
Algorithms (COMP3600/6466)
Complexity Theory

Pascal Bercher

(working in the Intelligent Systems Cluster)

School of Computing
The Australian National University

Tuesday & Wednesday, 24. & 25.10.2023

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Introduction

Pascal Bercher 1.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Outline of this Week

We investigate the computational hardness of decision problems:
• What’s the “performance” of the best-known algorithm for solving

the respective problem?
• Which problems are equally hard?
• Which ones are harder than others?
• We look at how problems can be “turned into each other”.

We measure “performance” in terms of a Turing Machine’s:
• Time requirement (number of operations/transitions)
• Space requirement (number of cells that can be read/written)

Pascal Bercher 2.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Motivation

Why would we do that? Given a new problem to solve, we:
. . . know performance bounds for our yet-to-be-designed solver
→ No need to look for an “efficient” algorithm if not a single genius so

far was able to do that! (Well, don’t let that stop you necessarily,
see last point!) But it makes a great excuse. :)

. . . can use existing solvers instead of designing new ones,
→ Which software do you think is better? The one you design from

scratch in a few weeks, or one that entire research communities
(few or dozens to thousands of PhD students, post-docs,
Professors) created over decades?

. . . understand the problems we solve much better.
→ If you know that your (new) problem is equivalent to an existing

(established) one, that surely helps... (Imagine, you take a course
twice! The second time it’s much easier...)

Pascal Bercher 3.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Motivation, cont’d

Some other reasons:

It’s a lot of fun! (It’s basically “solving puzzles”.)
Extremely simple reduction:

• Assume you have an algorithm that checks whether a number is
even, even(n).

• But you want to know whether a number is odd... Will you devise a
new algorithm?

→ No! Turn your problem into the existing one! Define odd(n) :=
even(n + 1).

You can get famous by solving open problems! (E.g., P
?
= NP.)

Seriously: somebody will be the first... Could be you!
Interested? Take COMP3630, Theory of Computation.
(You find all slides on Pascal’s webpage.)

Pascal Bercher 4.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Basics

Pascal Bercher 5.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: What do we recap?

Everybody should have taken COMP1600 and thus know already:
Deterministic Finite Automata (DFAs) and its extension to
Non-deterministic Finite Automata (NFAs).
→ We won’t use them here, but it won’t hurt re-familiarizing yourself

with them since Turing Machines can be regarded an extension.

Formal Languages and language of an automaton (or grammar).
→ We directly build on them, and thus recap them here.

Turing Machines
→ We directly build on them, and thus recap them here. Slides are

mostly taken from COMP3630, so definitions might slightly differ
from COMP1600 (but are semantically equivalent).

Pascal Bercher 6.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: Formal languages

Alphabet Σ: A finite set of symbols, e.g.,
• Σ = {0, 1} (binary alphabet)
• Σ = {a, b, . . . , z} (Roman alphabet)

A String (or word) is a finite sequence of symbols. Strings are
usually represented without commas, e.g., 0011 instead of
(0, 0, 1, 1)
Concatenation x · y of strings x and y is the string xy .

• ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .
• Concatenation of sets of strings: A · B = {a · b | a ∈ A, b ∈ B}
• Concatenation of the same set: A2 = AA; A3 = (AA)A, etc.

(We often elide the concatenation operator and write AB for A · B)

Kleene-∗ or closure: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 An

Any subset of Σ∗ is called a (formal) language.

Heads-up: We will see that any language is a decision problem!

Pascal Bercher 7.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: Language of an Automaton

Definition:

Let A be an automaton (this week: a Turing Machine, ...)

Then L(A), the language of A, is the set of words “accepted” by A.

We will define more formally what “accepting” means, but
informally that’s the set of words for which A enters (or may enter,
in case of a non-deterministic automaton) an “accepting state”.

Why is this relevant?

Decision problems are defined (later) via languages, and

we will ask whether an algorithm (= Turing Machine) exists that
accepts exactly that language – and hence implements what we’d
like to do (we’ll see that languages describe our problems).

Pascal Bercher 8.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: Turing Machine: Informal Definition

Finite Control

B B B B BBa bc a b b · · ·· · ·

An tape extending infinitely in both sides

A reading head that can edit tape, move right or left.

A finite control.

A string is accepted if finite control reaches a final/accepting state

Pascal Bercher 9.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: Turing Machine: Formal Definition

A deterministic Turing Machine M = (Q,Σ, Γ, δ, q0,B, F) consists of:

Q: finite set of states

Σ: finite set of input symbols

Γ: finite set of tape symbols such that Σ ⊆ Γ

δ: (deterministic) transition function. δ : Q × Γ → Q × Γ×{L,R}
is a partial function over Q × Γ, where the first component is
viewed as the present state, and the second is viewed as the
tape symbol read. If δ(q,X) is defined, then

Present state

Next StateTape symbol Reading head direction to move next

‹(q;X) = (q0; Y; D) The symbol replacing X

B ∈ Γ \ Σ is the blank symbol. All but a finite number of tape
symbols are Bs.

q0: the initial state of the TM.

F : the set of final/accepting states of the TM.

Pascal Bercher 10.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: (Deterministic) Turing Machine: Example

Consider the following TM, defined over an initial string over Σ = {0, 1}:

1 0 0 1 1 0 1 1

����
S0

- -
B

B,L

6��1
1,R

?

��0
0,R

����
S1

- -
0

1,R
B

1,R6��1
0,L

�����
��
H

(Double-circled states are final states.)

1 What does this TM do? It increments any number by 1!
2 What language does it accept? Σ∗

Pascal Bercher 11.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Recap: Language, Acceptance, and Rejection of Turing Machines

Most important definitions:
A TM ...

• accepts a word if there is a sequence of transitions from q0 to
some state f ∈ F .

• halts if no state transition exists for the currently read symbol in
the current state.

• rejects a word if it is not accepted and all state transitions halt.

The language of a TM M, L(M), is the set of words accepted by
it. Note: If L(M) = L, then there exists a TM M ′ with L(M ′) = L
and M ′ halts on all w ∈ L (but not necessarily on those not in L).

A language L is decided by a TM M if L(M) = L and for all w /∈ L,
M halts (and thus rejects). A language L is called decidable if
there exists a TM M, such that M decides L.

We now restrict ourselves to decidable languages and check how
“complex” those languages (now: called decision problems) are.

Pascal Bercher 12.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

New Basics: Non-deterministic Turing Machines

Definition of non-deterministic TMs:

Non-deterministic TMs are defined exactly as deterministic ones,
with the exception that the state transition function now allows
multiple state transitions given the same symbol,
δ : Q × Γ → 2Q×Γ×{L,R} is a partial function.

Even the definition of acceptance, halting, and rejection is the
same! (And thus also for the language of a TM.)

The main difference is that now for each word we need to check
whether some state transitions (also called: computation path) exist,
whereas previously such a path was unique due to determinism.

Pascal Bercher 13.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

New Basics: Some additional Notes on Turing Machines

The following notes are “redundant” in the sense that they do follow
from the previous definitions – but worth pointing out anyway.

There’s an important difference between the acceptance of a
word w by finite automata (NFAs, and ϵ-NFAs) and TMs:

• NFAs/ϵ-NFAs can only accept a word if it’s fully read!
• This is not the case for both TMs: They do not have to “read” the

entire input word. In other words, for a TM to accept a word w it
suffices for it to reach any goal state, even if it halts before reading
the entire initial tape content.

Halting neither implies acceptance nor rejection. But rejection
implies halting (and non-acceptance), and furthermore on
non-deterministic TMs it means that all transitions must halt. So if
there is a possibility to run into an infinite loop, even if all other
transitions halt and do not accept, the respective word would still
not be rejected (but of course also not accepted).

Pascal Bercher 14.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

New Basics: Non-Deterministic Turing Machine: Example

Consider the following TM, defined over an initial string over Σ = {0, 1}:

1 0 0 1 1 0 1 1

����
S0

- -
1

1,R

6��1
1,R

?

��0
0,R

����
S1

- -
1

1,R

6��1
1,R

�����
��
H

1 What does this TM do? Checking for the “right” input.
2 What language does it accept? {w | w contains ≥ 2 consecutive 1s}

= {w11w ′ | w ,w ′ ∈ Σ∗}

Pascal Bercher 15.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

New Basics: Decision Problems

Every language is a decision problem. Examples:
Given two sets A, B, is A ⊆ B?
→ Subset := {(A,B) | A ⊆ B}
→ Then, checking whether A1 ⊆ B1 for some concrete A1,B1,

means checking (A1,B1) ∈ Subset .
→ Can easily be done in P.

Does the SAT formula ϕ a satisfying valuation?
→ SAT := {ϕ | ϕ is a SAT formula that has a satisfying valuation }
→ Then, checking whether some concrete ϕ is satisfiable or not

corresponds to checking whether ϕ ∈ SAT .
→ The most famous problem known to be NP-complete.

Does Graph G have a vertex cover of size at most k? A vertex
cover is a set of vertices that “covers” all edges.
→ VC := {(⟨V ,E⟩, k) | ⟨V ,E⟩ has a node cover ≤ k , k ∈ N }
→ Then, checking whether a concrete graph G1 has a node cover,

e.g., of size 42, means checking whether (G1, 42) ∈ VC.
→ We will also see later that this is NP-complete.

Pascal Bercher 16.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

“Algorithm” Complexity

Pascal Bercher 17.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Complexity of TMs

We have two kinds of TMs:

Deterministic Turing Machines and

Non-deterministic Turing Machines.

For both, we measure their “complexity” both in terms of:

their (worst-case) runtime

→ number of transitions depending on the input’s size.

their (worst-case) space consumption

→ number of tape cells read depending on the input’s size.

Pascal Bercher 18.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Time and Space Consumption, Example

Let’s decide L = {0i1i | i ∈ N} by TM M, i.e., check whether an
arbitrary input has the form 0i1i for some i . M does:

Scan word w and reject if anything not in {B, 0, 1} or 10 is found.
Repeat as long as there are 0s and 1s on the tape:

• Replace both the leftmost 0 and the rightmost 1 with blanks.

If either only 0s or 1s are left: reject, otherwise accept.

1 How much “time” does M need, as a function f of w ’s length?
f adheres f (2k) = f (2(k − 1)) + 4k + 1, which is in O(n2).

w ϵ 01 0212 0313 0414 0515

f (|w |) 2 8 19 34 53 76

(exact numbers depend on implementation details)

2 How much “space” does M need? O(n)

So in total, M has polynomial time and space restriction!

Pascal Bercher 19.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Time and Space Consumption in Practice

Our formal theory defines runtime based on Turing Machines, but in
practice, we can restrict to pseudo code! Two examples:

Given a CNF formula over n variables, e.g., (a ∨ ¬b) ∧ (b ∨ ¬c) ∧ c,
check whether we can make the formula true:

1 Deterministic algorithm: Iterate over all 2n truth assignments,
accept if one makes it true, otherwise reject.
→ polynomial space (re-use variables) and exponential time.

2 Non-Deterministic algorithm: Guess a variable assignment and
check it. Accept if one makes it true, otherwise reject.
→ polynomial space and polynomial time with guessing.

So usually we don’t have to bother about details of TMs! :)

Pascal Bercher 20.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Complexity Classes

Pascal Bercher 21.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

First some auxiliary definitions:

DTIME(t(n)) = {L | det. TM decides L in O(t(n)) time }
NTIME(t(n)) = {L | non-det. TM decides L in O(t(n)) time }
DSPACE(t(n)) = {L | det. TM decides L with O(t(n)) space }
NSPACE(t(n)) = {L | non-det. TM decides L with O(t(n)) space }

Now we can define some basic complexity classes:

P =
⋃

k∈N DTIME(nk) PSPACE =
⋃

k∈N DSPACE(nk)
NP =

⋃
k∈N NTIME(nk) NPSPACE =

⋃
k∈N NTIME(nk)

EXPTIME =
⋃

k∈N DTIME(2nk
) EXPSPACE =

⋃
k∈N DSPACE(2nk

)

NEXPTIME =
⋃

k∈N NTIME(2nk
) NEXPSPACE =

⋃
k∈N NSPACE(2nk

)

We focus on classes P vs. NP vs. EXPTIME!
(The remaining ones are just listed for the sake of completeness.)

Pascal Bercher 22.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Relationships among Complexity Classes

How do time and space relate?

On which TM can you solve harder/more problems? Using n
movements or using n cells?

In order to “use” a cell, we need to have a transition towards it.
Thus, each space class can potentially contain more problems
than their corresponding time class:

• P ⊆ PSPACE and NP ⊆ NPSPACE
• EXPTIME ⊆ EXPSPACE and NEXPTIME ⊆ NEXPSPACE

How do deterministic and non-deterministic classes relate?

Deterministic TMs are a special case of non-deterministic TMs.
Thus, non-deterministic classes can potentially contain more
problems than their corresponding deterministic classes:

• P ⊆ NP and EXPTIME ⊆ NEXPTIME
• PSPACE ⊆ NPSPACE and EXPSPACE ⊆ NEXPSPACE

Pascal Bercher 23.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Relationships among Complexity Classes: What’s known

What’s also known to the literature:

PSPACE = NPSPACE and EXPSPACE = NEXPSPACE
(Savitch’s Theorem, 1970)

P ⊊ EXPTIME
(We know problems in EXPTIME which are provably not in P)

So in total, we get:

(NPSPACE and NEXPSPACE not shown due to the above.)

P NP PSPACE EXPTIME NEXPTIME EXPSPACE⊆ ⊆ ⊆ ⊆ ⊆

̸=

Pascal Bercher 24.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions

Pascal Bercher 25.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: Basic Definitions

This is the most important (and fun!) part of this week!

We want to transform problems into each other – via reduction.

I.e., we solve “our given problem” by turning it into a known one
(which must be as least as hard; otherwise that’s not possible).

Definition

f : Σ∗ → Σ∗ is a polytime-computable function if some polynomial
time TM M exists that halts with just f (w) on its tape, when started on
any input w ∈ Σ∗.

Definition

A ⊆ Σ∗
1 is polynomial time mapping-reducible to B ⊆ Σ∗

2, written
A ≤P B, if a polytime-computable function f : Σ∗

1 → Σ∗
2 exists that is

also a reduction (from A to B).

Pascal Bercher 26.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: Main Definition

Definition

A reduction is a polynomial-time translation of the problem, say r .
More precisely:

1 r(w) can be computed in time polynomial in |w |.
2 w ∈ A if and only if r(w) ∈ B (so it “preserves the answer”).

Example:
EVEN := {n | n mod 2 = 0}, ODD := {n | n mod 2 = 1}
Reduction from ODD to EVEN:

• r(k) = k + 1, so we get k ∈ ODD iff r(k) ∈ EVEN
• So essentially we can define odd(n):=even(r(n)) now.

If however our goal would have been to show that the ‘new’
problem ODD is at least as hard as EVEN, then we would have
had to reduce from EVEN to ODD (though r would have been the
same). Check this statement after “hardness” was introduced!

Pascal Bercher 27.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: Independent Set

The Independent Set Problem:
Assume you want to throw a party. But you know that some of your friends
don’t get along. You only want to invite people that do get along.

Formalized as graph.
vertices are your mates
draw an edge between two vertices if people don’t get along

Problem:
Given a graph and a k ≥ 0, is there an independent set, i.e., a subset I of
≥ k vertices so that

no two elements of I are connected with an edge.
i.e., everybody in I gets along

Example of an independent set of size
2 (just the red-circled vertices)

Pascal Bercher 28.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: Solving the Independent Set Problem

Naive Implementation:

loop through all subsets of size ≥ k (exponentially many!)

and check whether they are independent sets

→ Proves membership in EXPTIME

Using Non-deterministic Turing Machines:

guess a subset of vertices of size ≥ k

check whether it is an independent set

→ Proves membership in NP

Question: Can we do better? Is there a P algorithm?
Answer: We don’t know! But “hardness” helps figuring this out.

Pascal Bercher 29.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: Vertex Cover

Given a graph G = ⟨V ,E⟩, a vertex cover is a set C of vertices such that
every edge in G has at least one vertex in C.

Example vertex cover:
The red-circled vertices.

Vertex Cover (Decision) Problem.

Given graph ⟨V ,E⟩ and k ≥ 0, is there a vertex cover of size ≤ k?
VC := {(⟨V ,E⟩, k) | ⟨V ,E⟩ has a node cover ≤ k , k ∈ N }

Naive Algorithm:

search through all subsets of size ≤ k (this is exponential)
check whether it’s a vertex cover

→ This proves VC ∈ EXPTIME, but we can do better!
(I.e., we could also guess and verify as before, giving VC ∈ NP.)

Pascal Bercher 30.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: From Independent Set to Vertex Cover

Reductions. Use solutions of one problem to solve another.

Observation. Let G be a graph with n vertices and k ≥ 0.

G has a VC of size ≤ k iff G has an IS of size ≥ n − k

Why?
• VC with ≤ k vertices needs to cover all edges.
• IS with ≥ n − k vertices can’t cover any edge.

What’s the reduction? Vertex cover to independent set:

⟨G, k⟩ ∈ VC iff r(⟨G, n⟩) ∈ IS, where = r(⟨G, n⟩) = ⟨G, n − k⟩.
H the reduction r here only changes the number, but nothing
else. But for most reductions, we will have to “translate
problems”, e.g., when turning a SAT problem into a VC problem!

Pascal Bercher 31.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Reductions: Important Note on Reductions

Be aware!
So far, we only reduced problems, which were “equally hard”,
they were just “different flavors of the same problem”:

• EVEN vs. ODD
• Independent Set (IS) vs. Vertex Cover (VC)

But reductions also work (in one direction!) when one problem is
“strictly harder” than another!

• You should be able to reduce EVEN (or ODD) to Vertex Cover!
(Reducing a problem in P to a problem that’s NP-hard.)

• You should be able to reduce Vertex Cover to Rush Hour.
(Reducing an NP-complete problem to one that’s PSPACE-hard.)

(Hardness and completeness are explained in the next section...)

Pascal Bercher 32.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Completeness

Pascal Bercher 33.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Membership, Hardness, and Completeness

Definition (NP completeness, NP membership, NP hardness)

A language B is NP-complete if

1 B ∈ NP = NP membership

2 every A ∈ NP is polytime-reducible to B. = NP hardness

So we have “for all A holds A ≤P B”, and therefore we know that
B is “hard/expressive enough” to solve all other problems in NP.
(Because we solve these other A-problems using our B-problem!)

Therefore, NP-complete problems are the hardest ones in NP.
(In particular they may be harder than those in P!)

Hardness is the opposite of “practical exploitation of reductions”:
For hardness, reduce from a known problem rather than to one!

Pascal Bercher 34.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Motivation

Why are we interested in showing NP-hardness/completeness in the
first place?

If we fail in providing a P procedure for a new problem it could be:
• Because we just did not discover it (yet? – keep searching!)
• It doesn’t even exist! (bail!)

So ... How to find out whether we should just work harder?
• If we can prove NP-completeness, then at least we know that

nobody before you found an NP procedure. (And maybe none
even exists, which follows directly once somebody proves P ̸=NP.)

Why NP-completeness? Why not just showing NP-hardness?
• Since the problem could be even harder! (E.g., PSPACE-hard,

EXPTIME-hard, NEXPTIME-hard, . . . , and infinitely more!)
• Each problem class has specific “properties”. E.g., “NP-complete

looks like Logic”, “PSPACE-complete looks like planning”, etc.

Pascal Bercher 35.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

NP-Hardness

Theorem

If B is NP-hard and B ≤P C, then C is NP-hard.

Corollary

If B is NP-complete and B ≤P C for C ∈NP, then C is NP-complete.

Proof.

Polynomial time reductions compose.

Important! This Corollary is of major importance!! Why?
→ It gives us a convenient procedure to show NP-completeness!

First, show NP membership. (That’s almost always very easy.)

Then, show hardness by grabbing an NP-complete problem and
reduce it to yours!

Pascal Bercher 36.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Known NP-Complete Problems

List of known NP-complete problems:

SAT (first problem proved NP-hard) and 3-SAT (see tutorials)

Graph-Colourability and 3-Graph-Colourability (see tutorials)

Independent Set and Vertex Cover (these slides)

Hamiltonian path (not covered)

Traveling Salesman Problem (not covered)

Many more!

Pascal Bercher 37.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Summary

Pascal Bercher 38.39

Introduction Basics “Algorithm” Complexity Complexity Classes Reductions Completeness Summary

Summary

We focused on complexity classes P, NP, and EXPTIME.

Runtime is measured in terms of number of TM transitions,
depending on the encoding size of input word for which we want
to judge whether it’s a member of our language/problem.
Reductions, which turn one decision problem into another using
only polynomial time. Can be used for:

• Exploiting existing algorithms (reduce to known problem)
• Prove hardness of your problem (reduce from known problem)

Hardness and completeness of problems.

Some concluding words:

Liked this week? Look into COMP3630, Theory of Computation.

I hope you enjoyed weeks 6 to 8 and 12! :)

Good luck in the exam! (And the others you still have.)

Pascal Bercher 39.39

	Introduction
	Basics
	Recap
	New Basics

	``Algorithm'' Complexity
	Complexity Classes
	Reductions
	Reductions

	Completeness
	Summary

