Pascal Bercher

(working in the Intelligent Systems Cluster)
School of Computing
The Australian National University
Tuesday \& Wednesday, 24. \& 25.10.2023

Introduction

Outline of this Week

Introduction 0000	Basics 000000000000	"Algorithm" Complexity 0000	Complexity Classes 0000	Reductions 00000000	Completeness 00000	Summary ○○

Why would we do that? Given a new problem to solve, we:

- ... know performance bounds for our yet-to-be-designed solver
- We investigate the computational hardness of decision problems
- What's the "performance" of the best-known algorithm for solving the respective problem?
- Which problems are equally hard?
- Which ones are harder than others?
- We look at how problems can be "turned into each other".
- We measure "performance" in terms of a Turing Machine's:
- Time requirement (number of operations/transitions)
- Space requirement (number of cells that can be read/written)
\rightarrow No need to look for an "efficient" algorithm if not a single genius so far was able to do that! (Well, don't let that stop you necessarily, see last point!) But it makes a great excuse. :)
- ... can use existing solvers instead of designing new ones,
\rightarrow Which software do you think is better? The one you design from scratch in a few weeks, or one that entire research communities (few or dozens to thousands of PhD students, post-docs, Professors) created over decades?
- . . . understand the problems we solve much better.
\rightarrow If you know that your (new) problem is equivalent to an existing (established) one, that surely helps... (Imagine, you take a course twice! The second time it's much easier...)

Some other reasons:

- It's a lot of fun! (It's basically "solving puzzles".)

Extremely simple reduction:

- Assume you have an algorithm that checks whether a number is even, even(n).
- But you want to know whether a number is odd... Will you devise a new algorithm?
\rightarrow No! Turn your problem into the existing one! Define odd $(n):=$ even $(n+1)$.
- You can get famous by solving open problems! (E.g., $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$.) Seriously: somebody will be the first... Could be you! Interested? Take COMP3630, Theory of Computation. (You find all slides on Pascal's webpage.)

Recap: What do we recap?

Everybody should have taken COMP1600 and thus know already:

- Deterministic Finite Automata (DFAs) and its extension to Non-deterministic Finite Automata (NFAs).
\rightarrow We won't use them here, but it won't hurt re-familiarizing yourself with them since Turing Machines can be regarded an extension.
- Formal Languages and language of an automaton (or grammar).
\rightarrow We directly build on them, and thus recap them here.
- Turing Machines
\rightarrow We directly build on them, and thus recap them here. Slides are mostly taken from COMP3630, so definitions might slightly differ from COMP1600 (but are semantically equivalent).

Basics

Recap: Formal languages

- Alphabet Σ : A finite set of symbols, e.g.
- $\Sigma=\{0,1\}$ (binary alphabet)
- $\Sigma=\{a, b, \ldots, z\}$ (Roman alphabet)
- A String (or word) is a finite sequence of symbols. Strings are usually represented without commas, e.g., 0011 instead of ($0,0,1,1$)
- Concatenation $x \cdot y$ of strings x and y is the string $x y$.
- ϵ is the identity element for concatenation, i.e., $\epsilon \cdot x=x \cdot \epsilon=x$.
- Concatenation of sets of strings: $A \cdot B=\{a \cdot b \mid a \in A, b \in B\}$
- Concatenation of the same set: $A^{2}=A A ; A^{3}=(A A) A$, etc.
(We often elide the concatenation operator and write $A B$ for $A \cdot B$)
- Kleene-* or closure: $A^{*}=\{\epsilon\} \cup A \cup A^{2} \cup A^{3} \cdots=\bigcup_{n \geq 0} A^{n}$
- Any subset of Σ^{*} is called a (formal) language.
- Heads-up: We will see that any language is a decision problem!

Definition

- Let A be an automaton (this week: a Turing Machine, ...)
- Then $L(A)$, the language of A, is the set of words "accepted" by A.
- We will define more formally what "accepting" means, but informally that's the set of words for which A enters (or may enter, in case of a non-deterministic automaton) an "accepting state".

Why is this relevant?

- Decision problems are defined (later) via languages, and
- we will ask whether an algorithm (= Turing Machine) exists that accepts exactly that language - and hence implements what we'd like to do (we'll see that languages describe our problems).

- An tape extending infinitely in both sides
- A reading head that can edit tape, move right or left.
- A finite control.
- A string is accepted if finite control reaches a final/accepting state
- $\begin{gathered}\text { Austrian } \\ \text { Uatian } \\ \text { University }\end{gathered}$

Pascal Bercher

Recap: Turing Machine: Formal Definition
A deterministic Turing Machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$ consists of:

- Q : finite set of states
- Σ : finite set of input symbols
- Γ : finite set of tape symbols such that $\Sigma \subseteq \Gamma$
- δ : (deterministic) transition function. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is a partial function over $Q \times \Gamma$, where the first component is viewed as the present state, and the second is viewed as the tape symbol read. If $\delta(q, X)$ is defined, then

- $B \in \Gamma \backslash \Sigma$ is the blank symbol. All but a finite number of tape symbols are B s
- q_{0} : the initial state of the TM.
- F : the set of final/accepting states of the TM.

Most important definitions:

- A TM ...
- accepts a word if there is a sequence of transitions from q_{0} to some state $f \in F$
- halts if no state transition exists for the currently read symbol in the current state.
- rejects a word if it is not accepted and all state transitions halt
- The language of a $T M M, L(M)$, is the set of words accepted by it. Note: If $L(M)=L$, then there exists a TM M^{\prime} with $L\left(M^{\prime}\right)=L$ and M^{\prime} halts on all $w \in L$ (but not necessarily on those not in L).
- A language L is decided by a TM M if $L(M)=L$ and for all $w \notin L$, M halts (and thus rejects). A language L is called decidable if there exists a TM M, such that M decides L.
We now restrict ourselves to decidable languages and check how "complex" those languages (now: called decision problems) are.

New Basics: Some additional Notes on Turing Machines

The following notes are "redundant" in the sense that they do follow from the previous definitions - but worth pointing out anyway.

- There's an important difference between the acceptance of a word w by finite automata (NFAs, and ϵ-NFAs) and TMs:
- NFAs/ ϵ-NFAs can only accept a word if it's fully read!
- This is not the case for both TMs: They do not have to "read" the entire input word. In other words, for a TM to accept a word w it suffices for it to reach any goal state, even if it halts before reading the entire initial tape content.
- Halting neither implies acceptance nor rejection. But rejection implies halting (and non-acceptance), and furthermore on non-deterministic TMs it means that all transitions must halt. So if there is a possibility to run into an infinite loop, even if all other transitions halt and do not accept, the respective word would still not be rejected (but of course also not accepted).

Definition of non-deterministic TMs:

- Non-deterministic TMs are defined exactly as deterministic ones, with the exception that the state transition function now allows multiple state transitions given the same symbol,
$\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}$ is a partial function.
- Even the definition of acceptance, halting, and rejection is the same! (And thus also for the language of a TM.)

The main difference is that now for each word we need to check whether some state transitions (also called: computation path) exist, whereas previously such a path was unique due to determinism.

Pascal Bercher

New Basics: Non-Deterministic Turing Machine: Example

Consider the following TM, defined over an initial string over $\Sigma=\{0,1\}$:

What does this TM do?
Checking for the "right" input.What language does it accept? $\{w \mid w$ contains ≥ 2 consecutive 1 s$\}$ $=\left\{w 11 w^{\prime} \mid w, w^{\prime} \in \Sigma^{*}\right\}$

Every language is a decision problem. Examples:

- Given two sets A, B, is $A \subseteq B$?
\rightarrow Subset := $\{(A, B) \mid A \subseteq B\}$
\rightarrow Then, checking whether $A_{1} \subseteq B_{1}$ for some concrete A_{1}, B_{1}, means checking $\left(A_{1}, B_{1}\right) \in$ Subset.
\rightarrow Can easily be done in \mathbf{P}.
- Does the SAT formula ϕ a satisfying valuation?
\rightarrow SAT := $\{\phi \mid \phi$ is a SAT formula that has a satisfying valuation $\}$
\rightarrow Then, checking whether some concrete ϕ is satisfiable or not corresponds to checking whether $\phi \in S A T$.
\rightarrow The most famous problem known to be NP-complete.
- Does Graph G have a vertex cover of size at most k ? A vertex cover is a set of vertices that "covers" all edges.
$\rightarrow V C:=\{(\langle V, E\rangle, k) \mid\langle V, E\rangle$ has a node cover $\leq k, k \in \mathbb{N}\}$
\rightarrow Then, checking whether a concrete graph G_{1} has a node cover e.g., of size 42 , means checking whether $\left(G_{1}, 42\right) \in V C$.
\rightarrow We will also see later that this is NP-complete. Pascal Bercher

Complexity of TMs

We have two kinds of TMs:

- Deterministic Turing Machines and
- Non-deterministic Turing Machines.

For both, we measure their "complexity" both in terms of:

- their (worst-case) runtime
\rightarrow number of transitions depending on the input's size.
- their (worst-case) space consumption
\rightarrow number of tape cells read depending on the input's size.

"Algorithm" Complexity

Time and Space Consumption, Example
Let's decide $L=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}$ by TM M, i.e., check whether an arbitrary input has the form $0^{i} 1^{i}$ for some $i . M$ does:

- Scan word w and reject if anything not in $\{B, 0,1\}$ or 10 is found.
- Repeat as long as there are 0 s and 1 s on the tape:
- Replace both the leftmost 0 and the rightmost 1 with blanks.
- If either only 0 s or 1 s are left: reject, otherwise accept.

1 How much "time" does M need, as a function f of w 's length?
f adheres $f(2 k)=f(2(k-1))+4 k+1$, which is in $O\left(n^{2}\right)$.

w	ϵ	01	$0^{2} 1^{2}$	$0^{3} 1^{3}$	$0^{4} 1^{4}$	$0^{5} 1^{5}$
$f(\|w\|)$	2	8	19	34	53	76

(exact numbers depend on implementation details)
2 How much "space" does M need? $O(n)$
So in total, M has polynomial time and space restriction!

What's also known to the literature:

- PSPACE = NPSPACE and EXPSPACE = NEXPSPACE (Savitch's Theorem, 1970)
- P EXPTIME
(We know problems in EXPTIME which are provably not in \mathbf{P})

So in total, we get:

- (NPSPACE and NEXPSPACE not shown due to the above.)
- $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{E X P T I M E} \subseteq$ NEXPTIME \subseteq EXPSPACE

Austraian
National

Reductions: Basic Definitions

This is the most important (and fun!) part of this week!

- We want to transform problems into each other - via reduction.
- I.e., we solve "our given problem" by turning it into a known one (which must be as least as hard; otherwise that's not possible).

Definition

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polytime-computable function if some polynomial time TM M exists that halts with just $f(w)$ on its tape, when started on any input $w \in \Sigma^{*}$.

Definition

$A \subseteq \Sigma_{1}^{*}$ is polynomial time mapping-reducible to $B \subseteq \Sigma_{2}^{*}$, written $A \leq_{P} B$, if a polytime-computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ exists that is also a reduction (from A to B).
\qquad

Reductions

Pascal Bercher

Reductions: Main Definition

Definition

- A reduction is a polynomial-time translation of the problem, say r.
- More precisely:
$1 r(w)$ can be computed in time polynomial in $|w|$. $2 w \in A$ if and only if $r(w) \in B$ (so it "preserves the answer").

Example:

- EVEN $:=\{n \mid n \bmod 2=0\}$, ODD $:=\{n \mid n \bmod 2=1\}$
- Reduction from ODD to EVEN:
- $r(k)=k+1$, so we get $k \in$ ODD iff $r(k) \in$ EVEN
- So essentially we can define odd $(n):=$ even $(r(n))$ now.
- If however our goal would have been to show that the 'new' problem ODD is at least as hard as EVEN, then we would have had to reduce from EVEN to ODD (though r would have been the same). Check this statement after "hardness" was introduced!

The Independent Set Problem:
Assume you want to throw a party. But you know that some of your friends don't get along. You only want to invite people that do get along.

Formalized as graph

- vertices are your mates
- draw an edge between two vertices if people don't get along

Problem:

Given a graph and a $k \geq 0$, is there an independent set, i.e., a subset I of $\geq k$ vertices so that

- no two elements of I are connected with an edge.
- i.e., everybody in / gets along

Example of an independent set of size 2 (just the red-circled vertices)

Naive Implementation:

- loop through all subsets of size $\geq k$ (exponentially many!)
- and check whether they are independent sets
\rightarrow Proves membership in EXPTIME

Using Non-deterministic Turing Machines:

- guess a subset of vertices of size $\geq k$
- check whether it is an independent set

\rightarrow Proves membership in NP

Question: Can we do better? Is there a \mathbf{P} algorithm?
Answer: We don't know! But "hardness" helps figuring this out.

Reductions: Vertex Cover
Given a graph $G=\langle V, E\rangle$, a vertex cover is a set C of vertices such that every edge in G has at least one vertex in C.

Example vertex cover: The red-circled vertices.

Vertex Cover (Decision) Problem.

- Given graph $\langle V, E\rangle$ and $k \geq 0$, is there a vertex cover of size $\leq k$?
- $V C:=\{(\langle V, E\rangle, k) \mid\langle V, E\rangle$ has a node cover $\leq k, k \in \mathbb{N}\}$

Naive Algorithm:

- search through all subsets of size $\leq k$ (this is exponential)
- check whether it's a vertex cover
\rightarrow This proves VC EXPTIME, but we can do better!
(I.e., we could also guess and verify as before, giving $V C \in \mathbf{N P}$.)

Introduction 0000	Basics 000000000000	"Algorithm" C 0000	Complexity Classes 0000	Reductions 000000 ०	Completeness 00000	Summary 00

Reductions: From Independent Set to Vertex Cover
Reductions. Use solutions of one problem to solve another.
Observation. Let G be a graph with n vertices and $k \geq 0$

- G has a VC of size $\leq k$ iff G has an IS of size $\geq n-k$
- Why?

- VC with $\leq k$ vertices needs to cover all edges.
- IS with $\geq n-k$ vertices can't cover any edge.

What's the reduction? Vertex cover to independent set:

- $\langle G, k\rangle \in V C$ iff $r(\langle G, n\rangle) \in I S$, where $=r(\langle G, n\rangle)=\langle G, n-k\rangle$.
- H the reduction r here only changes the number, but nothing else. But for most reductions, we will have to "translate problems", e.g., when turning a SAT problem into a VC problem!
\qquad

Be aware!

- So far, we only reduced problems, which were "equally hard", they were just "different flavors of the same problem":
- EVEN vs. ODD
- Independent Set (IS) vs. Vertex Cover (VC)
- But reductions also work (in one direction!) when one problem is "strictly harder" than another!
- You should be able to reduce EVEN (or ODD) to Vertex Cover!
(Reducing a problem in \mathbf{P} to a problem that's $\mathbf{N P}$-hard.)
- You should be able to reduce Vertex Cover to Rush Hour. (Reducing an NP-complete problem to one that's PSPACE-hard.)
(Hardness and completeness are explained in the next section...)

Membership, Hardness, and Completeness

Definition (NP completeness, NP membership, NP hardness)

A language B is $N P$-complete if
$1 \quad B \in \mathbf{N P}$
= NP membership
2. every $A \in \mathbf{N P}$ is polytime-reducible to B.

$$
=\mathbf{N P} \text { hardness }
$$

- So we have "for all A holds $A \leq_{P} B$ ", and therefore we know that B is "hard/expressive enough" to solve all other problems in NP. (Because we solve these other A-problems using our B-problem!)
- Therefore, NP-complete problems are the hardest ones in NP. (In particular they may be harder than those in $\mathbf{P !}$)
- Hardness is the opposite of "practical exploitation of reductions": For hardness, reduce from a known problem rather than to one!

Completeness

Motivation

Why are we interested in showing NP-hardness/completeness in the first place?

- If we fail in providing a \mathbf{P} procedure for a new problem it could be:
- Because we just did not discover it (yet? - keep searching!)
- It doesn't even exist! (bail!)
- So ... How to find out whether we should just work harder?
- If we can prove NP-completeness, then at least we know that nobody before you found an NP procedure. (And maybe none even exists, which follows directly once somebody proves $\mathbf{P} \neq \mathbf{N P}$.)
- Why NP-completeness? Why not just showing NP-hardness?
- Since the problem could be even harder! (E.g., PSPACE-hard, EXPTIME-hard, NEXPTIME-hard, . . . , and infinitely more!)
- Each problem class has specific "properties". E.g., "NP-complete looks like Logic", "PSPACE-complete looks like planning", etc.

Known NP－Complete Problems

Theorem

If B is NP－hard and $B \leq_{P} C$ ，then C is NP－hard．

Corollary

If B is $\mathbf{N P}$－complete and $B \leq_{P} C$ for $C \in \mathbf{N P}$ ，then C is $\mathbf{N P}$－complete．

Proof．

Polynomial time reductions compose．
Important！This Corollary is of major importance！！Why？
\rightarrow It gives us a convenient procedure to show NP－completeness！
－First，show NP membership．（That＇s almost always very easy．）
－Then，show hardness by grabbing an NP－complete problem and reduce it to yours！
\qquad
Pascal Bercher

List of known NP－complete problems：
－SAT（first problem proved NP－hard）and 3－SAT（see tutorials）
－Graph－Colourability and 3－Graph－Colourability（see tutorials）
－Independent Set and Vertex Cover（these slides）
－Hamiltonian path（not covered）
－Traveling Salesman Problem（not covered）
－Many more！

Introduction 0000	Basics 000000000000	＂Algorithm＂Complexity 0000	Complexity Classes 0000	Reductions 00000000	Completeness 00000	Summary

Summary

Pascal Bercher

Summary

－We focused on complexity classes P，NP，and EXPTIME．
－Runtime is measured in terms of number of TM transitions， depending on the encoding size of input word for which we want to judge whether it＇s a member of our language／problem．
－Reductions，which turn one decision problem into another using only polynomial time．Can be used for：
－Exploiting existing algorithms（reduce to known problem）
－Prove hardness of your problem（reduce from known problem）
－Hardness and completeness of problems．
Some concluding words：
－Liked this week？Look into COMP3630，Theory of Computation．
－I hope you enjoyed weeks 6 to 8 and 12！：）
－Good luck in the exam！（And the others you still have．）

