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Content of this Chapter

Hardness with “powerful” reductions.

Recap on stati of Turing Machines
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On (too?) Powerful Hardness Proofs

On P membership vs. P-completeness

∠ For (almost*) all classes we looked into completeness.
(*Due to time constraints we sometimes did not look into completeness.)

∠ This makes sense, because providing, e.g., an EXPTIME membership proof for a
language doesn’t prevent it from also being in NP or even P!

∠ However, we never did that for P... We only showed membership! Why?

Theorem. Under Karp reductions, all non-trivial problems in P are P-complete.

Idea.

∠ We can use the polytime granted by the reduction to solve the other problem!

∠ We’ll see in the proof (next slide) why trivial problems don’t work.
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On (too?) Powerful Hardness Proofs

P-hardness of non-trivial P problems, Proof

∠ Let L ∈ P and L ̸= ∅ and L ̸= Σ∗.

∠ This implies that there are wyes,wno, wyes ̸= wno, such that wyes ∈ L and wno /∈ L.

∠ To show P-hardness, we prove that “it can be used” (under Karp-reductions!) to
solve any other problem in P. In other words: for any L′ ∈ P we get L′ ≤P L

∠ We used the quotes here because we are actually not going to use L’s decider (TM)
to solve any other problem, but just the reduction itself! (And the yes and no
instances, but only implicitly.)

∠ Let L′ be some problem in P. Need to show: for any word w , w ∈ L′ iff f (w) ∈ L.

∠ Check if w ∈ L′, which we can do in poly-time (as part of the “reduction”).
∠ If yes, return f (w) = wyes

∠ If no, return f (w) = wno

∠ This gives a poly-time reduction.

Or does it?

∠ Note that we don’t know how long wyes/wno are in comparison to the input w . But f
needs to run in poly-time! Is the proof wrong after all?

∠ wyes/wno are fixed in advance, “hard-coded” into the function. So the runtime for
writing the word f (w) is constant and does not scale with the length of w !
(f however still needs non-constant poly-time to check for w ∈ L′.)
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On (too?) Powerful Hardness Proofs

P-completeness, final notes

So, why did we never talk about P-completeness?

∠ Because we only covered Karp-reductions, for which he have that P membership
implies P-hardness.

∠ Note that P-hardness/completeness is not defined using Karp-reductions! (Now you
see why!)

∠ They are based on log-time reductions to differentiate between problems in P and
those (believed to be?) below. This goes beyond this course, just remember that
P-hardness is defined differently than used in this course!
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On (too?) Powerful Hardness Proofs

Why polytime-reductions for PSPACE-hardness?

Recall last week (week 10), chapter 11c. We asked why we define PSPACE-hardness via
poly-time reductions, rather than poly-space reductions. Now you know why!

Theorem.
Under poly-space reductions, all non-trivial problems in PSPACE are PSPACE-complete.
(This includes problems in P!)

Proof.
Identical to the one before. Just replace P by PSPACE and poly-time by poly-space.
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On the different Stati of Turing Machines

Disclaimer

∠ The following slides are exactly the same as those in week 5, pages 9 to 11.

∠ Thus they will be excluded here from the upload to prevent redundancy.
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