
Algorithms (COMP3600/6466)
Data Structures: AVL Trees

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Wednesday, 30.8.2023

Introduction Basics Rotations Insertion Deletion Summary

Introduction

Pascal Bercher 1.27

Introduction Basics Rotations Insertion Deletion Summary

Motivation

Recap that we want to do (at least) the following operations efficiently:

access, i.e., search

insertion

deletion

min/max

Which runtime did we have for binary search trees? All were O(h).

What about heaps? Most are O(log(n)), max is O(1), search is O(n).

So, can we even do better? Depends on what we want to do!

Many max (resp. min) operations? → use heaps.

Many searches? → use AVL trees!

Pascal Bercher 2.27

Introduction Basics Rotations Insertion Deletion Summary

We want to improve, but how?

How are we going to do better?

Binary search tree: No guarantee on height!

Heap: Has to be a complete tree (too restrictive)

Now: A balanced tree! Still only logarithmic height, but does not
have to be complete.

Recall that completeness meant that only in the last layer of the tree
(on its right) nodes may be missing.

Pascal Bercher 3.27



Introduction Basics Rotations Insertion Deletion Summary

History Lesson

Why is it called AVL tree?

It was invented by Adel’soon-Vel’skii and Landis (in 1962)

This was the first self-balancing search tree.

What means self-balancing?

The tree makes sure that levels (heights) between siblings are
“not too different” thus ensuring O(log(n)) height.

For AVL trees: height between left and right child of each node
differ by at most 1.

(Later we will see a different self-balancing rule!)

Pascal Bercher 4.27

Introduction Basics Rotations Insertion Deletion Summary

Basics

Pascal Bercher 5.27

Introduction Basics Rotations Insertion Deletion Summary

AVL Trees

Recap on binary search trees: For all x ∈ N holds:

For all x ′ in the tree rooted in x .left holds x ′.key < x .key

For all x ′ in the tree rooted in x .right holds x .key < x ′.key

An AVL tree is a binary search tree with the following properties:

Each node x maintains its balance factor bf (x).
bf (x) = height(leftSubtree(x)) − height(rightSubtree(x))
(Note that wikipedia uses an inverted definition)

Conventions:
• Height of a tree with one node: 0
• Height of a tree with zero nodes: -1 (empty tree)

For each node x in the tree must hold: bf (x) ∈ {−1, 0, 1}

Hint: Realize/remember that
• bf (x) = 0 means: same height (trivial!)
• bf (x) < 0 means: missing levels on the left
• bf (x) > 0 means: missing levels on the right

Pascal Bercher 6.27

Introduction Basics Rotations Insertion Deletion Summary

AVL Trees

Recap on binary search trees: For all x ∈ N holds:

For all x ′ in the tree rooted in x .left holds x ′.key < x .key

For all x ′ in the tree rooted in x .right holds x .key < x ′.key

An AVL tree is a binary search tree with the following properties:

Each node x maintains its balance factor bf (x).
bf (x) = height(leftSubtree(x)) − height(rightSubtree(x))
(Note that wikipedia uses an inverted definition)

Conventions:
• Height of a tree with one node: 0
• Height of a tree with zero nodes: -1 (empty tree)

For each node x in the tree must hold: bf (x) ∈ {−1, 0, 1}
Hint: Realize/remember that

• bf (x) = 0 means: same height (trivial!)
• bf (x) < 0 means: missing levels on the left
• bf (x) > 0 means: missing levels on the right

Pascal Bercher 6.27



Introduction Basics Rotations Insertion Deletion Summary

Example

The numbers indicate the balance factors.

Pascal Bercher 7.27

Introduction Basics Rotations Insertion Deletion Summary

On the Height of AVL Trees

How to prove that the height h of an AVL tree with n nodes is always in
O(log(n))?

We show this for the worst case, i.e., for the deepest AVL tree.

Such a tree has an imbalance everywhere! (Because then we
can use all the missing nodes to construct a very deep path thus
increasing the height.)
Thus we know and define:

• Let Nh be the minimum number of nodes for an AVL tree with
height h.

• Then, Nh = 1 + Nh−1 + Nh−2

Now compute Nh in relation to h!

Pascal Bercher 8.27

Introduction Basics Rotations Insertion Deletion Summary

On the Height of AVL Trees, cont’d

Nh = 1 + Nh−1 + Nh−2

≥ 2 · Nh−2 // so we know: Nh ≥ 2 · Nh−2

= 2 · 2 · Nh−4

= 2 · 2 · 2 · Nh−6

= 2i · Nh−2·i

= . . .

= 2
h
2 · Nh−2· h

2
= 2

h
2 · N0 = 2

h
2

Thus we get:

log(Nh) ≥
h
2

and thus: 2 · log(Nh) ≥ h

Recall that Nh is n, the number of nodes (we called it Nh to enforce the
worst-case property of having imbalances to get a maximal h).

Pascal Bercher 9.27

Introduction Basics Rotations Insertion Deletion Summary

Rotations

Pascal Bercher 10.27



Introduction Basics Rotations Insertion Deletion Summary

Rotations

How to achieve the AVL property?

AVL trees rely on a transformation operation called rotation to
re-balance the tree.
There are four rotations in total:

• 2 “classes”, and
• 2 types per class

In the following slides, we always rotate some node “x”. This is
always the node that is unbalanced, i.e., the one with a balance
factor = +/− 2.

Pascal Bercher 11.27

Introduction Basics Rotations Insertion Deletion Summary

L-rotation

L-rotation on node x :

Rotate the edge connecting x (here: 1) and its right child.

Example:

Pascal Bercher 12.27

Introduction Basics Rotations Insertion Deletion Summary

L-rotation

L-rotation on node x :

Rotate the edge connecting x (here: 1) and its right child.

Example:

Pascal Bercher 12.27

Introduction Basics Rotations Insertion Deletion Summary

R-rotation

R-rotation on node x :

Rotate the edge connecting x and its left child.

Example:

Pascal Bercher 13.27



Introduction Basics Rotations Insertion Deletion Summary

LR-rotation

LR-rotation on node x : (that’s a double-rotation)

L-rotation on the root of x ’s left subtree followed by R-rotation on x .

Example:

Pascal Bercher 14.27

Introduction Basics Rotations Insertion Deletion Summary

LR-rotation, (Generic) Example

Pascal Bercher 15.27

Introduction Basics Rotations Insertion Deletion Summary

RL-rotation

RL-rotation on node x : (that’s the other double-rotation)

R-rotation on the root of x ’s right subtree followed by L-rotation on x .

Example:

Pascal Bercher 16.27

Introduction Basics Rotations Insertion Deletion Summary

Rotations, Summary

How to decide when to do which rotation?

We just have four cases:
bf (x) = −2

• bf (x .right) = −1: L-rotation
• bf (x .right) = 1: RL-rotation

bf (x) = 2
• bf (x .left) = 1: R-rotation
• bf (x .left) = −1: LR-rotation

Why do we need rotations?

To re-establish AVL properties after we modified the tree (with
insertion/deletes, see next slides).

Pascal Bercher 17.27



Introduction Basics Rotations Insertion Deletion Summary

Insertion

Pascal Bercher 18.27

Introduction Basics Rotations Insertion Deletion Summary

Algorithm

How to insert? Perform binary search tree insertion and then
rebalance whenever necessary. Thus, to insert node x into tree T do:

Insert x as if T were a usual binary search tree.

Let z be the parent of the newly inserted node.
While z is not the root node do:

• Update balance factor of z.
• If z violates the AVL property, rotate!
• Set z as z.parent.

Pascal Bercher 19.27

Introduction Basics Rotations Insertion Deletion Summary

Example

Insert 9, then insert 15 into the following tree:

Pascal Bercher 20.27

Let z be the parent of the newly inserted
node. While z is not the root node do:

Update balance factor of z.

If z violates the AVL property, rotate!

Set z as z.parent.

Introduction Basics Rotations Insertion Deletion Summary

Runtime

A single insertion requires only one single rotation (assuming that
we insert into an AVL tree) and is thus a constant-time operation.

However, we also need to find the right position to insert the new
key into! This takes O(log(n))

Pascal Bercher 21.27



Introduction Basics Rotations Insertion Deletion Summary

Deletion

Pascal Bercher 22.27

Introduction Basics Rotations Insertion Deletion Summary

Algorithm

How to delete?

Perform binary search tree deletion! (See yesterday’s lecture; the
complicated case is when the deleted node has two children.)

Update balance factors.

Perform rebalancing along the respective path whenever
required, starting at the bottom.

Pascal Bercher 23.27

Introduction Basics Rotations Insertion Deletion Summary

Example

Delete 7, then delete 12 from the following tree:

Pascal Bercher 24.27

Introduction Basics Rotations Insertion Deletion Summary

Runtime

We first need to find the key to delete, which costs O(log(n)).

Then we have to perform (potentially multiple) rotations along the
respective path, which gives another O(log(n)).

Thus, in total, we have O(log(n)).

Pascal Bercher 25.27



Introduction Basics Rotations Insertion Deletion Summary

Summary

Pascal Bercher 26.27

Introduction Basics Rotations Insertion Deletion Summary

Summary

Today we covered AVL trees.

They are improved binary search trees, which are self-balancing.

Operations considered:

Rotations to achieve balanced tree O(1)

Insertion O(log(n))

Deletion O(log(n))

What about search? O(log(n))

What about min/max? O(log(n))

Pascal Bercher 27.27


	Introduction
	Basics
	Rotations
	Insertion
	Deletion
	Summary

