Algorithms (COMP3600/6466) Data Structures: AVL Trees

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing The Australian National University

Wednesday, 30.8.2023

Motivation

Introduction

Recap that we want to do (at least) the following operations efficiently:

- access, i.e., search
- insertion
- deletion
- min/max

Which runtime did we have for binary search trees? All were O(h).

What about heaps? Most are O(log(n)), max is O(1), search is O(n).

So, can we even do better? Depends on what we want to do!

- Many max (resp. min) operations? \rightarrow use heaps.
- Many searches? \rightarrow use AVL trees!

		Introdu	ction		
_					
Australian National University	Pascal Bercher				1.27
Introduction	Basics 00000	Rotations 0000000	Insertion 0000	Deletion 0000	Summary 00

Introduction

How are we going to do better?

- Binary search tree: No guarantee on height!
- Heap: Has to be a complete tree (too restrictive)
- Now: A balanced tree! Still only logarithmic height, but does not have to be complete.

Recall that completeness meant that only in the last layer of the tree (on its right) nodes may be missing.

2.27

History Lesson

Why is it called AVL tree?

- It was invented by Adel'soon-Vel'skii and Landis (in 1962)
- This was the first self-balancing search tree.

What means self-balancing?

Basics

- The tree makes sure that levels (heights) between siblings are "not too different" thus ensuring O(log(n)) height.
- For AVL trees: height between *left* and *right* child of each node differ by at most 1.
- (Later we will see a different self-balancing rule!)

AVL Trees

Recap on binary search trees: For all $x \in N$ holds:

- For all x' in the tree rooted in *x*.*left* holds x'.*key* < *x*.*key*
- For all x' in the tree rooted in *x*.*right* holds *x*.*key* < x'.*key*

An AVL tree is a binary search tree with the following properties:

Each node x maintains its balance factor bf(x).
 bf(x) = height(leftSubtree(x)) - height(rightSubtree(x))

(Note that wikipedia uses an inverted definition)

Conventions:

- Height of a tree with one node: 0
- Height of a tree with zero nodes: -1 (empty tree)
- For each node x in the tree must hold: $bf(x) \in \{-1, 0, 1\}$

Introduction	Basics ●0000	Rotations 00000000	Insertion 0000	Deletion 0000	Summary 00
		Basi	cs		
Austrolian					
- National University	Pascal Bercher				5.27

AVL Trees

Recap on binary search trees: For all $x \in N$ holds:

- For all x' in the tree rooted in *x*.*left* holds x'.*key* < *x*.*key*
- For all x' in the tree rooted in *x*.*right* holds *x*.*key* < x'.*key*

An AVL tree is a binary search tree with the following properties:

• Each node x maintains its balance factor bf(x).

bf(x) = height(leftSubtree(x)) - height(rightSubtree(x))

(Note that wikipedia uses an inverted definition)

Conventions:

00000

- Height of a tree with one node: 0
- Height of a tree with zero nodes: -1 (empty tree)
- For each node x in the tree must hold: $bf(x) \in \{-1, 0, 1\}$
- Hint: Realize/remember that
 - bf(x) = 0 means: same height (trivial!)
 - bf(x) < 0 means: missing levels on the left
 - bf(x) > 0 means: missing levels on the right

tional iversity Pascal Bercher

6.27

Basics

How to prove that the height *h* of an AVL tree with *n* nodes is always in O(log(n))?

- We show this for the worst case, i.e., for the deepest AVL tree.
- Such a tree has an imbalance everywhere! (Because then we can use all the missing nodes to construct a very deep path thus increasing the height.)
- Thus we know and define:

Australian

National

• Let *N_h* be the minimum number of nodes for an AVL tree with height *h*.

0 27

- Then, $N_h = 1 + N_{h-1} + N_{h-2}$
- Now compute N_h in relation to h!

Chiversity	i ascai Del chel				0.27	
	Basics	Rotations ●0000000	Insertion	Deletion 0000		
		Pototi	000			
Rotations						
··· Australian						
National University	Pascal Bercher				10.27	

Rotations, Summary

How to decide when to do which rotation?

We just have four cases:

bf(x) = -2
 bf(x.right) = -1: L-rotation
 bf(x.right) = 1: RL-rotation
 bf(x) = 2
 bf(x.left) = 1: R-rotation
 bf(x.left) = -1: LR-rotation

Why do we need rotations?

To re-establish AVL properties after we modified the tree (with insertion/deletes, see next slides).

Introduction 0000	Basics 00000	Rotations 0000000	Insertion ●○○○	Deletion 0000	Summary 00	
Insertion						
_						
Australian National University	Pascal Bercher				18.27	
Example	Basics 00000	Rotations 00000000	Insertion ○○●○	Deletion 0000	Summary 00	
Insert	9, then insert 1	5 into the follo	owing tree:			
	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$		l et z he the nare	at of the newly i	nserted	
	0	1	node. While <i>z</i> is r	not the root nod	e do:	
1 /	5	0	 Update bala If z violates 	nce factor of z. the AVL proper	ty, rotate!	
4	$\overline{\mathcal{T}}$	12	Set z as z.p	parent.		
$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$						
\smile	\bigcirc					
Australia.						
National -	Pascal Bercher				20.27	

Deletior Algorithm How to delete? • Perform binary search tree deletion! (See yesterday's lecture; the complicated case is when the deleted node has two children.) • Update balance factors. • Perform rebalancing along the respective path whenever required, starting at the bottom. Australian National University Pascal Bercher 23.27 Deletion Runtime • We first need to find the key to delete, which costs O(log(n)). • Then we have to perform (potentially multiple) rotations along the respective path, which gives another O(log(n)). • Thus, in total, we have O(log(n)).

Australian National University Pascal Bercher

Introduction	Basics 00000	Rotations 00000000	Insertion 0000	Deletion 0000	Summary ●○
		Sumr	nary		
Australian National	Pascal Bercher				26.27

Network Basic occol Network Deletion occol Summary Joint occol Deletion occol Summary Joint occol Summary Today we covered AVL trees. They are improved binary search trees, which are self-balancing. Operations considered: Rotations to achieve balanced tree Insertion O(log(n)) Deletion O(log(n)) What about search? O(log(n)) What about min/max?

27.27

Australian National University

Pascal Bercher