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Hierarchical Planning Introduction

Terminology and some Background

HTN Planning is short for Hierarchical Task Network Planning.

It’s an extension of classical planning where:
We don’t plan for some goal but want to refine some initial tasks.
We also can’t insert actions in every state, but need to adhere certain rules.

Historical remarks:
Whereas first versions date back to the 70s, the first decent formalization comes from
the early 90s.
Some central idea was to introduce expert knowledge: What do we need to do to
achieve a certain task?

Why defining/solving a hierarchical problem?
As above: In many real-world applications, knowledge is given in form of control rules:
we know the steps required to perform some task.
More control on the generated plans, since all the “rules” need to be obeyed. We can
exclude (more) undesired plans!
Plans can be presented more abstract by relying on task hierarchies.
We can solve/express more complex problems! (Spoiler)
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Hierarchical Planning Introduction

Example: Do-It-Yourself (DIY) Assistant, The Task

The material:

Boards (need to be cut first)

Electrical devices like drills and saws

Attachments like drill bits
and materials like nails

Further reading: Pascal Bercher et al. “Do It Yourself, but Not Alone: Companion-Technology for Home Improvement – Bringing a Planning-Based
Interactive DIY Assistant to Life.” Künstliche Intelligenz – Special Issue on NLP and Semantics, 35: 367–375. 2021.
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Hierarchical Planning Introduction

Example: Do-It-Yourself (DIY) Assistant, User Interface
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Hierarchical Planning Introduction

Example: Do-It-Yourself (DIY) Assistant, Task Hierarchy
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Hierarchical Planning Introduction

Introduction to HTN Planning

primitive
tasks

compound
tasks

P = (V ,P, δ,C ,M, sI , cI , g)

V a set of state variables

P a set of primitive task names

δ : P → (2V )3 the task name mapping

C a set of compound task names

cI ∈ C the initial task

M ⊆ C × 2TN the methods

sI ∈ 2V the initial state

g ⊆ V the (optional) goal description

A solution task network tn must:
be a refinement of cI ,

only contain primitive tasks, and

have an executable linearization
that makes the goals in g true.
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Hierarchical Planning Introduction

HTN Planning, Problem Definition

Task network: tn = (T ,≺, α) consists of:
T , a possibly empty set of task identifier symbols (IDs)
≺ ⊆ T × T , a partial order on the task IDs,
α : T → P∪̇C , the task mapping function

Executability of primitive tasks is defined as in classical planning.
(But since we deal with task networks we also demand that the respective (primitive)
task network possesses an executable linearization that makes the goals true.)

A decomposition method m ∈ M is a tuple m = (c, tnm) with a compound task c
and task network tnm = (Tm,≺m, αm)

Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and α(t) = c a
compound task to be decomposed by m = (c, tnm). We assume T ∩ Tm = ∅.
Then, the application of m to tn results into the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t′, t′′) | (t′, t) ∈ ≺, t′′ ∈ Tm} ∪
{(t′′, t′) | (t, t′) ∈ ≺, t′′ ∈ Tm}

where (X1, . . . ,Xn)|Y restricts the sets Xi to elements in Y .
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Hierarchical Planning Introduction

HTN Planning, Problem Definition (Solution Criteria)

A task network tn is a solution if and only if:

There is a sequence of decomposition methods m that transforms cI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable linearization t̄ of its
tasks leading to some state s ⊇ g .

cI
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Hierarchical Planning Complexity of the General Case

HTN Planning is in RE

To prove RE membership, we give a partial decision procedure.

There are (at least) two:

1 Systematically generate all refinements (e.g., via “progression search”).
Accept if we found an executable one.

2 Systematically generate all action sequences and verify whether they are executable
and can be generated by the task hierarchy (via “plan verification”).
Accept if we found an executable one that can be generated by the hierarchy.

Details omitted.
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Hierarchical Planning Complexity of the General Case

HTN Planning is not in R

We reduce from the (undecidable) grammar intersection problem. (Chap.9, slide 31)

More specifically, deploy HTN planning to solve the following problem: Given context-
free grammars G and G ′, is L(G) ∩ L(G ′) = ∅?

Decision procedure:

Construct an HTN planning problem P that has a solution if and only if the correct
answer is yes.

Translate the production rules to decomposition methods in a way that only words
in both L(G) and L(G ′) can be produced.

Any solution tn contains only one executable linearization. Each such linearization ω
contains some ω′ twice, with ω′ ∈ L(G) and ω′ ∈ L(G ′).

We show the encoding using an example. (And skip the proof that it’s a reduction.)
Proof by Erol et al., 1994.
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Hierarchical Planning Complexity of the General Case

HTN Planning is not in R, cont’d

Let G = (

non-terminal
symbols︷ ︸︸ ︷

Γ = {H,Q} ,

terminal
symbols︷ ︸︸ ︷

Σ = {a, b} ,

production
rules︷︸︸︷
R ,

start
symbol︷︸︸︷
H ) and

G ′ = ( Γ′ = {D,F} , Σ′ = {a, b} , R ′ , D ).

Production rules R: H 7→ aQb Q 7→ aQ | bQ | a | b
Production rules R ′: D 7→ aFD | ab F 7→ a | b

P = (V ,

C︷ ︸︸ ︷
{H,Q,D,F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G} )

V = {vturn:G , vturn:G ′} ∪ {va, vb}
δ = { a 7→ ({vturn:G}, {vturn:G ′ , va}, {vturn:G}),

b 7→ ({vturn:G}, {vturn:G ′ , vb}, {vturn:G}),
a′ 7→ ({vturn:G ′ , va}, {vturn:G}, {vturn:G ′ , va}),
b′ 7→ ({vturn:G ′ , vb}, {vturn:G}, {vturn:G ′ , vb})}

M = M(G) ∪M(G ′) (translated production rules of G and G ′)

tnI = ({t, t′}︸ ︷︷ ︸
T

, ∅︸︷︷︸
≺

, {t 7→ H, t′ 7→ D}︸ ︷︷ ︸
α

)
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Hierarchical Planning Complexity of Special Cases

Decidable Subcases

We only list some special cases that make HTN planning decidable.

Acyclicity of Tasks. (Finitely many plans.)

Total Order. (Among all the tasks.)

Delete Relaxation.

Regularity. (Only the last task in each method can be compound.)

Tail-recursivity. (Generalization of Regularity.)

Task insertion. (If we can also insert tasks anywhere.)

Many more (possibly).
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Expressivity Studies Foundations

Language of a Planning Problem

Recap: A language L is a set of strings over symbols.

Let P be a (classical) planning problem and sol(P) its set of solutions. If we
interpret any action as a symbol, then sol(P) is a language!

Recall that in HTN planning we had δ : P → (2V )3, so every action had a unique
name. We thus assume this for classical planning as well. (So solutions are
sequences of task names.)

So we can define:
L(P) = sol(P) if P is a classical problem.
L(P) = {p̄ : tn ∈ sol(P) and p̄ is an executable linearization of tn that makes g true.}

We can now compare planning problems (and their special cases) with regard to the
Chomsky Hierarchy (i.e., the standard language classes, like regular and context-free
languages).
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Expressivity Studies Foundations

HTN problems, defined differently

Let P be a hierarchical planning problem.

Let LH(P) = {p̄ : p̄ is the set of solutions to P when disregarding executability. }

Let LC (P) = {p̄ : p̄ is the set of solutions to P the induced classical problem while
disregarding the initial task network. }

Thus, LH just looks at the ‘words’ produced by the hierarchy, whereas LC just looks
at the executable words that produce the goal.

Now, L(P) = LH(P) ∩ LC (P).

This obseration/proposition gives a new/simplified view on HTN planning:

HTN planning extends classical planning by adding a grammar to filter solutions.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 15 / 19



Expressivity Studies Foundations

HTN problems, defined differently

Let P be a hierarchical planning problem.

Let LH(P) = {p̄ : p̄ is the set of solutions to P when disregarding executability. }
Let LC (P) = {p̄ : p̄ is the set of solutions to P the induced classical problem while

disregarding the initial task network. }

Thus, LH just looks at the ‘words’ produced by the hierarchy, whereas LC just looks
at the executable words that produce the goal.

Now, L(P) = LH(P) ∩ LC (P).

This obseration/proposition gives a new/simplified view on HTN planning:

HTN planning extends classical planning by adding a grammar to filter solutions.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 15 / 19



Expressivity Studies Foundations

HTN problems, defined differently

Let P be a hierarchical planning problem.

Let LH(P) = {p̄ : p̄ is the set of solutions to P when disregarding executability. }
Let LC (P) = {p̄ : p̄ is the set of solutions to P the induced classical problem while

disregarding the initial task network. }
Thus, LH just looks at the ‘words’ produced by the hierarchy, whereas LC just looks
at the executable words that produce the goal.

Now, L(P) = LH(P) ∩ LC (P).

This obseration/proposition gives a new/simplified view on HTN planning:

HTN planning extends classical planning by adding a grammar to filter solutions.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 15 / 19



Expressivity Studies Foundations

HTN problems, defined differently

Let P be a hierarchical planning problem.

Let LH(P) = {p̄ : p̄ is the set of solutions to P when disregarding executability. }
Let LC (P) = {p̄ : p̄ is the set of solutions to P the induced classical problem while

disregarding the initial task network. }
Thus, LH just looks at the ‘words’ produced by the hierarchy, whereas LC just looks
at the executable words that produce the goal.

Now, L(P) = LH(P) ∩ LC (P).

This obseration/proposition gives a new/simplified view on HTN planning:

HTN planning extends classical planning by adding a grammar to filter solutions.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 15 / 19



Expressivity Studies Foundations

Classes of Planning Problems

We can define the following Language classes:

Let HT N = {L(P) : P is an HTN planning problem.}
Let CLASSIC = {L(P) : P is a classical planning problem.}
We can do the same for any restriction on planning problems:

T OHT N = {L(P) : P is a total-order HTN planning problem.}
and for any other restriction!
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Expressivity Studies Expressivity of Classical Problems

Expressivity of Classical Problems

Theorem: CLASSIC ⊊ REG

Proof:

We first show CLASSIC ⊆ REG .

For this, notice that each planning problem encodes an (exponentially larger) DFA.
Thus, given a classical planning problem, we can create its DFA. Each node is a state,
each edge is an action.
We know that each DFA is regular, thus showing the claim.

We now show CLASSIC ⊊ REG .
We prove that {aa} ∈ REG is not the language of any classical problem P,
L(P) ̸= {aa} for all P.
Assume aa ∈ L(P) for some classical problem P. Then, we can show that aaa ∈ L(P).
(We skip the proof here, just write down the sets to show that pre(a) must be
contained in the state resulting from aa – because a was applicable in the state after
executing a in sI .)
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Expressivity Studies Expressivity of Classical Problems

Expressivity of HTN Problems

Theorem: T OHT N = CF

Proof:

We first show T OHT N ⊇ CF .

Let G be a CF grammar. Use rules as methods, compound task names as terminal
symbols, and primitive task names as terminal symbols.
For each terminal symbol define a no-operation (i.e., empty preconditions and effects).
Set g = ∅.

Now we show T OHT N ⊆ CF .
We know that L(P) = LH(P) ∩ LC (P) for all HTN problems P.
We know that LH(P) is context-free and that LC (P) is regular.
It is known that the intersection of a context-free and regular language is context-free.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 18 / 19



Expressivity Studies Expressivity of Classical Problems

Expressivity of HTN Problems

Theorem: T OHT N = CF

Proof:

We first show T OHT N ⊇ CF .
Let G be a CF grammar. Use rules as methods, compound task names as terminal
symbols, and primitive task names as terminal symbols.
For each terminal symbol define a no-operation (i.e., empty preconditions and effects).
Set g = ∅.

Now we show T OHT N ⊆ CF .
We know that L(P) = LH(P) ∩ LC (P) for all HTN problems P.
We know that LH(P) is context-free and that LC (P) is regular.
It is known that the intersection of a context-free and regular language is context-free.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 18 / 19



Expressivity Studies Expressivity of Classical Problems

Expressivity of HTN Problems

Theorem: T OHT N = CF

Proof:

We first show T OHT N ⊇ CF .
Let G be a CF grammar. Use rules as methods, compound task names as terminal
symbols, and primitive task names as terminal symbols.
For each terminal symbol define a no-operation (i.e., empty preconditions and effects).
Set g = ∅.

Now we show T OHT N ⊆ CF .

We know that L(P) = LH(P) ∩ LC (P) for all HTN problems P.
We know that LH(P) is context-free and that LC (P) is regular.
It is known that the intersection of a context-free and regular language is context-free.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 18 / 19



Expressivity Studies Expressivity of Classical Problems

Expressivity of HTN Problems

Theorem: T OHT N = CF

Proof:

We first show T OHT N ⊇ CF .
Let G be a CF grammar. Use rules as methods, compound task names as terminal
symbols, and primitive task names as terminal symbols.
For each terminal symbol define a no-operation (i.e., empty preconditions and effects).
Set g = ∅.

Now we show T OHT N ⊆ CF .
We know that L(P) = LH(P) ∩ LC (P) for all HTN problems P.
We know that LH(P) is context-free and that LC (P) is regular.
It is known that the intersection of a context-free and regular language is context-free.

Pascal Bercher week 12: Automated (HTN) Planning Semester 1, 2023 18 / 19



Expressivity Studies Expressivity of Classical Problems

Conclusion

Some final remarks.

Don’t forget that:
We have almost 10 (internationally known) AI Planning experts at the ANU. (In case
you want to do a PhD or research project.)
Many (most?) in the Foundations group (might) have theory-heavy research projects
to offer – assuming they have any project at all! (They/we might not have any at the
moment, or no capacities left.)

Please take part in SELT. (No matter whether you liked it or not.)

I hope you enjoyed the course!

Good luck in the exam! (And your other exams.)

Thank you for taking this course!
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