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Motivation

As before, we want to do (at least) the following operations efficiently:

access, i.e., search

insertion

deletion

min or max, respectively (or both)

Which runtime did we have for binary search trees?

All were O(h).

What about AVL trees? All were O(log(n)).

What about heaps? Most are O(log(n)), max is O(1), search is O(n).

So, can we even do better?

Not asymptotically. But in practice.

(Deletion gets much cheaper via more efficient self-balancing.)
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We want to improve, but how?

Similarities to AVL trees:

Still a binary search tree!

Still doing self-balancing to achieve height h ∈ O(log(n)) to
achieve O(log(n)) runtime for most operations.

Differences to AVL trees:

AVL trees enforce a strict maximal height difference of 1 between
sub trees, so rotations can occur often after data updates.
Red/Black trees might be deeper (but still with h ∈ O(log(n)))
thus requiring fewer balancing operations.

• The deepest leaf cannot be more than twice the depth of the
shallowest leaf.

• Checked by ‘coloring’ nodes into one of two colors: red and black.

Pascal Bercher 3.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

We want to improve, but how?

Similarities to AVL trees:

Still a binary search tree!

Still doing self-balancing to achieve height h ∈ O(log(n)) to
achieve O(log(n)) runtime for most operations.

Differences to AVL trees:

AVL trees enforce a strict maximal height difference of 1 between
sub trees, so rotations can occur often after data updates.
Red/Black trees might be deeper (but still with h ∈ O(log(n)))
thus requiring fewer balancing operations.

• The deepest leaf cannot be more than twice the depth of the
shallowest leaf.

• Checked by ‘coloring’ nodes into one of two colors: red and black.

Pascal Bercher 3.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

We want to improve, but how?

Similarities to AVL trees:

Still a binary search tree!

Still doing self-balancing to achieve height h ∈ O(log(n)) to
achieve O(log(n)) runtime for most operations.

Differences to AVL trees:

AVL trees enforce a strict maximal height difference of 1 between
sub trees, so rotations can occur often after data updates.
Red/Black trees might be deeper (but still with h ∈ O(log(n)))
thus requiring fewer balancing operations.

• The deepest leaf cannot be more than twice the depth of the
shallowest leaf.

• Checked by ‘coloring’ nodes into one of two colors: red and black.

Pascal Bercher 3.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Basics

Pascal Bercher 4.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Red/Black Trees

A red/black tree is a binary search tree with the following properties:

Each node uses an additional bit representing its color:
red and black.

The root node it black.

Every leaf is a black NIL.

If a node is red, both its children are black.
(Thus there can be no paths with two consecutive red nodes.)

For each node, all paths from this node to each of its leaves
contain the same number of black nodes. (Called “black height”.)

One advantage:
Deletion will only require a constant number of rotations!

Pascal Bercher 5.43
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Optimizations

We require every leaf to be NIL, but there are exponentially many!
So we just store a single one.

We also assume that each inner node has exactly two children by
letting one be NIL if required. (This simplifies some analyses.)
Again, this is just one single (black) NIL node.

Each node x has a “black height” bh(x), which is the number of
black nodes on any path from x to a leaf (not including x itself).

Pascal Bercher 6.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Example

Is this a red/black tree?
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Initial node black?
→

Check!

All nodes have two children?
→

Check!

All children of reds are black?
→

Check!

All paths from each node
have the same number of
black nodes?
→

Check!
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Another Example

Is this a red/black tree?
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→
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All nodes have two children?
→

Check!

All children of reds are black?
→

Check!

All paths from each node
have the same number of
black nodes?
→

Check!



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Another Example

Is this a red/black tree?

Pascal Bercher 8.43

Initial node black?
→ Check!

All nodes have two children?
→

Check!

All children of reds are black?
→

Check!

All paths from each node
have the same number of
black nodes?
→

Check!



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Another Example

Is this a red/black tree?

Pascal Bercher 8.43

Initial node black?
→ Check!

All nodes have two children?
→ Check!

All children of reds are black?
→

Check!

All paths from each node
have the same number of
black nodes?
→

Check!



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Another Example

Is this a red/black tree?

Pascal Bercher 8.43

Initial node black?
→ Check!

All nodes have two children?
→ Check!

All children of reds are black?
→ Check!

All paths from each node
have the same number of
black nodes?
→

Check!



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Another Example

Is this a red/black tree?

Pascal Bercher 8.43

Initial node black?
→ Check!

All nodes have two children?
→ Check!

All children of reds are black?
→ Check!

All paths from each node
have the same number of
black nodes?
→ Check!



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Yet Another Example

So, why do we even have the red color, then?

In the left tree, we didn’t have the right black height for each node,
e.g., the root had two black nodes on each path of its left, but
three on its right.

Introducing a red color turned it into a valid red/black tree.

But this is still be a valid AVL tree anyway! Can we make an
argument why this is still more flexible than AVL trees?

Yes! Add more red nodes to increase height difference to 2.

Pascal Bercher 9.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Yet Another Example

So, why do we even have the red color, then?

In the left tree, we didn’t have the right black height for each node,
e.g., the root had two black nodes on each path of its left, but
three on its right.

Introducing a red color turned it into a valid red/black tree.

But this is still be a valid AVL tree anyway! Can we make an
argument why this is still more flexible than AVL trees?

Yes! Add more red nodes to increase height difference to 2.

Pascal Bercher 9.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Yet Another Example

So, why do we even have the red color, then?

In the left tree, we didn’t have the right black height for each node,
e.g., the root had two black nodes on each path of its left, but
three on its right.

Introducing a red color turned it into a valid red/black tree.

But this is still be a valid AVL tree anyway! Can we make an
argument why this is still more flexible than AVL trees?
Yes! Add more red nodes to increase height difference to 2.

Pascal Bercher 9.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

On the Height of Red/Black Trees

The whole idea behind coloring is to obtain a height h ∈ O(log(n)).
But is that true? Does this follow from the red/black properties?

We will show h ≤ 2 · log(n + 1).

Note that here we refer with n to the internal nodes. This makes
perfect sense since those are our keys! The “exponentially” many leafs
are just NIL(s). (Remember: we just have one of them.)

How to show this? Exploit the property:

If we remove all red nodes:
All leaves are on the same level.

Then relate the height of this ‘new’ tree to the original one.

Pascal Bercher 10.43
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On the Height of Red/Black Trees, Example

We merge all red nodes into their parents.
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On the Height of Red/Black Trees, Example

We merge all red nodes into their parents.
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Since in the left tree T each inner
node has two children, for the right
one T ′ holds 2h′ ≤ n + 1.
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On the Height of Red/Black Trees, Proof

How many nodes does our red/black tree have?
# leaves = # internal nodes + 1

Thus, # leaves of T : n + 1 (with T being the red/black tree)
Thus, # leaves of T ′: n + 1 (with T ′ being the new/‘purely black’ tree)

Let h be the height of T and h′ that of T ′.

We can conclude 2h′ ≤ n + 1. (2h′ can only equal n + 1 if T didn’t use
red nodes. If it does, 2h′ will be strictly smaller.) Thus, h′ ≤ log(n + 1)

Recall:

If a node is red, both its children are black.
Each node has a “unique” black height.

Now we can state h ≤ 2 · h′ and thus: h ≤ 2 · log(n + 1)

Pascal Bercher 12.43
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How to maintain the tree’s height?

With the O(log(n)) height guarantee the red/black tree guarantees
O(log(n)) runtime for the following operations:

Search

Min, Max (both)

Successor, Predecessor

Insert, Delete

How to maintain the height for Insert and Delete?
→ Like for AVL trees: via re-balancing – here: also re-coloring!

Pascal Bercher 13.43
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Rotations

Pascal Bercher 14.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Rotations in Red/Black Trees

There is only a single rebalance operation, which is rotation:
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Rotations in Red/Black Trees

There is only a single rebalance operation, which is rotation:

Maybe a useful guide to remember and apply it correctly:

Left-rotation: The left node is above and you push it down.
Right-rotation: The right node is above and you push it down.

Pascal Bercher 15.43
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Insertion

Pascal Bercher 16.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Insertion

Procedure in a nutshell:

Add a new node (like in binary search trees), color it red.

Recolor where required.

Rebalance via rotations. (Constantly many, also for deletion.)

Pascal Bercher 17.43
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Recolor and Rebalance

When the new node (denoted as z) is added as a child of a black node
we are done.

Why is that the case?

Pascal Bercher 18.43
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Recolor and Rebalance

When the new node (denoted as z) is added as a child of a black node
we are done.

Why is that the case?

Because the number of black nodes from the root (or any parent
node) to a leaf stays the same! (Recall: the new node is red.)

This is because we replace a black NIL by a red node – which again
has only black NIL nodes. So the number of black nodes did not
increase on this path.
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Recolor and Rebalance

When the new node (denoted as z) is added as a child of a black node
we are done. So we only have work to do if z is added to a red node.

When z ’s parent is red, z ’s grandparent must exist (since the root
can’t be red) and must be black (otherwise we already had two
red nodes in a row).

We will then have six cases, three for each of two categories:
z ’s parent is the left or the right child of z ’s grandparent.
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Insertion, Example

Add 15 to the tree:
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We just inserted node 15...
What now?
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Recolor and Rebalance, category “on the left”

Category 1: z ’s parent is the left child of z ’s grandparent.
case 1 z ’s uncle/aunt y1 is red.

→ Recolor z′s parent and uncle/aunt to be black and z ’s
grandparent to be red. Then repeat checking red/black properties
as if z ’s grandparent is the new node. However, if the new z is the
root, make it black and stop!

1The uncle/aunt of a node x is the other child of x ′s grandparent,
i.e., x ’s parent’s sibling.
Pascal Bercher 20.43
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Recolor and Rebalance, category “on the left”

Category 1: z ’s parent is the left child of z ’s grandparent.
case 2 z ’s uncle/aunt y is black and z is a right child of its parent.

→ Left-rotate z ’s parent and continue with case 3. Note that “p” in
our final result will denote “z” in the next case 3.

Note how the black heights remain unchanged.

Pascal Bercher 20.43
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Recolor and Rebalance, category “on the left”

Category 1: z ’s parent is the left child of z ’s grandparent.
case 3 z ’s uncle/aunt y is black and z is a left child of its parent.

→ Recolor z ’s parent to be black and z ’s grandparent to be red.
Then right-rotate z ’s grandparent.

(Here we see just the recoloring step.)
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Recolor and Rebalance, category “on the left”

Category 1: z ’s parent is the left child of z ’s grandparent.
case 3 z ’s uncle/aunt y is black and z is a left child of its parent.

→ Recolor z ’s parent to be black and z ’s grandparent to be red.
Then right-rotate z ’s grandparent.

(This shows the final result.)
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Recolor and Rebalance, category “on the left”

Category 1: z ’s parent is the left child of z ’s grandparent.
case 1 z ’s uncle/aunt y1 is red.

→ Recolor z′s parent and uncle/aunt to be black and z ’s
grandparent to be red. Then repeat checking red/black properties
as if z ’s grandparent is the new node. However, if the new z is the
root, make it black and stop!

case 2 z ’s uncle/aunt y is black and z is a right child of its parent.
→ Left-rotate z ’s parent and continue with case 3. Note that “p” in

our final result will denote “z” in the next case 3.

case 3 z ’s uncle/aunt y is black and z is a left child of its parent.
→ Recolor z ’s parent to be black and z ’s grandparent to be red.

Then right-rotate z ’s grandparent.

(This is just a repetition, purely as overview.)
1The uncle/aunt of a node x is the other child of x ′s grandparent,

i.e., x ’s parent’s sibling.
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Recolor and Rebalance, category “on the right”

Category 2: z ’s parent is the right child of z ’s grandparent.
case 1 z ’s uncle/aunt y is red.

→ Recolor z′s parent and uncle/aunt to be black and z ’s
grandparent to be red. Then repeat checking red/blackproperties
as if z ’s grandparent is the new node.

case 2 z ’s uncle/aunt y is black and z is a left child of its parent.
→ Right-rotate z ’s parent and continue with case 3. Note that “p” in

our final result will denote “z” in the next case 3.

case 3 z ’s uncle/aunt y is black and z is a right child of its parent.
→ Recolor z ’s parent to be black and z ’s grandparent to be red.

Then left-rotate z ’s grandparent.

Note:
This is identical to category 1, just with “left” and “right” interchanged!
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 15

What now?

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 15

Now we have two red nodes
in sequence with a red
uncle/aunt, so we need to
recolor. (Category 2, case 1)

I.e., recolor parent, uncle/aunt,
and grandparent.

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 10

We just re-colored the
grandparent and both its
children.

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 10

What now?

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 10

Now have again two red nodes
in sequence but without red
uncle/aunt, so we need to
rotate. (Category 2, case 2)

I.e., right-rotate upper red
node and continue with case 3.

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 10 or 18?

We just rotated.

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 18

What now?

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

FYI: z = 18

For the third time we have
two red nodes in sequence,
but again without red uncle/
aunt, so we left-rotate z ’s
grandparent.
(Category 2, case 3)

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Example

Add 15 to the tree:

Pascal Bercher 22.43

We just rotated – and are
done! :)

Not because we “reached the
root”, but because case 3
always terminates the process.

Category 2:
case 1: z ’s uncle/aunt is red.
case 2: z ’s uncle/aunt is black and

z is a left child of its parent.
case 3: z ’s uncle/aunt is black and

z is a right child of its parent.
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Insertion, Algorithm

The left code is for
binary search trees.

Find the differences!
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Insertion, Algorithm
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Insertion, Complexity

RB-Insert:

Lines 1-16 take O(log(n))
Line 17, which is RB-Insert-Fixup:

• #rotations in an insertion:

O(1)
▶ For insertion, there are at most two rotations.
▶ Rotation only happens in case 2 & case 3 of RB-Insert-Fixup.
▶ Case 2, which contributes a rotation will always be followed by case

3, which also contributes a rotation.
▶ Once case 3 is reached, we’re done. Due to line 12 and line 13, the

rotation will bring the mismatched color to an end.
• Most changes are recoloring, which is quicker than rotation.

▶ Recoloring takes O(log(n)), which happens in case 1.
▶ After recoloring, we move two levels up to the node’s grandparent,

where the same process might be invoked again (and again . . . )

Pascal Bercher 24.43
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Insertion, Complexity

RB-Insert:

Lines 1-16 take O(log(n))
Line 17, which is RB-Insert-Fixup:

• #rotations in an insertion: O(1)
▶ For insertion, there are at most two rotations.
▶ Rotation only happens in case 2 & case 3 of RB-Insert-Fixup.
▶ Case 2, which contributes a rotation will always be followed by case

3, which also contributes a rotation.
▶ Once case 3 is reached, we’re done. Due to line 12 and line 13, the

rotation will bring the mismatched color to an end.
• Most changes are recoloring, which is quicker than rotation.

▶ Recoloring takes O(log(n)), which happens in case 1.
▶ After recoloring, we move two levels up to the node’s grandparent,

where the same process might be invoked again (and again . . . )
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Deletion
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Overview: Abstract Procedure

First we delete the node z according to the standard deletion
rules learned for binary search trees.

• Recall that the node z gets replaced by either NIL (if it doesn’t
have children), by its child (if it has exactly one child), or by its
successor (if it has two children).

• Important: For a red/black tree, never change the color of any
node during the pure deletion step! We do that in the second step
when we repair the tree.

In a second step we need to repair the red/black tree properties
starting in a node x (defined later).
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
1 If z “represents” a leaf (i.e., z only has NIL children)

• If z is red, remove z, set the edge that lead to z to now lead to a
NIL node – and done!

This works since the black height is not influenced.
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
1 If z “represents” a leaf (i.e., z only has NIL children)

• If z is black, remove as before, but repair is now needed.
(We consider later how we repair.)

Pascal Bercher 27.43
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
2 If z has 1 non-NIL child.

• Note that in this case, z must be black, the non-NIL child must be
red, and both its children are NIL. Why?

Why must z be black? Proof by contradiction:
▶ Otherwise we would have an imbalance! Since

then on one side we had only one black node
(NIL) and on the other at least two (on each path).

▶ The case where z has another red node child is
not shown since this is obviously invalid.

Why must the red child have NIL children?
▶ So that z has a well-defined black height, as on its

other path it has exactly one black node.
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
2 If z has 1 non-NIL child.

• Note that in this case, z must be black, the non-NIL child must be
red, and both its children are NIL.

• Replace z with its only non-NIL child and color it in the color of z.
No repair!
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
3 If z has 2 non-NIL children.

• Let y be the node that replaces z (i.e., z ’s successor).
• If y is red, it can only have 2 NIL children.

Pascal Bercher 27.43
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
3 If z has 2 non-NIL children.

• Let y be the node that replaces z (i.e., z ’s successor).
• If y is red, it can only have 2 NIL children. Why?

Proof by contradiction:
▶ The left node must be NIL since y is the

successor!

▶ Its other child can be neither red (since then we
had two in row) nor black as seen before because
we’d get an imbalance (since the subtrees must
contain black NIL nodes).
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
3 If z has 2 non-NIL children.

• Let y be the node that replaces z (i.e., z ’s successor).
• If y is red, it can only have 2 NIL children.
• Once y replaced z (keeping z ’s original color), we are done!

Pascal Bercher 27.43
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
3 If z has 2 non-NIL children.

• If y is black and has 1 non-NIL child (which is red and has NIL
children), swap the key and data of z and y , apply the last rule (for
1 non-NIL child) to remove z (at the new position) – and done!

Pascal Bercher 27.43
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Deletion: Deletion, Algorithm

Deletion is similar to addition in that we also delete like in a binary
search tree, and then repair the red/black properties as/if required.

Suppose the deleted node is z.
3 If z has 2 non-NIL children.

• Otherwise (i.e., y is black and has two NIL children), swap z ’s and
y ’s keys, but keep the original color of z (now y ). Then delete the
node that now contains key z. Repair is needed.
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Deletion: Delete – Pseudocode
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Repair: Overview: When to Repair?

1 z has zero children (both NIL)
• z is red: No repair
• z is black: Repair

2 z has one child (one NIL)
• z is red: Can’t be! (As seen before.)
• z is black: No repair

3 z has two children (none NIL). Let y be its successor.
• y is red: No repair (it takes z ’s color)
• y is black: Repair if two NIL children.

(But pay attention to coloring in case y has 1 child)

After z got deleted, repair starts with node x . This will be
a node that initially will get an “additional” black color.
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Repair: Introduction

To sum up, we first delete according to standard binary search
tree deletion, and then repair if necessary. (See overview from
last slide to see when repair is required.)

Repair starts from the node x that takes z’s (case 1 in the
overview) resp. y ’s (case 3 in the overview) position.
Always annotate the x (could be NIL) and check all heights!

In all these repair cases, we deleted a black and are thus one
black short! To compensate, we “add” an additional color black
to x , making it black-black.

We will re-distribute this color to other nodes, making them
black-black or red-black (original, then added color).
How to redistribute?

• If x is red-black, make it black. (And we are done!)
• If x is black-black, find “nearest” red and “distribute” one of x ’s

black colors to change that node color from red(-black) to black.
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Repair: Introduction

To sum up, we first delete according to standard binary search
tree deletion, and then repair if necessary. (See overview from
last slide to see when repair is required.)

Repair starts from the node x that takes z’s (case 1 in the
overview) resp. y ’s (case 3 in the overview) position.
Always annotate the x (could be NIL) and check all heights!

In all these repair cases, we deleted a black and are thus one
black short! To compensate, we “add” an additional color black
to x , making it black-black.

We will re-distribute this color to other nodes, making them
black-black or red-black (original, then added color).

How to redistribute?
• If x is red-black, make it black. (And we are done!)
• If x is black-black, find “nearest” red and “distribute” one of x ’s

black colors to change that node color from red(-black) to black.
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Repair: Introduction

To sum up, we first delete according to standard binary search
tree deletion, and then repair if necessary. (See overview from
last slide to see when repair is required.)

Repair starts from the node x that takes z’s (case 1 in the
overview) resp. y ’s (case 3 in the overview) position.
Always annotate the x (could be NIL) and check all heights!

In all these repair cases, we deleted a black and are thus one
black short! To compensate, we “add” an additional color black
to x , making it black-black.

We will re-distribute this color to other nodes, making them
black-black or red-black (original, then added color).
How to redistribute?

• If x is red-black, make it black. (And we are done!)
• If x is black-black, find “nearest” red and “distribute” one of x ’s

black colors to change that node color from red(-black) to black.
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Repair: Categories and Cases

There are 2 categories and 4 cases for each.
1 Category 1: x is the left child of its parent.
2 Category 2: x is the right child of its parent.

(We don’t cover this case explicitly since it is analogous)

In the following, x is black-black and we denote x ’s sibling
(brother/sister) as w .
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Repair: Category 1, Case 1

Case 1: w is red.

Swap the color between w and x ’s parent, then rotate left on x ’s
parent. Then, continue to case 2/3/4 setting w = x .p.right .
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Repair: Category 1, Case 2

Case 2: w and both of its children are black.

Take one black from x and w each (setting w to red), and move it to
x .p. Since x .p can initially be red or black, it becomes red-black or
black-black. If we enter this case from case 1, x .p will be red-black,
and we can recolor it with black and are done. Otherwise, continue by
setting x = x .p.

(Main idea: move one black from each side upwards.)

Pascal Bercher 33.43



Introduction Basics Rotations Insertion Deletion AVL vs. Red/Black Trees Summary

Repair: Category 1, Case 3

Case 3: w and its right child are black, but its left child is red.

Swap color between w and its left child, then rotate right round w , and
continue with case 4.
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Repair: Category 1, Case 4

Case 4: w is black, w ’s right child is red.

Set the color of w to be the color of x .p and set the color of x .p and
w .right to be black. Then, rotate left around x .p. The color change of
x .p and w .right allows us to remove one of the black colors of x
without violating the red/black tree requirements.
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Repair: Repair – Pseudocode
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Properties: Deletion, Time Complexity

RB-Delete (without the repair) requires O(log(n))
RB-Delete-Fixup (aka repair) requires O(log(n))

• We need at most 3 rotations
• Cases 1, 3, and 4: Constant number of color changes plus at

most 3 rotations
• Case 2: The pointer can move at most O(log(n)) times.
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AVL vs. Red/Black Trees
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Insertion and Deletion Compared

What was the runtime of insert and delete?
• AVL tree:
• red/black tree:

Part of the reason was traversing down the tree, which already
takes O(log(n)).

But traversals aren’t the most expensive operation!
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Insertion and Deletion Compared

What was the runtime of insert and delete?
• AVL tree: O(log(n))
• red/black tree: O(log(n))

Part of the reason was traversing down the tree, which already
takes O(log(n)).

But traversals aren’t the most expensive operation!
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Insertion and Deletion Compared

What was the runtime of insert and delete?
• AVL tree: O(log(n))
• red/black tree: O(log(n))

Part of the reason was traversing down the tree, which already
takes O(log(n)).

But traversals aren’t the most expensive operation!
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Rotations Compared

How often do we have to rotate after insertion?
• AVL tree:
• red/black tree:

How often do we have to rotate after deletion?

• AVL tree:
• red/black tree:
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Rotations Compared

How often do we have to rotate after insertion?
• AVL tree: Only once! O(1)
• red/black tree: At most 3 times. O(1)

How often do we have to rotate after deletion?

• AVL tree:
• red/black tree:
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Rotations Compared

How often do we have to rotate after insertion?
• AVL tree: Only once! O(1)
• red/black tree: At most 3 times. O(1)

How often do we have to rotate after deletion?
• AVL tree:
• red/black tree:
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Rotations Compared

How often do we have to rotate after insertion?
• AVL tree: Only once! O(1)
• red/black tree: At most 3 times. O(1)

How often do we have to rotate after deletion?
• AVL tree: Potentially in each node up to the root O(log(n))
• red/black tree: At most 3 times! O(1)
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Summary

So, the red/black tree is more efficient for deletions.

But the AVL tree is ‘more balanced’ (lower tree height), which
leads to better look-up performance. (But has same performance
in terms of asymptotic complexity.)

Thus, if you do lots of deletions, the red/black tree is preferred. If
in contrast the data is not changing (deleted) much and you do
lots of look-ups, the AVL tree is preferred.
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Summary
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Summary

Today we covered red/black trees.

They are a different way to achieve self-balancing.

Operations considered:

Search: O(log(n))

Insertion: O(log(n))

Deletion: O(log(n))

We also considered when to use AVL trees and when to use red/black
trees instead.

Pascal Bercher 43.43


	Introduction
	Basics
	Rotations
	Insertion
	Deletion
	Overview
	Deletion
	Repair
	Properties

	AVL vs. Red/Black Trees
	Summary

