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Motivation

Recap that we want to do (at least) the following operations efficiently:

access, i.e., search

insertion

deletion

min/max

Which runtime did we have for binary search trees? All were O(h).

What about heaps? Most are O(log(n)), max is O(1), search is O(n).

So, can we even do better? Depends on what we want to do!

Many max (resp. min) operations? → use heaps.

Many searches? → use AVL trees!
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We want to improve, but how?

How are we going to do better?

Binary search tree: No guarantee on height!

Heap: Has to be a complete tree (too restrictive)

Now: A balanced tree! Still only logarithmic height, but does not
have to be complete.

Recall that completeness meant that only in the last layer of the tree
(on its right) nodes may be missing.
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History Lesson

Why is it called AVL tree?

It was invented by Adel’soon-Vel’skii and Landis (in 1962)

This was the first self-balancing search tree.

What means self-balancing?

The tree makes sure that levels (heights) between siblings are
“not too different” thus ensuring O(log(n)) height.

For AVL trees: height between left and right child of each node
differ by at most 1.

(Later we will see a different self-balancing rule!)
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Basics
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AVL Trees

Recap on binary search trees: For all x ∈ N holds:

For all x ′ in the tree rooted in x .left holds x ′.key < x .key

For all x ′ in the tree rooted in x .right holds x .key < x ′.key

An AVL tree is a binary search tree with the following properties:

Each node x maintains its balance factor bf (x).
bf (x) = height(leftSubtree(x)) − height(rightSubtree(x))
(Note that wikipedia uses an inverted definition)

Conventions:
• Height of a tree with one node: 0
• Height of a tree with zero nodes: -1 (empty tree)

For each node x in the tree must hold: bf (x) ∈ {−1, 0, 1}

Hint: Realize/remember that
• bf (x) = 0 means: same height (trivial!)
• bf (x) < 0 means: missing levels on the left
• bf (x) > 0 means: missing levels on the right
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Example

The numbers indicate the balance factors.

Pascal Bercher 7.27

Introduction Basics Rotations Insertion Deletion Summary

On the Height of AVL Trees

How to prove that the height h of an AVL tree with n nodes is always in
O(log(n))?

We show this for the worst case, i.e., for the deepest AVL tree.

Such a tree has an imbalance everywhere! (Because then we
can use all the missing nodes to construct a very deep path thus
increasing the height.)
Thus we know and define:

• Let Nh be the minimum number of nodes for an AVL tree with
height h.

• Then, Nh = 1 + Nh−1 + Nh−2

Now compute Nh in relation to h!
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On the Height of AVL Trees, cont’d

Nh = 1 + Nh−1 + Nh−2

≥ 2 · Nh−2 // so we know: Nh ≥ 2 · Nh−2

= 2 · 2 · Nh−4

= 2 · 2 · 2 · Nh−6

= 2i · Nh−2·i

= . . .

= 2
h
2 · Nh−2· h

2
= 2

h
2 · N0 = 2

h
2

Thus we get:

log(Nh) ≥
h
2

and thus: 2 · log(Nh) ≥ h

Recall that Nh is n, the number of nodes (we called it Nh to enforce the
worst-case property of having imbalances to get a maximal h).
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Rotations
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Rotations

How to achieve the AVL property?

AVL trees rely on a transformation operation called rotation to
re-balance the tree.
There are four rotations in total:

• 2 “classes”, and
• 2 types per class

In the following slides, we always rotate some node “x”. This is
always the node that is unbalanced, i.e., the one with a balance
factor = +/− 2.
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L-rotation

L-rotation on node x :

Rotate the edge connecting x (here: 1) and its right child.

Example:
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L-rotation

L-rotation on node x :

Rotate the edge connecting x (here: 1) and its right child.

Example:
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R-rotation

R-rotation on node x :

Rotate the edge connecting x and its left child.

Example:
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LR-rotation

LR-rotation on node x : (that’s a double-rotation)

L-rotation on the root of x ’s left subtree followed by R-rotation on x .

Example:
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LR-rotation, (Generic) Example
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RL-rotation

RL-rotation on node x : (that’s the other double-rotation)

R-rotation on the root of x ’s right subtree followed by L-rotation on x .

Example:
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Rotations, Summary

How to decide when to do which rotation?

We just have four cases:
bf (x) = −2

• bf (x .right) = −1: L-rotation
• bf (x .right) = 1: RL-rotation

bf (x) = 2
• bf (x .left) = 1: R-rotation
• bf (x .left) = −1: LR-rotation

Why do we need rotations?

To re-establish AVL properties after we modified the tree (with
insertion/deletes, see next slides).
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Insertion
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Algorithm

How to insert? Perform binary search tree insertion and then
rebalance whenever necessary. Thus, to insert node x into tree T do:

Insert x as if T were a usual binary search tree.

Let z be the parent of the newly inserted node.
While z is not the root node do:

• Update balance factor of z.
• If z violates the AVL property, rotate!
• Set z as z.parent.

Pascal Bercher 19.27

Introduction Basics Rotations Insertion Deletion Summary

Example

Insert 9, then insert 15 into the following tree:
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Let z be the parent of the newly inserted
node. While z is not the root node do:

Update balance factor of z.

If z violates the AVL property, rotate!

Set z as z.parent.
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Runtime

A single insertion requires only one single rotation (assuming that
we insert into an AVL tree) and is thus a constant-time operation.

However, we also need to find the right position to insert the new
key into! This takes O(log(n))
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Deletion
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Algorithm

How to delete?

Perform binary search tree deletion! (See yesterday’s lecture; the
complicated case is when the deleted node has two children.)

Update balance factors.

Perform rebalancing along the respective path whenever
required, starting at the bottom.
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Example

Delete 7, then delete 12 from the following tree:
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Runtime

We first need to find the key to delete, which costs O(log(n)).

Then we have to perform (potentially multiple) rotations along the
respective path, which gives another O(log(n)).

Thus, in total, we have O(log(n)).
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Summary
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Summary

Today we covered AVL trees.

They are improved binary search trees, which are self-balancing.

Operations considered:

Rotations to achieve balanced tree O(1)

Insertion O(log(n))

Deletion O(log(n))

What about search? O(log(n))

What about min/max? O(log(n))
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