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Games

The Geography Game

Rules of Geography given a designated starting city (e.g. London)

1 Player 1 names a city that begins with the last letter of the designated city
(e.g. Newcastle) and makes this the designated city.

2 Player 2 names a city that begins with the last letter of the city named by player 2
(e.g. Edinburgh) and makes this the designated city, continue with rule 1.

Winning Conditions.

The game is lost by the player that cannot name a city and won by the other player.

Question.

Does Player 1 have a winning strategy (i.e. can always win irrespective of the
moves of player one)?

(In “reality” we have partial knowledge but a hypothesis about what the other player
knows (epistemic reasoning). Here we assume full knowledge (full observability.))
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Games

The Proof Game

Background.

A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. B→A B

A
)

Rules of the Proof Game for a given designated formula A0:

1 Player 1 chooses a proof rule A1 ... An
A0

whose conclusion is the designated formula.

2 Player 2 chooses a premise Ai of the rule, and makes Ai the designated formula,
continue with rule 1.

Winning conditions.

the player who cannot move loses the game

infinite plays are lost by Player 1

Question.

Does Player 1 have a winning strategy (i.e. can always win irrespective of the
moves of player one) so that A is provable?
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Games

The Generalised Geography Game

From Geography to Generalised Geography: Replace cities with directed graph:

Rules.

One node is always a designated node;

Player 1 chooses a successor of the designated node
which is the new designated node.

Player 2 chooses a successor of the designated node
which is the new designated node, continue with rule 1.

Winning Conditions.

who cannot move, loses

Player 2 wins infinite plays

Question.
What is the complexity that – given graph G with designated initial node – of
determining whether Player 1 has a winning strategy?
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Games

Problem Reductions between these Games

From Geography to Generalised Geography.

Construct a graph where:

the nodes are the names of cities

there is an edge between city 1 and city 2 if the name of city 2 begins with the last
letter of the name of city 1

From Proof to Generalised Geography.

Construct a graph where:

nodes are either formulae, or proof rules

there is an edge between a formula node A and a proof rule node A1 ... An
A0

if A = A0

there is an edge between a proof rule node A1 ... An
A0

and a formula node A
if A = Ai , for some 1 ≤ i ≤ n.
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Games

Winning Strategies (for any 2-Player Game!)

For Player 1 to win from starting node n:

there exists a move such that for all moves of player 2 to node n′ . . .

Player 1 has a winning strategy from node n′

Pattern for winning strategy:

existential choice for player 1

universal choice for player 2
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Alternating Turing Machines (ATMs)

Recap: Non-deterministic Machines

Complexity Class NP.

Have non-deterministic machine

where every run takes at most polynomially many steps

there exists an accepting sequence of IDs

Complexity Class co-NP.

Have non-deterministic machine

where every run takes at most polynomially many steps

every sequence of IDs is accepting

Alternating Turing machines combine existential and universal runs
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Alternating Turing Machines (ATMs)

Alternating Turing Machines

Definition. An alternating Turing machine is a non-deterministic Turing machine
M = (Q,Σ,Γ, δ, q0,F ) where additionally Q = Qe ∪ Qu is partitioned into a set of Qe of
existential states and Qu of universal states.

Instantaneous Descriptions (IDs)

are defined as for non-deterministic machines, and contain tape content, head
position, and state

the transition relation I ⊢ J between IDs is defined as for non-deterministic machines

an ID is existential if the state is existential, and universal, if the state is universal.

Q. What about acceptance . . . ?

Pascal Bercher week 11: Alternating Time Semester 1, 2023 9 / 21



Alternating Turing Machines (ATMs)

Acceptance Conditions

Informally. An ATM M accepts string w if there is a finite tree whose nodes are IDs and

the root node is the initial ID (w on tape, state q0),

every existential ID E has (exactly) one child J in the tree with E ⊢ J

every universal ID U has all IDs J with U ⊢ J as children, and

all leaf nodes are universal (this implies there are no outgoing transitions).

Thus, L(M) = {w : There exists a tree as above with root q0w }

What about accepting states?

We don’t need/use them! We keep F for compatibility with the standard definition.
However, if we had acceptance stati, then

An existential ID with no successors would never be accepting.
A universal ID with no successors would be accepting.
Note that now IDs are accepting/rejecting, not states.
Each ID in a tree as above would be accepting.

How about loops?

We require our tree to be finite, so we can’t loop forever.

The definition above does not require to “stick with decisions”, i.e., any ID (both
existential and universal) could occur several times. This is not a problem (since the
tree is still finite), but we can cut out these “finite loops” by making decisions for
the existential IDs that lead to the leafs earlier.
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Alternating Turing Machines (ATMs)

Informal Example: Generalised Geography

Solving via ATM.

On tape: Graph and designated node.

Two states, q0 (initial and existential) and q1 (universal)
(Omitting intermediate states that are needed to change designated node.)

From one state to another: replace designated node by successor in graph.

Explanation.

IDs with q0 are the states where player 1 moves, and IDs with q1 are states where
player 2 moves.

If an ID with state q0 doesn’t have outgoing transitions: Player 1 loses.

If an ID with state q1 doesn’t have outgoing transitions: Player 2 loses
(as this is part of a winning strategy for player 1).

We’ll re-visit this algorithm more formally in a few slides!
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Alternating Turing Machines (ATMs)

Informal Example: Generalised Geography, cont’d

Geography Graph. Winning Strategy.

1

��
2

��
4

��
5

}} !!
3

��

7

��
9 9

existential states are red, universal states are blue

In general, existential states and universal states don’t have to alternate!
Here we have this since we use the ATM for solving a turn-taking 2-player game.
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Alternating Turing Machines (ATMs)

First (ATM) Algorithm for Geography

Algorithm Geography (Graph G, start node n):

let cur = n;

forever do {

existentially guess (a successor node e of cur);

// if this is not possible, we don’t accept

universally guess (a successor node u of e);

// if there are no successors, we accept

let cur := u;

}

Comments.

This shows (modulo a translation to TM) that Geography is solvable using an ATM.

However the number of steps that this ATM takes is possibly infinite if there are
loops in the graph. But looping means we neither accept nor reject, but we know
that the problem should be (is) decidable! (We’ll revisit this Algorithm.)
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The class AP

Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such that every
sequence of IDs from an initial ID (q0,w) is at most p(|w |) steps long.

The class AP of alternating polytime languages is the class of languages accepted by an
ATM that is polytime bounded.

Observation.

NP ⊆ AP (because we only need existential states)

co-NP ⊆ AP (because we only need universal states)

Both will also follow directly because – spoiler – we are going to show
AP = PSPACE, and both statements are known with regard to PSPACE.

Reductions.

Recall Theorem 10.1.7., week 7: If B is NP-hard and B ≤P C , then C is NP-hard.

Recall Theorem 10.1.5., week 7: If A ≤P B and B ∈ P, then A ∈ P.

Now: If L ≤P L′ and L′ ∈ AP, then L ∈ AP.
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co-NP ⊆ AP (because we only need universal states)

Both will also follow directly because – spoiler – we are going to show
AP = PSPACE, and both statements are known with regard to PSPACE.

Reductions.

Recall Theorem 10.1.7., week 7: If B is NP-hard and B ≤P C , then C is NP-hard.

Recall Theorem 10.1.5., week 7: If A ≤P B and B ∈ P, then A ∈ P.

Now: If L ≤P L′ and L′ ∈ AP, then

L ∈ AP.
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The class AP

Example Revisited: Geography

Earlier Algorithm.

Algorithm Geography (Graph G, start node n):

let cur = n;

forever do {

existentially guess (a successor node e of cur);

// if this is not possible, we don’t accept

universally guess (a successor node u of e);

// if there are none, we accept

let cur := u;

}

not necessarily terminating, e.g. // 1
))
2ii (assume “fitting” transitions)

let alone in polynomially many steps!
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The class AP

Geography, Terminating

Idea. Universal nodes don’t need to repeat. (I.e., the Ex.-player doesn’t play into loops.)
(Existential nodes also don’t have to, but it doesn’t hurt either!)

1

��
guesses 2

2

��
guesses 4

4

��
guesses 5

5

��
guesses 7

7

��
guesses 9

9 can’t guess

Algorithm Geography2 (Graph G, start node cur):

let seen := { cur };

forever do { // Player 1:

existentially guess (cur := unseen successor of cur)

// if this fails, we terminate and don’t accept

// Player 2:

universally guess (cur := successor of cur);

// if this fails, we terminate and accept

seen := seen ‘union’ { cur } // never visit twice

}

Geography in AP.

Branches of tree at most twice as long as number of nodes in graph.

Every computation path takes polynomially many steps.
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The class AP

AP vs co-AP

Observation. Given polytime bounded ATM M, construct ATM M ′ by swapping
existential and universal states

then M ′ accepts w if and only if M rejects w

requires that all runs are terminating

Corollary. co-AP = AP (Again, this also follows from AP = PSPACE)

Example. What are the strings accepted by the TM and its dual version below, where *
indicates any letter?

// ∃

∗/∗
R **

∀
∗/∗
L

jj // ∀

∗/∗
R **

∃
∗/∗
L

jj

Their languages, in both cases, is ∅, because we never can’t generate the desired proof
tree with universal leaf nodes.

Exercise. Construct a simple ATM (with 2 states) that terminates on all runs and check
above’s claim. E.g., one that only runs to the right until the first blank is found and
changes the input word.
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The class AP

QBF Revisited

Idea. ∃⇝ existential guess, ∀⇝ universal guess

Algorithm evalqbf (formula A):

case A of {

A_1 OR A_2: if (evalqbf A_1) = 1 then 1 else evalqnf(A_2)

A_1 AND A_2: if (evalqbf A_1) = 0 then 0 else evalqbf(A_2)

NOT A_1 : return 1 - (evalqnf A_1)

exists x A : existentially guess v in {0, 1};

evalqbf A [ x := v]

forall x A : universally guess v in {0, 1};

evalqbf A [ x := v]

}

where A [x := v] replaces all free occurrences of x in A with v.

Theorem.

QBF is in AP (by algorithm above)

PSPACE ⊆ AP (as QBF is PSPACE-hard)
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The class AP

From AP to PSPACE

Theorem. AP ⊆ PSPACE.

Proof (Idea). Depth-first search simulates ATM M on standard TM.

Algorithm ATMaccept (ATM-ID I):

if (I is existential) {

let accept := false;

foreach J with I |- J { accept := accept OR ATMaccept(J); }

return (accept);

} else if (I is universal) {

let accept := true;

foreach J with I |- J { accept := accept AND ATMaccept(J); }

return (accept);

}

For polynomial bound p and input of length n:

recursion depth is polynomial as M is AP

argument in recursive calls is of size O(p(n))

So space in O(p2(n)).
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Complexity Overview

Why PSPACE is “harder” than NP

True NP-complete instances can (at least) be easily verified:
Provide witness (e.g., accepting-ID-path of NTM).
Has polynomial length and can be verified in polynomial time.

Example: Is a SAT formula satisfiable?
Verifier can check correctness of variable assignment in polytime.

True PSPACE-complete problems can (probably) not be easily verified:
Prover even of unlimited power cannot convince poly-time verifier that some
language is in some class (if PSPACE ̸= NP). (Because PSPACE ̸= NP directly,
due to our central corollary, excludes a polytime witness.)
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Complexity Overview

What we know and don’t know (Recap)

Inclusions

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME

but P ̸= EXPTIME, but we don’t know which inclusion(s) is (are) strict

Co-Classes.

co-PSPACE = PSPACE = NPSPACE = co-NPSPACE

NP ⊆ PSPACE and co-NP ⊆ PSPACE

but we don’t know whether NP = co-NP (however this would follow if P = NP)

Equalities (from Today)

PSPACE = AP

Pascal Bercher week 11: Alternating Time Semester 1, 2023 21 / 21



Complexity Overview

What we know and don’t know (Recap)

Inclusions

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME

but P ̸= EXPTIME, but we don’t know which inclusion(s) is (are) strict

Co-Classes.

co-PSPACE = PSPACE = NPSPACE = co-NPSPACE

NP ⊆ PSPACE and co-NP ⊆ PSPACE

but we don’t know whether NP = co-NP (however this would follow if P = NP)

Equalities (from Today)

PSPACE = AP

Pascal Bercher week 11: Alternating Time Semester 1, 2023 21 / 21



Complexity Overview

What we know and don’t know (Recap)

Inclusions

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME

but P ̸= EXPTIME, but we don’t know which inclusion(s) is (are) strict

Co-Classes.

co-PSPACE = PSPACE = NPSPACE = co-NPSPACE

NP ⊆ PSPACE and co-NP ⊆ PSPACE

but we don’t know whether NP = co-NP (however this would follow if P = NP)

Equalities (from Today)

PSPACE = AP

Pascal Bercher week 11: Alternating Time Semester 1, 2023 21 / 21


	Games
	Alternating Turing Machines (ATMs)
	The class AP
	Complexity Overview

