes:

- We have a node at index *i* and,
- the heap property holds for both LEFT(i) and RIGHT(i),
- but *A*[*i*] might be smaller than its children.

Example

To heapify a node (that's in the tree but violating the heap property) means to traverse the tree downwards (from it) re-ordering the respective branch by switching places with the maximum.

	Basics 0000	Heapify ○○○●○○○	Insertion & Increase Key	Build Heap 00000	Applications	
Algori	thm					

```
MAX-HEAPIFY(A, i)
 1
    l = \text{LEFT}(i)
 2
   r = \text{RIGHT}(i)
 3
   if l \leq A. heap-size and A[l] > A[i]
4
         largest = l
 5
    else largest = i
    if r \leq A. heap-size and A[r] > A[largest]
6
7
         largest = r
\cdot8 if largest \neq i
9
         exchange A[i] with A[largest]
10
         MAX-HEAPIFY(A, largest)
```

Note that this algorithm calls itself again on one of *i*'s children.

	Basics 0000	Heapify ○○○○●○○	Insertion & Increase Key	Build Heap 00000	Applications	
Runtim	ne					

The runtime is (rather obviously) in O(log(n)), why?

The runtime is (rather obviously) in O(log(n)), why?

- Once heapify was called for a node x (taking constant time), it is called for only one of its children.
- How often can we invoke it again?
 - \rightarrow as often as there are children!

Since the height of a complete binary tree with *n* nodes is log(n) we get runtime of O(log(n)).

Introduction Basics Heapify Insertion & Increase Key Build Heap Extract Max Applications Summary

We also obtain O(log(n)) by solving the following equation:

-

$$T(n) \leq T(\frac{2}{3}n) + c,$$

where T is the actual runtime of the problem (and n the number of nodes and c a constant).

That the equation only has a solution for $T(n) \in O(log(n))$ follows from the *Master theorem* (proved earlier by Ahad).

We thus only show why the equation itself holds.

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} =$$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 =$$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

Now we can estimate the nodes in the left subtree: $2^{h+1} - 1 =$

 $2 \cdot 2^{h} - 1 =$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

$$2 \cdot 2^h - 1 = 2 \cdot \frac{n+1}{3} - 1 =$$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

$$2 \cdot 2^{h} - 1 = 2 \cdot \frac{n+1}{3} - 1 = 2 \cdot (\frac{n}{3} + \frac{1}{3}) - 1 =$$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

$$2 \cdot 2^{h} - 1 = 2 \cdot \frac{n+1}{3} - 1 = 2 \cdot \left(\frac{n}{3} + \frac{1}{3}\right) - 1 = \frac{2}{3}n - \frac{1}{3}$$

- We know that a call to *i* will perform constant (*c*) effort and then invoke the algorithm again for one of its children.
- So we can estimate the worst-case number of nodes that the larger sub tree may have:

n = 1 + # nodes in left subtree + # nodes in right subtree

• The left subtree is one level deeper than the right.

$$n = 1 + \sum_{i=0}^{h} 2^{i} + \sum_{i=0}^{h-1} 2^{i} = 1 + 2^{h+1} - 1 + 2^{h} - 1 = 2^{h}(2+1) - 1$$

Now let's bring 2^h to one side: $2^h = \frac{n+1}{3}$

$$2 \cdot 2^{h} - 1 = 2 \cdot \frac{n+1}{3} - 1 = 2 \cdot \left(\frac{n}{3} + \frac{1}{3}\right) - 1 = \frac{2}{3}n - \frac{1}{3} \le \frac{2}{3}n$$

Basics 0000	Heapify 0000000	Insertion & Increase Key ●000	Build Heap 00000	Applications	

Insertion & Increase Key

- Assume a given heap. We want to insert a key and establish the heap property again.
- Intuition: Insert it at the "next free" position and move it to an adequate position afterwards.

Name any number to insert!

	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	
Algorit	thm					

MAX-HEAP-INSERT (A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap-size] = -\infty$
- 3 HEAP-INCREASE-KEY (A, A. heap-size, key)

HEAP-INCREASE-KEY (A, i, key)

if key < A[i]**error** "new key is smaller than current key" A[i] = key**while** i > 1 and A[PARENT(i)] < A[i]5 exchange A[i] with A[PARENT(i)]i = PARENT(i)

	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	
Runtin	ne					

Runtime of this code:

MAX-HEAP-INSERT (A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap-size] = -\infty$
- 3 HEAP-INCREASE-KEY(A, A. heap-size, key)

HEAP-INCREASE-KEY (A, i, key)

```
1 if key < A[i]

2 error "new key is smaller than current key"

3 A[i] = key

4 while i > 1 and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT(i)]

6 i = PARENT(i)
```

- In the worst case, lines 4–6 of are called until the root is reached.
- Therefore, the time complexity is O(h) = O(log(n)).

Introduction	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap ●0000	Extract Max	Applications	Summary 00

Build Heap

Pascal Bercher

- We could build a heap of size *n* by inserting *n* times.
- However, that would lead to a runtime of $O(n \cdot log(n))$.
- We can do better!

Algorithm & Example

BUILD-MAX-HEAP(A)

$$1 \quad A.heap-size = A.length$$

2 **for**
$$i = \lfloor A.length/2 \rfloor$$
 downto

3 MAX-HEAPIFY(A, i)

Why do we start at the middle of the array and walk to the left?

Because Heapify assumes that LEFT(*i*) and RIGHT(*i*) satisfies heap properties! So we must work bottom-up!

- Heapify (runtime O(log(n))) is called ⁿ/₂ times, so it still appears as O(n · log(n)).
- But we claimed we could to better, O(n)!
 What?! Were we wrong??

- Heapify (runtime O(log(n))) is called ⁿ/₂ times, so it still appears as O(n · log(n)).
- But we claimed we could to better, O(n)!
 What?! Were we wrong??
- No! Not each call has runtime O(log(n))!
- Our analysis actually showed O(log(h_i)) for the height h_i of the "start node". But the height changes! And there are much more nodes on lower than on higher levels!
- As an intuition, recall that in a perfect binary tree, roughly 50% of all nodes are in the last layer, so half of our calls take constant time!

$$T(n) \leq \sum_{h=0}^{\lfloor log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) \rceil$$

Number of nodes at h = 0 is $\lceil \frac{7}{2^{0+1}} \rceil = \lceil \frac{7}{2} \rceil = \lceil 3.5 \rceil = 4$ at the bottom, then $\lceil \frac{7}{2^{1+1}} \rceil = 2$ in the middle for h = 1, etc.

$$T(n) \leq \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) \leq \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil c \cdot h$$

$$T(n) \leq \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) \leq \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil c \cdot h = c \cdot \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2 \cdot 2^{h}} \rceil h$$

$$egin{aligned} T(n) &\leq \sum_{h=0}^{\lfloor \log(n)
floor} \lceil rac{n}{2^{h+1}}
ceil O(h) &\leq \sum_{h=0}^{\lfloor \log(n)
floor} \lceil rac{n}{2^{h+1}}
ceil c \cdot h = c \cdot \sum_{h=0}^{\lfloor \log(n)
floor} \lceil rac{n}{2 \cdot 2^h}
ceil h \ &\leq c \cdot \sum_{h=0}^{\lfloor \log(n)
floor} rac{n}{2^h} h \end{aligned}$$

$$egin{aligned} T(n) &\leq \sum_{h=0}^{\lfloor log(n)
floor} \lceil rac{n}{2^{h+1}}
ceil O(h) &\leq \sum_{h=0}^{\lfloor log(n)
floor} \lceil rac{n}{2^{h+1}}
ceil c \cdot h = c \cdot \sum_{h=0}^{\lfloor log(n)
floor} \lceil rac{n}{2 \cdot 2^h}
ceil h \ &\leq c \cdot \sum_{h=0}^{\lfloor log(n)
floor} rac{n}{2^h} h \leq c \cdot n \cdot \sum_{h=0}^{\lfloor log(n)
floor} rac{h}{2^h} \end{aligned}$$

$$T(n) \leq \sum_{h=0}^{\lfloor log(n)
floor} \lceil rac{n}{2^{h+1}}
ceil O(h) \leq \sum_{h=0}^{\lfloor log(n)
floor} \lceil rac{n}{2^{h+1}}
ceil c \cdot h = c \cdot \sum_{h=0}^{\lfloor log(n)
floor} \lceil rac{n}{2 \cdot 2^h}
ceil h$$

 $\leq c \cdot \sum_{h=0}^{\lfloor log(n)
floor} rac{n}{2^h} h \leq c \cdot n \cdot \sum_{h=0}^{\lfloor log(n)
floor} rac{h}{2^h} \leq c \cdot n \cdot \sum_{h=0}^{\infty} rac{h}{2^h}$

$$T(n) \leq \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) \leq \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil c \cdot h = c \cdot \sum_{h=0}^{\lfloor \log(n) \rfloor} \lceil \frac{n}{2 \cdot 2^{h}} \rceil h$$
$$\leq c \cdot \sum_{h=0}^{\lfloor \log(n) \rfloor} \frac{n}{2^{h}} h \leq c \cdot n \cdot \sum_{h=0}^{\lfloor \log(n) \rfloor} \frac{h}{2^{h}} \leq c \cdot n \cdot \sum_{h=0}^{\infty} \frac{h}{2^{h}} \leq c \cdot n \cdot 2$$

Thus we get $T(n) \in O(n)$.

Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Extract Max ●0	Applications	

Extract Max

Algorithm, Example, and Runtime

HEAP-EXTRACT-Max(A)

- 1 if A.heap-size < 1
- 2 **error** "heap underflow"
- 3 max = A[1]
- $4 \quad A[1] = A[A.heap-size]$

5
$$A.heap-size = A.heap-size - 1$$

6 MAX-HEAPIFY(A, 1)

7 return max

The algorithm only needs to traverse a path of the tree once. Hence, the complexity is O(log(n))

Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications ●00	

Applications

- To sort an array, create a heap, then extract all max values one by one.
- Complexity: $O(n \cdot log(n))$
- In practice, QuickSort runs faster than Heap Sort.
- But the worst-case of heap sort is better!

A priority queue is a data structure that maintains a set *S*, where each element is associated with a key. It features the following operations:

- Insert(S, x): Inserts element x into the set S
- Maximum(S): Returns an element of S with the largest key
- ExtractMax(S): Removes and returns an element of S with the largest key
- IncreaseKey (S, x, k): Increase the key of x to k

Common application: Search, e.g., in Automated Planning. Here we sort by minimum, e.g., for minimal f(n) = g(n) + h(n) in A^* .

Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Applications	Summary ●○

Summary

Introduction	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000		Applications	Summary ○●
Sumn	nary						
Tod	ay we c	overed H	eaps.				
Ope	erations	consider	ed:				
0	Heapi	fy				O(log(l	ר(ר)
0	Insert	ion				O(log(l	ר(ר))
0	Increa	ase-Key				O(log(l	ר(ר))
0	Extrac	ct-Max				O(log(l	ר(ר)
•	(Get-N	Max in ma	x-heaps, Get-Mir	n in min-he	eaps)	0	(1)

	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000		Applications	Summary ○●
Sumn	nary						
Tod	ay we c	overed H e	eaps.				
Ope	erations	consider	ed:				
0	Heapi	fy				O(log(l	ר(ר)
0	Insert	ion				O(log(l	ר(ר)
0	Increa	ase-Key				O(log(l	ר(ר)
0	Extrac	ct-Max				O(log(l	ו(ר)
0	(Get-N	Max in ma	x-heaps, Get-Mir	n in min-he	aps)	0((1)
0	What	about Sea	arch?				

Introduction	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000		Applications	Summary ○●
Sumn	nary						
Tod	ay we c	overed H e	eaps.				
Ope	erations	considere	ed:				
0	Heapi	fy				O(log(n))
0	Insert	ion				O(log(n))
0	Increa	ise-Key				O(log(n))
0	Extrac	ct-Max				O(log(n))
0	(Get-N	Max in ma	x-heaps, Get-Mir	n in min-hea	ıps)	<i>O</i> (1)
0	What	about Sea	arch?		\rightarrow	takes O(r	ı)!

	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000		Applications	Summary ○●
Sumn	nary						
Tod	ay we c	overed He	eaps.				
Ope	erations	considere	ed:				
0	Heapi	fy				O(log(r	n))
0	Insert	ion				O(log(r	n))
0	Increa	ise-Key				O(log(r	n))
0	Extrac	ct-Max				O(log(r	n))
0	(Get-N	Max in ma	x-heaps, Get-Mir	n in min-hea	aps)	О(1)
0	What	about Sea	arch?		\rightarrow	takes O(n)!

What about Deletion?

Australian

	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000		Applications	Summary ○●
Sumn	nary						
Tod	ay we c	overed H	eaps.				
Ope	erations	consider	ed:				
•	Heapi	fy				O(log(l	n))
•	Insert	ion				O(log(l	n))
0	Increa	ase-Key				O(log(l	n))
0	Extrac	ct-Max				O(log(l	n))
0	(Get-N	Max in ma	x-heaps, Get-Mir	n in min-he	eaps)	0	(1)
0	What	about Sea	arch?		\rightarrow	takes O(n)!
0	What	about Del	etion? Search, r then hea	eplace by pify!	right-mos -	t lowest leat \rightarrow takes $O($	af, (<i>n</i>)

	Basics 0000	Heapify 0000000	Insertion & Increase Key	Build Heap 00000	Extract Max	Applications	Summary 00
Sumr	nary						
Tod	lay we c	overed H	eaps.				
Ope	erations	consider	ed:				
•	Heapi	fy				O(log(n))
•	Inserti	ion				O(log(n))
•	Increa	ise-Key				O(log(n))
•	Extrac	ct-Max				O(log(n))
0	(Get-M	Max in ma	x-heaps, Get-Mir	n in min-he	eaps)	0	(1)
0	What	about Sea	arch?		\rightarrow	takes O(n)!
C	What	about Del	etion? Search, r	eplace by	right-most	t lowest lea	af,
A			then hea	pify!	-	\rightarrow takes O	(<i>n</i>)
Арр	Distion	s mention	iea:				
G	Sortin	g arrays				$O(n \cdot \log(n))$	n))

Priority Queues

