Algorithms (COMP3600/6466)

Data Structures: Heaps

Pascal Bercher
(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Tuesday, 29.8.2023

Australian
& & National

3 University

Introduction
€00

Introduction

Pascal Bercher 1.30

Introduction 3 Build Heap ax Applications
oceo) I [

Motivation

Recap that we want to do (at least) the following operations efficiently:
@ access, i.e., search
@ min/max
@ insertion/deletion

Which runtime did we have for binary search trees?

] ﬁu?ralilan
Uﬁi\lloenrsaity Pascal Bercher 230

Introduction 3 ertion & Increa Build H
0e0

Motivation

Recap that we want to do (at least) the following operations efficiently:
@ access, i.e., search
@ min/max
@ insertion/deletion

Which runtime did we have for binary search trees?
O(h), where h is the tree’s height.

We now try to do better.

l ﬁu?rahlan
Uﬁi\g;gity Pascal Bercher 230

Introduction
ooe

Overview

Existing operations for heaps:
@ Heapify to ensure/establish heap properties
@ Insertion

o ExtractMax (i.e., find and remove maximum)

All of these operations run in O(log(n)) (instead of O(h)).

] ﬁu?ralilan
Uﬁi\lloenrsaity Pascal Bercher 330

Pascal Bercher 4.30

Introduction Basics

0@00

Heap

A heap is a binary tree that satisfies the heap property.
l.e., it holds:
@ Aheapis a:
® complete binary tree, i.e., a perfect binary tree where missing
nodes might only be right-most leaves in the last level.
® Def.: perfect binary tree: all interior nodes have two children, and
and all leaves are at the same level.

l ﬁu?rahlan
Uﬁi\llqerigity Pascal Bercher 530

Basics & Increase Key Extract Max

0@00 (o]e}

Heap

A heap is a binary tree that satisfies the heap property.
l.e., it holds:
@ Aheapis a:
® complete binary tree, i.e., a perfect binary tree where missing
nodes might only be right-most leaves in the last level.
® Def.: perfect binary tree: all interior nodes have two children, and
and all leaves are at the same level.
@ Same data management as for the binary search tree:
¢ Each node contains a key.
¢ Each node may have satellite data.
@ Each parent node has a key greater than the keys of its children.
This is a Max-heap. Min-heaps can be defined analogously. (We
only consider Max-heaps.)

| Australian

ﬁﬁitwlgrﬁéity Pascal Bercher 530

Basics
0000

Examples

Is the following graph a heap?

. [@\ ﬁu?trahan
Uﬁnlggsany Pascal Bercher 6.30

Basics

[e]e] lo)

Examples

Is the following graph a heap?

— No, e.g., 15 and 18 are wrongly ordered (for a max heap).
And it's not complete.

[=] Australian
L]

?Q* /% Uﬁi‘\llgn(sailty Pascal Bercher 530

Basics
0000

Examples

Is the following graph a heap?

(16)
(14) 10)
m WO ©
OXOXO

| Australian

=] A
&@/ﬁ Uﬁ.‘\',%?g.'ty Pascal Bercher 6.30

Basics
0000

Examples

Is the following graph a heap?

(16)
(14) (10)
m WO ©
OXOXO

— Yes (a Max-heap)

. @ ﬁuitralilan
M uﬁi\llgef(‘gny Pascal Bercher 6.30

ction Basics

[e]e]e])

Efficient Implementation of Heaps

PARENT(/)= |i/2]
They can be stored as arrays: LEFT(/) = 2/
RIGHT(/) = 2i + 1
where i is the array position.

E.g.,

PARENT(3)= |3/2| =1
LEFT(3)=2-3 =6
RIGHT(3) =2-3+1=7

) 3 4 5 6 7 8 9 10
(Because it's complete!)

AN
l16[14[10[8 [7]9[3]2]|4]1]
e

. [:\; ﬁu?ralilan
&/@% Uﬁi:g(?ny Pascal Bercher 7.30

Heapify
©000000

Heapify

Pascal Bercher 8.30

Introduction Heapify crez 3 X Applications

O@00000

Assumptions & Terminology

The Heapify algorithm (one call!) will be used (among others) to:

o Create a heap from an unsorted array, runs in O(n)
@ sort an array runs in O(n - log(n))
— =, e

University ~ Pascal Bercher 930

Heapify & Increase Key

O@00000

Assumptions & Terminology

The Heapify algorithm (one call!) will be used (among others) to:
o Create a heap from an unsorted array, runs in O(n)
@ sort an array runs in O(n - log(n))

But the heapify algorithm itself is a single call, running in O(log(n)).
It assumes:

@ We have a node at index i/ and,
o the heap property holds for both LEFT(/) and RIGHT(J),
@ but A[i] might be smaller than its children.

Australian

National
ﬁiwlgr?hy Pascal Bercher 930

Heapify & Increase Key p = Via ons Summary

[e]e] lele]ele)

Example

To heapify a node (that’s in the tree but violating the heap property)
means to traverse the tree downwards (from it) re-ordering the
respective branch by switching places with the maximum.

. [:\; ﬁu?ralilan
&/@% Uﬁimty Pascal Bercher 10.30

Heapify & Increase Key D Extract Ma

[e]e]e] le]ele)

Algorithm

MAX-HEAPIFY (A,i)

1 [= LEFT(i)

2 r = RIGHT(i)

3 if | < A.heap-size and A[l] > Ali]

4 largest = |

5 elselargest =i

6 if r < A.heap-size and A[r] > A[largest]
7 largest = r
-8 if largest # i

9 exchange A[i] with A[largest]
10 MAX-HEAPIFY (A, largest)

Note that this algorithm calls itself again on one of i’s children.

o @ ﬁu?ralilan
= uﬁi:/%n(saity Pascal Bercher 1130

B

Heapify

0000e00

Runtime

The runtime is (rather obviously) in O(log(n)), why?

| Australian

&L“‘?z% ”ﬁ,t\l,?glty Pascal Bercher 12.30

Introduction Sics Heapify

0000e00

Runtime

The runtime is (rather obviously) in O(log(n)), why?

@ Once heapify was called for a node x (taking constant time), it is
called for only one of its children.

@ How often can we invoke it again?
— as often as there are children!

Since the height of a complete binary tree with n nodes is log(n) we
get runtime of O(log(n)).

| Australian

|
ﬁﬁi‘\',%'r‘?ny Pascal Bercher 12.30

Heapify n & Increase Key

[e]e]e]e]e] o)

Runtime (alternative proof)

We also obtain O(/og(n)) by solving the following equation:

T(n) < T(gn) ‘e

where T is the actual runtime of the problem (and n the number of
nodes and ¢ a constant).

That the equation only has a solution for T(n) € O(log(n)) follows
from the Master theorem (proved earlier by Ahad).

We thus only show why the equation itself holds.

Au?rahan
ﬁi\',%'r‘?ny Pascal Bercher 13.30

Heapify on & Increase Key
000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

@ The left subtree is one level deeper than the right.

| Australian
National

University ~ Pascal Bercher 14.30

Heapify on & Increase Key Max
000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=1+> 2/4+> 2'=
i=0 i=0

| Australian
National

University ~ Pascal Bercher 14.30

Heapify & Increase Key ot Max cations
000000e

Summary

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 24> =142 142" 1=
i=0 i=0

] ﬁu?rahzlm
» National
University ~ Pascal Bercher

14.30

Heapify . Increase Key Extract Max
000000e e O

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Pascal Bercher 14.30

Heapify & Increase Key
000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1

Australian
National

niversity ~ Pascal Bercher 14.30

Heapify & Increase Key a Extract Max
000000e C 0

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1

Now we can estimate the nodes in the left subtree: 21 — 1 =

Australian
National

niversity ~ Pascal Bercher 14.30

Heapify n & Increase Key
000000e

act Max

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1
Now we can estimate the nodes in the left subtree: 2" — 1 =
2.2" 1=

Australian
ati

|
niv%?‘gny Pascal Bercher 14.30

Heapify n & Increase Key

act Max
000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1

Now we can estimate the nodes in the left subtree: 21 — 1 =

1
2.2’7_1:2."Jr _
3

1=

Australian
ati

jonal
Iniversity Pascal Bercher

14.30

Introduction i Heapify Insertion & Increase Key eap Extract Max Applications Summary

000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:

n = 1+ # nodes in left subtree + # nodes in right subtree
@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1

Now we can estimate the nodes in the left subtree: 21 — 1 =

n—+1 n 1
—1=2-(-4+=)—1=
(3+3)

2.2" 1=2.

Australian
ati

niv%'r“gny Pascal Bercher 14.30

Introduction i Heapify Insertion & Increase Key eap Extract Max Applications Summary

000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1

Now we can estimate the nodes in the left subtree: 21 — 1 =
n—+1 n 1 2 1
—1=2-(=+=)—1==-n— =

(3 + 3) 3 3

2.2" 1=2.

Australian
ati

niv%'r“gny Pascal Bercher 14.30

Introduction i Heapify Insertion & Increase Key eap Extract Max Applications Summary

000000e

Runtime (alternative proof, cont'd: why does T(n) < T(2n) + ¢ hold?

@ We know that a call to / will perform constant (c) effort and then
invoke the algorithm again for one of its children.

@ So we can estimate the worst-case number of nodes that the
larger sub tree may have:
n = 1+ # nodes in left subtree + # nodes in right subtree

@ The left subtree is one level deeper than the right.

h h—1
n=14+> 2/ 4> =142 142" —1=2"2+1) -1
i=0 i=0

Now let's bring 2 to one side: 2" = 2£1

Now we can estimate the nodes in the left subtree: 2" — 1 =

n—+1 n 1 2 1 2

—-1=2-(z+z)-1==-n—=-<=2-n
(3 3) 3 33

2.2" 1=2.

Australian
ati

niv%'r“gny Pascal Bercher 14.30

Insertion & Increase Key
€000

Insertion & Increase Key

Pascal Bercher 15.30

Introduction

Insertion & Increase Key

(o] le]e]

Example

@ Assume a given heap. We want to insert a key and establish the
heap property again.

@ Intuition: Insert it at the “next free” position and move it to an
adequate position afterwards.

Name any number to insert!

| Australian
National

University ~ Pascal Bercher 16.30

Insertion & Increase Key
00@0

Algorithm

MAX-HEAP-INSERT (A, key)

1 A.heap-size = A._heap-size + 1

2 A[A.heap-size] = —o0

3 HEAP-INCREASE-KEY (A, A. heap-size, key)
HEAP-INCREASE-KEY (A, i, key)

1 ifkey < AJi]

2 error “new key is smaller than current key”
3 A[i] = key

4 whilei > 1 and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT(i)]

6 i = PARENT(i)

. @ ﬁuitralilan
M uﬁi\llgef(‘gny Pascal Bercher 17.30

Insertion & Increase Key

[eJe]e]]

Runtime

Runtime of this code:

MAX-HEAP-INSERT (A, key)

1 A.heap-size = A.heap-size + 1

2 A[A.heap-size] = —o0

3 HEAP-INCREASE-KEY (A, A.heap-size, key)
HEAP-INCREASE-KEY (A, i, key)

1 ifkey < A[i]

2 error “new key is smaller than current key”
3 A[i] = key

4 whilei > 1 and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT(i)]

6 I = PARENT(i)

@ In the worst case, lines 4—6 of are called until the root is reached.
@ Therefore, the time complexity is O(h) = O(log(n)).

7 ﬁu?ralilan
% Uﬁi\lggsaity Pascal Bercher 18.30

Build Heap
©0000

Build Heap

Pascal Bercher 19.30

Introduction cree Build Heap

[e] lele]e}

Build Heap — not

@ We could build a heap of size n by inserting n times.
o However, that would lead to a runtime of O(n - log(n)).
@ We can do better!

=l ﬁu?ralilan
X i
2 Unverdty Pascal Bercher 030

Build Heap xtract Max Applications
foYel Yolo) oo 000

Algorithm & Example

Why do we start at the middle of the
BUILD-MAX-HEAP(A) array and walk to the left?

1 Aﬁf-’“]"n"flze = A.length Because Heapify assumes that LEFT(/)
2 fori = |A.length/2] df’w"to I and RigHT(j) satisfies heap properties!
3 MAX-HEAPIFY (4,) So we must work bottom-up!

Example: A |4 |1|3]2|16/9[10[14|8 |7

Australian

Py
% Uﬁu‘\lloenrsaulty Pascal Bercher 21.30

Build Heap X ax Applications

[e]ele] o}

Runtime

@ Heapify (runtime O(log(n))) is called times, so it still appears
as O(n - log(n)).

@ But we claimed we could to better, O(n)!
What?! Were we wrong??

| ﬁu?ralilan
ational
University ~ Pascal Bercher

22.30

Introduction i Insertion & Increase Key Build Heap Extract Max Applications Summary

000

Runtime

@ Heapify (runtime O(log(n))) is called times, so it still appears
as O(n - log(n)).

@ But we claimed we could to better, O(n)!
What?! Were we wrong??

@ No! Not each call has runtime O(log(n))!
@ Our analysis actually showed O(log(h;)) for the height h; of the

“start node”. But the height changes! And there are much more
nodes on lower than on higher levels!

@ As an intuition, recall that in a perfect binary tree, roughly 50% of
all nodes are in the last layer, so half of our calls take constant
time!

Au?rahan
ﬁi\l,ce?gny Pascal Bercher 22.30

n & Increase Key Build Heap

[e]e]ele] }

Runtime, cont'd
Let T(n) be the actual runtime for a tree with n nodes.

Llog(n)]
T < > Tglo)

Number of nodes at h =0 is

(5= =[£]1=1[35] =4
at the bottom, then [<] = 2
in the middle for h = 1, etc.

[5arr | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Australian

ﬁi‘\',%'r‘?ny Pascal Bercher 23.30

& Increase Key Build Heap

[e]e]ele] }

Runtime, cont'd
Let T(n) be the actual runtime for a tree with n nodes.

Log(m)] Liog(n)]
T(n Z (2h+1 O(h Z (2h+1

[5arr | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Australian

|
Nﬁutxlgr‘gny Pascal Bercher 23.30

n & Increase Key Build Heap

[e]e]ele] }

Runtime, cont'd
Let T(n) be the actual runtime for a tree with n nodes.

Llog(n)] n Llog(n)] Llog(n)] n
T(n) < Z (2h+1 O(h) < Z (2h+1 c-h=c- Z [ﬁwh

h=0

[5a7r | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Australian

glt\llerSNy Pascal Bercher 23.30

n & Increase Key Build Heap

[e]e]ele] }

Runtime, cont'd

Let T(n) be the actual runtime for a tree with n nodes.

Llog(n)] Llog(n)] Liog(n)]

n n
T(n) < Z [5re7 10(h) < Z [2h+1 c-h=c- Y Pl
h=0
L/og(n)J n
sc- Z 2hh
h=0

[5a7r | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Australian

ﬁi‘\',%'r‘?ny Pascal Bercher 23.30

Introduction & Increase Key Build Heap Ext

[e]e]ele] }

Runtime, cont'd

Let T(n) be the actual runtime for a tree with n nodes.

Log(m)] Liog(n)) Log(m)
T(n) < Z (2h+1 O(h) = Z (2h+1 ¢c-h=c- Z [ﬁwh
h=0
L/og(n)J n Llog(n)J h
<c- Z ﬁhgon- Z oh
h=0 h=0

[5a7r | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Australian

ﬁi‘\',%'r‘?ny Pascal Bercher 23.30

Introduction i & Increase Key Build Heap Extract Max Applications

[e]e]ele] }

Runtime, cont'd

Let T(n) be the actual runtime for a tree with n nodes.

log(m)] Liog(n)] log(m)
T(n) < Z [5re7 10(h) < Z [2h+1 cth=c- Y [5olh
h=0
L/og(n)J ; L/og(n)J h ©
<c- Z ﬁhgc.n. Z Z_h
h=0 h=0 h=

[5a7r | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Au?rahan
gi\l,cef.}gny Pascal Bercher 23.30

Introduction i & Increase Key Build Heap Extract Max Applications

[e]e]ele] }

Runtime, cont'd

Let T(n) be the actual runtime for a tree with n nodes.

[log(n)] n Llog(n)] Llog(n)] n
T(n) < Z (2h+1 O(h) = Z (2h+1 c-h=c Z [2.2h—|h
h=0
UOQ(”)J n L/OQ(")J h S
<c- Yy, sph<en: > ESC-WZﬁSC-n-Z
h=0 h=0 h=0

Thus we get T(n) € O(n).

[5arr | refers to the number of nodes per level (at “current height h”).

Important: This height is relative to where we start Heapify, so h =0
is the leafs, not the root!

Australian

ati

niv%?‘gny Pascal Bercher 23.30

Extract Max
.

Pascal Bercher 24.30

Algorithm, Example, and Runtime

HEAP-EXTRACT-MAX(A) @

if A.heap-size <1
error “heap underflow” 0 @
max = A[l]

A[l] = A[A.heap-size] 0 0 0 9
A.heap-size = A.heap-size — 1 o o o

MAX—HEAPIFY(A. l)
return max

NN B WD =

The algorithm only needs to traverse a path of the tree once. Hence,
the complexity is O(log(n))

. [:\; ﬁu?ralilan
&/@% Uﬁi:g(?ny Pascal Bercher 25.30

Applications
€00

Applications

Pascal Bercher 26.30

Introduction

Heap Sort

@ To sort an array, create a heap, then extract all max values one by
one.

o Complexity: O(n - log(n))
@ In practice, QuickSort runs faster than Heap Sort.
@ But the worst-case of heap sort is better!

] ﬁu?ralilan
Uﬁi\lloenrsaity Pascal Bercher 2730

n & Increase Key =] a Extract Max Applications
C D [e]e] ooe

Priority Queue

A priority queue is a data structure that maintains a set S, where each
element is associated with a key. It features the following operations:

o Insert(S, x): Inserts element x into the set S
@ Maximum(S): Returns an element of S with the largest key

o ExtractMax(S): Removes and returns an element of S with the
largest key

o IncreaseKey (S, x, k): Increase the key of x to k

Common application: Search, e.g., in Automated Planning.
Here we sort by minimum, e.g., for minimal f(n) = g(n) + h(n) in A*.

Au?rahan
ﬁi\l,ce?gny Pascal Bercher 28.30

Summary
®0

Summary

Pascal Bercher 29.30

Summary
oe

Summary
Today we covered Heaps.

Operations considered:

o Heapify O(log(n))

o Insertion O(log(n))

o Increase-Key O(log(n))

o Extract-Max O(log(n))

o (Get-Max in max-heaps, Get-Min in min-heaps) o(1)
|, R

University ~ Pascal Bercher 30.30

Summary

Today we covered Heaps.

Operations considered:
o Heapify
Insertion

Increase-Key

(Get-Max in max-heaps, Get-Min in min-heaps)

o
°
o Extract-Max
°
@ What about Search?

Australian

National
@; University ~ Pascal Bercher

Introduction & Increase Key ea X Max Applications Summary
[e]e]e} o] o] [e]e] [e]e]e} oe

Summary
Today we covered Heaps.

Operations considered:

o Heapify O(log(n))

@ Insertion O(log(n))

@ Increase-Key O(log(n))

o Extract-Max O(log(n))

o (Get-Max in max-heaps, Get-Min in min-heaps) o(1)

@ What about Search? — takes O(n)!
- Resera”

9 University ~ Pascal Bercher 30.30

Introduction & Increase Key ea X Max Applications Summary
[e]e]e} C o] o] [e]e] [e]e]e} oe

Summary
Today we covered Heaps.

Operations considered:

o Heapify O(log(n))
o Insertion O(log(n))
o Increase-Key O(log(n))
o Extract-Max O(log(n))
o (Get-Max in max-heaps, Get-Min in min-heaps) o(1)
@ What about Search? — takes O(n)!
@ What about Deletion?

Au?rahlan
gi\llqef?ity Pascal Bercher 30.30

Introduction asics apify Insertion & Increase Key Build Heap xtract Max Applications Summary
[e]e]e} o] o] [e]e [e]e]e} oe

Summary
Today we covered Heaps.

Operations considered:

o Heapify O(log(n))
@ Insertion O(log(n))
@ Increase-Key O(log(n))
o Extract-Max O(log(n))
o (Get-Max in max-heaps, Get-Min in min-heaps) o(1)
@ What about Search? — takes O(n)!
@ What about Deletion? Search, replace by right-most lowest leaf,

then heapify! — takes O(n)

Resera”

3] Univoefl}gity Pascal Bercher 30.30

Introduction ics apify Build Heap Extract Max Applications Summary
[e]e]e} o] 0000 o] [e]e] [e]e]e} oe

Summary
Today we covered Heaps.

Operations considered:

o Heapify O(log(n))
@ Insertion O(log(n))
@ Increase-Key O(log(n))
o Extract-Max O(log(n))
o (Get-Max in max-heaps, Get-Min in min-heaps) o(1)
@ What about Search? — takes O(n)!
@ What about Deletion? Search, replace by right-most lowest leaf,

then heapify! — takes O(n)

Applications mentioned:
@ Sorting arrays O(n - log(n))
@ Priority Queues

Qu?rahan
9 Uﬁi'v‘é?‘;ny Pascal Bercher 30.30

	Introduction
	Basics
	Heapify
	Insertion & Increase Key
	Build Heap
	Extract Max
	Applications
	Summary

