
Algorithms (COMP3600/6466)
Data Structures: Hash Tables

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Tuesday & Wednesday, 26. & 27.9.2023

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Introduction

Pascal Bercher 1.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Motivation

The last two weeks we stored data by using unique keys.
Our aim was to get “good” runtime for the most common
operations like:

• Search
• Insert
• Delete
• (Maybe others, like Min and Max)

We had:
• All are in O(log(n)) for balanced trees.
• For heaps, Min (or Max, depending on whether we use a Min- or a

Max-heap) is O(1), but the rest was O(h).

But ... Could we do even better? Could we achieve constant
runtime O(1) for the first three operations? If so, how?

Pascal Bercher 2.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Motivation, cont’d

To achieve constant runtime for Search, Insert, and Delete we
could just use an array!
Then, we could to the following:

• Search (data for key) k → check whether index k is true
• Insert (data for key) k → store true (or the data) at index k
• Delete (data for key) k → store false (or delete data) at index k

Are there any problems with this approach?
• Normally the size of an array equals the number of entries.

▶ Here, it needs to equal the size of the biggest key!(!)
→ E.g., consider you have 100 entries, but a max. key of 10.000 –

that’d be an extremely (memory-)inefficient data structure.
▶ Also what to do if you don’t even know the maximal key?

• What if we want to store multiple (key,data) entries?
(Note that we ignored this issue for the previous chapters!)

→ Hash tables can be thought of as generalized arrays:

Instead of fixed keys as array index, we compute a “suitable
index”, generated from the key using a hash function.

Pascal Bercher 3.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics

Pascal Bercher 4.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Graphical Illustration and Terminology

Universe U = {k1, . . . , ku} (all possible keys), |U| = u.

Hash table T , an array of size m, with n currently stored keys.

A hash function h : U → {0, . . . ,m − 1}

Note that:
The array size |T | is m ≪ maxk∈U k .
Collision may happen! (Dealing with this is a major part!)

Pascal Bercher 5.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Collisions

Recall the previous illustration with k2 and k5: h mapped both of them
to the same index i = h(k2) = h(k5) – that’s a collision!

What choices do we have to deal with such a case?
1 Change how data is stored:

• Hashing with chaining: Use a linked list to store all keys that are
mapped to index i (at this position).

• Open addressing: Choose the next free position.

2 Minimize likelihood of collisions via:
• Simple Uniform Hashing: Works well if equal and independent

distribution of keys is given.
• Universal Hashing: Select hash function at random.
• Perfect Hashing: We *ensure* that there are no collisions.

(We won’t cover these options in the same order given here.)

Pascal Bercher 6.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Common Hash Functions

Pascal Bercher 7.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Insertion, Deletion, Search

Each slot in the hash table contains a linked list.

For insertion, if a key is hashed into a non-empty slot, place the
new pair (key plus satellite data) at the front of the respective list:

For search and deletion, iterate through the respective list. In
case of deletion, cut out the respective element.

Runtimes are linear, but not O(n), where n is the number of keys
in the table (here: 3), but O(ni), where ni is the number of keys
mapped to index i (here: 2 for i = 1). The actual runtime then
depends on the hash function’s distribution of hash values.

Pascal Bercher 8.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Insertion, Deletion, Search

Each slot in the hash table contains a linked list.

For insertion, if a key is hashed into a non-empty slot, place the
new pair (key plus satellite data) at the front of the respective list:

For search and deletion, iterate through the respective list. In
case of deletion, cut out the respective element.

Runtimes are linear, but not O(n), where n is the number of keys
in the table (here: 3), but O(ni), where ni is the number of keys
mapped to index i (here: 2 for i = 1). The actual runtime then
depends on the hash function’s distribution of hash values.

Pascal Bercher 8.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Simple Uniform Hashing

A uniform hash function is a function where any given key is
equally likely to map onto any of the m slots, independently of
where any other key has been mapped to. Thus, it is a function h
such that:

P(h(k) = v) =
1
m

for all k ∈ U and v ∈ {0, . . . ,m − 1}

(We also say that h “hashes” to a certain position.)
Note how uniformity depends on the Universe!

Given a uniform hash function and assuming the input keys are
uniformly distributed and independent, we get the following
collision probability:

P(h(k1) = h(k2)) =
1
m
, k1 ̸= k2

(Is this right? Shouldn’t it be 1
m2 ?)

Pascal Bercher 9.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Time Complexity

Assume we use Uniform Hashing (with uniformly distributed and
independent keys) with Chaining.
Do we have constant time access?

Time complexity of searching a key (regardless of success) on
average Θ(1 + α), where α = n

m
• Recall: n are number of keys stored so far, m the size of the array.
• The expression α is usually called the load factor. If we keep it

constant, average complexity will be constant too!
• We might have to resize the hash table to achieve this.

(Not covered in this lecture.)

How to prove that?
• Case 1: When the key is not found (easy!)
• Case 2: When the key is found (more challenging)

Pascal Bercher 10.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Time Complexity Proof (Key not Found)

Steps for searching: case: Key not found!

Compute h(k), which runs in O(1).
Average number of checks to know that the key isn’t contained:

• Isn’t that just one? The list is empty! (Case “key not found”!)
• The list may not be empty since other keys that map to h(k) might

be stored in that list!
• Thus we’ll have to run to the end of said list.
• Thus we get the average linked list length as runtime!

This is exactly our load factor α = n
m due to all our assumptions!

(Hash function is uniform, and keys are uniformly distributed and
independent.)

Thus, average is Θ(1 + α), worst case is O(n), since m is
constant.

Pascal Bercher 11.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Time Complexity Proof (Key Found)

Steps for searching: case: Key found!

Compute h(k), which runs in O(1).
Average number of checks until k is found:

• Intuition: Expected search runtime in average-long list.
• Formally, required: Average number of elements that lie before k .

• Let the random variable Xi,j =

{
1 if h(ki) = h(kj)

0 otherwise
,

where kj denotes the j th inserted key.
• We know that Pi ̸=j(Xi,j = 1) = E[Xi,j] =

1
m

Pascal Bercher 12.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Time Complexity Proof (Key Found, cont’d)

Will show that the average search runtime is:

E

[
1
n

n∑
i=1

(1 +
n∑

j=i+1
Xi,j)

]
The number of examined elements until success is one more than the
number of elements appearing in the list in T [h(k)] before k , which is
the inner equation. (k could be any ki !)
Assume the key k we search for is k1, inserted first!

Pascal Bercher 13.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Time Complexity Proof (Key Found, cont’d)

Will show that the average search runtime is:

E

[
1
n

n∑
i=1

(1 +
n∑

j=i+1
Xi,j)

]
The number of examined elements until success is one more than the
number of elements appearing in the list in T [h(k)] before k , which is
the inner equation. (k could be any ki !)
Assume the key k we search for is k2, inserted second:

Now we “just” need to show that the above equation is in Θ(1 + α).

Pascal Bercher 13.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Time Complexity Proof (Key Found), cont’d

E

[
1
n

n∑
i=1

(1 +
n∑

j=i+1
Xi,j)

]
= . . .

(next equation follows
from linearity of expectation)

=
1
n

n∑
i=1

(1 +
n∑

j=i+1

E [Xi,j]) =
1
n

n∑
i=1

(1 +
n∑

j=i+1

1
m
)

=
1
n

n∑
i=1

1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

n · m

n∑
i=1

n∑
j=i+1

1

= 1 +
1

n · m

n∑
i=1

((1 + · · ·+ 1)︸ ︷︷ ︸
n−1

+(1 + · · ·+ 1)︸ ︷︷ ︸
n−2

+ · · ·+ 1︸︷︷︸
1

)

= 1 +
1

n · m

n∑
i=1

(n − i) = 1 +
1

n · m
(

n∑
i=1

n −
n∑

i=1

i) = 1 +
1

n · m
(n2 − n

2
(n + 1))

= 1 +
n
m

− n + 1
2m

= 1 +
n − 1
2m

= 1 +
n

2m
− 1

2m

= 1 +
1
2
α− 1

2m
∈ Θ(1 + α) (∋ 1 +

1
2
α(1 − 1

n
))

Pascal Bercher 14.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Hashing with Chaining: Commonly Used Hash Functions

Simplest:
• h(k) = ⌊k · m⌋ when the key is a real number independently and

uniformly distributed in [0, 1)
Division method:

• h(k) = k mod m when the key is an integer.
• Choosing m to be prime might lead to fewer collisions if keys are

not independently and uniformly distributed. If they are (which we
assume) it doesn’t matter.

Multiplication method:
• h(k) = ⌊((k · A) mod 1) · m⌋, where A is a constant (Real) in the

range 0 < A < 1.
• What? Why does mod 1 make sense?

▶ Recall that A is real! So that’s what remains.
▶ (k ·A) mod 1 = k ·A−⌊k ·A⌋ is the fractional component of k ·A.

• E.g., let key k = 100, constant A = 0.042, and table size m = 16.
h(k) = ⌊(100 × 0.042 mod 1)× 16⌋ = ⌊(4.2 mod 1)× 16⌋

= ⌊0.2 × 16⌋ = ⌊3.2⌋ = 3
• Reduces dependencies on number of slots in the hash table.

Pascal Bercher 15.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Universal Hashing

Pascal Bercher 16.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics: Issues with Hash Functions

All previous (commonly used) hash functions are deterministic.
This is on the one hand important, but on the other there might be
situations where we might perform at the worst case.

• E.g., if the data is provided by an adversary, then he/she is in
control of the distribution and may exploit this to make us perform
at the worst-case!

• Even without an adversary keys might not be uniformly distributed
(depending on the application) and thus cause (close to?)
worst-case performance.

• Remember: Worst-case is a single list, i.e., O(n).

Pascal Bercher 17.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics: Idea Behind Universal Hashing

In Universal Hashing, we choose a random hash function h from
a collection of hash functions, denoted by H.

A collection H of hash functions is called universal when for each
pair of distinct keys k , k ′, the number of hash functions for which
h(k) = h(k ′) is at most |H|

m , |{h ∈ H | h(k) = h(k ′)}| ≤ |H|
m .

Equivalently, this means that for each specific h ∈ H, the
probability of a hash collision between any distinct keys k and k ′

is at most 1
m if h(k) and h(k ′) were randomly and independently

chosen from all possible hash values {0, . . . ,m − 1}.

We later see how such a “family” H can be constructed by
parametrizing hash functions.

Pascal Bercher 18.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics: Average Number of Collisions

Suppose we have a hash table T that uses chaining and universal
hashing that’s already filled with n distinct keys. Terminology:

Let ni denote the number of elements stored in T [i].

E[ni] is the expected number of elements stored in T [i].

Given a key k , if h(k) = i for a hash function h selected uniformly at
random from the collection H, then it holds:

if k is not already in T : E[ni] ≤ n
m = α

if k is already in T : E[ni] ≤ n−1
m + 1 < α+ 1

We now prove that these bounds hold without assumptions on the
distribution on keys, but solely depend on the hash function.

Pascal Bercher 19.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics: Average Number of Collisions, Proof

Let the random variable Xk ,l describe that keys k and l are
colliding:

Xk ,l =

{
1 if h(k) = h(l)

0 otherwise

P(Xk ,l = 1) = E[Xk ,l] ≤ 1
m

WLOG, suppose we are looking for key k .

Define random variable Yk as the number of keys other than k ,
which are in T and hash to the same index as k . First, let
keys(T) be the set of keys already in T . Then we get:

E[Yk] = E
[∑

l ̸=k
l∈keys(T)

Xk ,l

]
=

∑
l ̸=k

l∈keys(T)

E[Xk ,l] ≤
∑
l ̸=k

l∈keys(T)

1
m

Pascal Bercher 20.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics: Average Number of Collisions, Proof cont’d

Recall from last slide: E[Yk] ≤
∑
l ̸=k

l∈keys(T)

1
m

Thus:

If k is not already in T :

E[ni] = E[Yk] ≤ n
m = α

If k is already in T :

E[ni] = E[Yk] + 1 ≤ n−1
m + 1 < α+ 1.

Pascal Bercher 21.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Basics: Examples for Universal Hash Functions

Example from our CLRS textbook (p. 267, PDF page 288):
• ha,b,p(k) = ((a · k + b) mod p) mod m
• a, b, and p are constants. p prime, p > m.
• H = {ha,b,p | a, b ∈ {0, . . . , p − 1}, a ̸= 0}

Dot Product Hash Family
• Covered in detail next!

Pascal Bercher 22.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Dot Product Hash Family: Example for Generating Universal Hash Functions

Suppose m is a prime number.
Express key k (which has base 10) with another base m.

• Recall: With our “normal” numbers that we use every day, we have
base m = 10, so a number k , e.g., k = 42 (i.e., k⃗ = ⟨4, 2⟩, since
42 = 4 · 101 + 2 · 100), consists of digits in {0, . . . , 9}.

• Thus, express k as sequence/vector k⃗ = ⟨kr−1, . . . , k0⟩, where
ki ∈ {0, . . . ,m − 1} for all 0 ≤ i ≤ r − 1, and r being the arity
that we need to express k with base m.

Note that r = ⌊logm(maxk∈U k)⌋+ 1 (since maxk∈U k ≤ mr − 1).
E.g., if U = {0, . . . , 42} and m = 2, the highest key is
4⃗2 = ⟨1, 0, 1, 0, 1, 0⟩, so r = ⌊log2(42)⌋ = ⌊5.39 . . . ⌋+ 1 = 6
(Note that m = 2 is unrealistic since that’s our array size!)
Dot product hash family:

• Choose a random number a and compute a⃗ = ⟨ar−1, . . . , a0⟩
(again expressed with base m, and with the same length r as k)

• Define ha(k) = (⃗a · k⃗) mod m =
∑r−1

i=0 ai · ki mod m
• The dot product hash family is H = {ha | a ∈ {0, . . . ,mr − 1}}.

Pascal Bercher 23.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Dot Product Hash Family: Example 1

Suppose the possible keys are integers U = {0, . . . , 20}.

Assume m = 5 (the array size).

So we get r = ⌊log5(20)⌋+ 1 = ⌊1.891 . . . ⌋+ 1 = 2.
So two decimals suffice: 2⃗0 = 4 · 51 + 0 · 50

Assume the key to insert is k = 19.
Since 19 = 3 · 51 + 4 · 50 we get 1⃗9 = ⟨3, 4⟩
Assume our randomly picked a ∈ {0, . . . , 52 − 1} is 15.
In base 5 that’s a⃗ = ⟨3, 0⟩.
So we get ha(k) = h15(19) = (1⃗5 · 1⃗9) mod 5
= (3 · 3 + 0 · 4) mod 5 = 9 mod 5 = 4

Pascal Bercher 24.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Dot Product Hash Family: Example 2

Let’s say we hash IPs. (IPv4)

IPs like 127.0.0.1 (the local host) consist of four numbers, each in
{0, . . . , 255}. Let’s interpret IPs as those “vectors”.

Recall that our ki in k⃗ = ⟨. . . ki . . . ⟩ were within {0, . . . ,m − 1}.
So if we see an IP as a number with 4 “digits” each between 0
and 255, then m − 1 = 255, so m = 256. We need m prime, so
we may pick m = 257 (which is the smallest prime ≥ 256).

So the local host IP would be l⃗h = ⟨127, 0, 0, 1⟩ (representing the
number lh = 2, 130, 706, 433 in base 10, but that doesn’t matter!)

Now we pick a random key a, a⃗ = ⟨a3, a2, a1, a0⟩, such that
ai ∈ {0, . . . ,m − 1} for all 0 ≤ i ≤ 3.

Then proceed as before: compute ha(lh) as (⃗a · l⃗h) mod 257

Note that here the given key lh is to base m = 256, but the
random key a is to base m = 257, which we normally don’t do.

Pascal Bercher 25.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Dot Product Hash Family: Universality

Is the dot product hash family universal?

Yes!
Proof:

• It wouldn’t be presented in that section, otherwise! :)
• (The actual proof is skipped, but you should know which

properties should hold.)

Pascal Bercher 26.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Open Addressing

Pascal Bercher 27.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Procedure

All items are stored directly in the hash table (i.e., no linked list,
one item per slot). So the main idea is to look for another free
index in case of collision.

Here, the hash function maps “(key, number of trials)” to an index
in the hash table:

h : U × {0, . . . ,m − 1} → {0, . . . ,m − 1}

The sequence ⟨h(k , 0), h(k , 1), . . . , h(k ,m − 1)⟩ is called a
probe sequence.

Each probe sequence must be a permutation of ⟨0, . . . ,m − 1⟩.
Why the permutation requirement? So that each slot gets
eventually filled! (Since the permutation is the sequence of array
positions that are tried, in the order of trying.)

Pascal Bercher 28.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Generic Example

Say that we want to store key k . Since we don’t know whether
h(k) is still free or not, we just assume so and thus try the first
trial: We compute h(k , 0), which, say, is i . If it’s free, store it
there, i.e., at T [i].

Say we attempt to store a second key k ′. Again we have to try the
first trial again, so we compute h(k ′, 0). Assume that’s a collision
with i , so we get h(k ′, 0) = i as well.

We will thus have to try again and compute h(k ′, 1), which will
get another index. We repeat until we get a free index.

Pascal Bercher 29.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Insertion and Search

An issues here?

One issue here is that search might take O(m). If we assume
m > n (which we must in this context), it’s in O(n).

Deletion doesn’t (easily) work! (Next slides show why.)

Pascal Bercher 30.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Deletion

Imagine key k has been stored in T [h(k , 3)].

Suppose we delete T [h(k , 2)] (i.e., some other key lies there,
which happens to also have the hash value h(k , 2)). Thus,
assume that we just assigned T [h(k , 2)] = NIL for this purpose.

Now we can no longer find k in the hash table according to the
previous search routine, since that stops once T [h(k , 2)] = NIL
is found.
Solution:

• Fix delete procedure: Set T [h(k , 2)] as deleted instead of NIL:
▶ Solved: Search will continue on ‘deleted’ entries and still stop on

‘empty’ (NIL) ones.
▶ New issue: Insert can so far only delete when entry is NIL.

• Fix insert procedure: Modify line 4 (insertion) such that it inserts
data into cells that are NIL or deleted.

Pascal Bercher 31.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Probing Strategies: The Problem

Recall that Insert and Search increase the i which encodes the
trial number thus jumping from some h(k , i) to h(k , i + 1).

But the actual values ⟨h(k , 0), h(k , 1), . . . , h(k ,m − 1)⟩ of the
probe are still “open” (i.e., not set)! We only demanded that it’s
some permutation of ⟨0, . . . ,m − 1⟩, but which?

That’s called probing strategy.

Pascal Bercher 32.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Probing Strategies: Strategy Overview

Linear Probing: h(k , i) = (h′(k) + i) mod m, where h′ is a usual
hash function.

• Meaning? Just use the next cell!
• Issue: Clustering, i.e., consecutive group of occupied slots

becomes longer.

Double Hashing: h(k , i) = (h1(k) + i · h2(k)) mod m, where h1
and h2 are usual hash functions. It must also hold that:

• h2 can never be 0 (for good reasons!)
• h2(k) must be relatively prime to m (greatest common divisor is 1)

Pascal Bercher 33.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Perfect Hashing

Pascal Bercher 34.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

General Idea and Properties

If the data is static (i.e., no insert and delete), i.e., all data is given
in advance, then we can ensure worst-case O(1) search time.
Idea: 2-level hashing

• Each slot points to another hash table (instead of to a linked list).
• Use universal hashing in both levels.

Properties:
• O(1) search time in the worst case.
• O(n) expected space.

Pascal Bercher 35.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

How to Build a Perfect Hash Function?

1 Set up outer hash table:
• Set m to n. (Though usually m is prime.)
• Pick a universal hash function h1 ∈ H.

2 Set up inner has tables:
• Set mi to n2

i .

• If
m−1∑
i=0

mi > c · n, for a selected constant c, redo 1.

This guarantees O(n) size of the entire table!
• Choose a universal hash function hi

2 ∈ H to be the hash function
for this inner hash table at position i and insert its elements.

• As long as there are two k , k ′ with hi
2(k) = hi

2(k
′) for any k ̸= k ′,

pick a different hi
2 and rehash those elements in that inner table

according to the new function.

Pascal Bercher 36.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Why Inner Table Size n2
i ? (Runtime)

Theorem:

Let m be n2. The probability that there are any collisions (using a hash
function randomly chosen from a set of universal hash functions) is
strictly less than 50%.

Proof:

There exist
(n

2

)
pairs of keys (worst case number of collisions).

Each collision has probability 1
m .

Let X be a random variable counting the number of collisions.

E[X] =
(n

2

)
· 1

m = n·(n−1)
2 · 1

n2 = 1
2 · n−1

n < 1
2 · n

n = 1
2 .

So it’s more likely (than not) that we get no collisions!
(Note that this result generalizes to mi and ni .)

Pascal Bercher 37.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Why Inner Table Size n2
i ? (Space)

Theorem:

Let m be n and mi be n2
i for each 0 ≤ i < m.

Then it holds: E

[
m−1∑
i=0

mi

]
< 2n

Proof:

Some auxiliary equality: a2 = a + 2 ·
(a

2

)
(we use it for mi = n2

i)

E

[
m−1∑
i=0

mi

]
= E

[
m−1∑
i=0

ni + 2 ·
(ni

2

)]
= E

[
m−1∑
i=0

ni

]
+ 2 · E

[
m−1∑
i=0

(ni
2

)]
= n + 2 · E

[
m−1∑
i=0

(ni
2

)]
= n + 2 · (

(n
2

)
· 1

m) = n + 2 · (n·(n−1)
2 · 1

n)

= n + (n − 1) = 2n − 1 < 2n (Outer table size still missing.)

So the expected perfect hash table size is almost exactly 2n + n = 3n.

Book shows: probability that the size is ≥ 4n is < 50%.

Pascal Bercher 38.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Summary

Pascal Bercher 39.40

Introduction Basics Common Hash Functions Universal Hashing Open Addressing Perfect Hashing Summary

Summary

This week we covered hash functions.

Hash functions considered:

Simple Uniform Hashing → assumes equal hash distribution

Universal Hashing → select hash function randomly

Perfect Hashing → no collisions at all

Data storage types:

Hashing with Chaining → use linked list

Open Addressing → take another free position

The main motivation is to obtain constant time access to data.

Pascal Bercher 40.40

	Introduction
	Basics
	Common Hash Functions
	Hashing with Chaining

	Universal Hashing
	Basics
	Dot Product Hash Family

	Open Addressing
	Probing Strategies

	Perfect Hashing
	Summary

