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Content of this Chapter

∠ Determinisitic Time Complexity

∠ Non-deterministic Time Complexity

∠ The classes P and NP

Additional Reading: Chapter 10 of HMU.
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Time Complexity

Runtime of a TM (Example)

Example

We know that L =
{
0i1i | i ∈ N

}
is a CFL and decidable, e.g. by TM M1 which on

input w does:

1 Scan w and reject if anything not in {B, 0, 1} or 10 is found.

2 Repeat as long as there are 0s and 1s on the tape:

∠ Scan across and replace with blanks both the leftmost 0 and the rightmost 1.

3 If either 0s or 1s are left reject, otherwise accept.

How much time does M1 need, as a function f of the length of the input word w?

w ϵ 01 0212 0313 0414 0515

f (|w |) 2 8 19 34 53 76

The exact numbers depend on how exactly the machine is implemented. (But the idea
should be clear.) Also note that we’d need the “time” (number of executed steps) for all
inputs, not just the ones from L as given here as example.
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Time Complexity

Running Time of (Deterministic) TM

Definition 10.1.1

The running time of a deterministic TM that halts on all inputs is the function
f : N −→ N, where f (n) is the maximum number of steps that M uses on any input of
length n.

Notes:

∠ The running time is a function taking some input – because each TM also takes an
input! So the TM’s runtime depends on it.

∠ Please note that n is the length of the input!

Example 10.1.2

For M1, it seems that f (2k) = f (2(k − 1)) + 4k + 1 for k > 1. (Though this assumes
that we always start from the left, but we could do better.)

As noted earlier, we do need to know f for all possible lengths, not just for even-length
strings, and not just for k > 1 (but also k = 0 and k = 1).
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Time Complexity

Asymptotic Notation (Big-O)

The exact running time function is often too complicated. The highest order terms
dominate the function eventually, so we can ignore the other terms.

Definition 10.1.3

Let f , g : N −→ R≥0. We say that f (n) = O(g(n)) (or f (n) ∈ O(g(n))) if there exist
c, n0 > 0 such that for all n ≥ n0

f (n) ≤ c · g(n) .

The function g is an (asymptotic) upper bound for f .

Bounds of the form nc for some c > 0 are called polynomial bounds; those of the form

2(n
δ) are called exponential bounds when δ ∈ R is positive.
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Time Complexity

Examples for Big-O Notation

Example 10.1.4

∠ 5n3 + 2n2 + 22n + 6 = O(n3)

∠ f from M1 (which was f (2k) = f (2(k − 1)) + 4k + 1) is in O(n2).
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Time Complexity

log in the Big-O Notation

We may safely omit the base of logarithms in the big-O notation because

loga n =
logb n

logb a
=

1

logb a
· logb n .

(So two log functions with different bases just differ in a constant multiplier that does
not depend on the input.)
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Time Complexity

Small-o Notation

Definition 10.1.5

Let f , g : N −→ R≥0. We say that f (n) = o(g(n)) (or f (n) ∈ o(g(n))) if

lim
n→∞

f (n)

g(n)
= 0 .

that is, for any c > 0 there exist n0 > 0 such that f (n) < c · g(n), for all n ≥ n0.

In comparison:
f (n) = O(g(n)) if there exist c, n0 > 0 such that f (n) ≤ c · g(n) for all n ≥ n0

Observe that

1 f = O(f ) but f ̸= o(f ).

2 f = o(g)⇒ f = O(g) but in general f = o(g) ̸⇐ f = O(g)

Examples:

∠ n ̸= o(2n) (although 2n grows faster than n)

∠ n = o( 1
2
n log n) and n log n = o(n2)
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Complexity Classes

Time Complexity Classes (Definition)

Definition 10.2.1

Let t : N −→ R≥0. Define the time complexity class TIME(t(n)) to be the collection of
all languages that are decidable by an O(t(n))-time TM.

Example 10.2.2

Recall L =
{
0i1i | i ∈ N

}
. Our analysis of M1’s running time showed that

L ∈ TIME(n2).
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Complexity Classes

Time Complexity Classes (Example)

Example 10.2.3

Could we do better for L?

Is there a TM that decides L asymptotically more quickly, that is, is L ∈ TIME(t(n)) for
some t = o(n2)?

Consider M2, which on input w does:

1 Scan w left to right and reject if 10 occurs as a substring.
2 Repeat as long as both 0s and 1s are on the tape:

1 Scan from right to left and reject if there is
an odd number of non-Xs on the tape.

2 Scan from left to right and replace every other 0
by an X, beginning with the first 0. Then do the same for the 1s.

3 If neither 0s nor 1s are left accept, otherwise reject.

So L(M2) = L ∈ TIME(n log n).
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Complexity Classes

Example

Example 10.2.4

Compare the running times (step numbers) of M1 and M2.

w ϵ 01 0212 0313 0414 0515

fM1(|w |) 2 8 19 34 53 76
fM2(|w |) 1 15 45 63 117 141

So M1 beats M2 at least for short inputs. For 020120 this is no longer the case.
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Complexity Classes

Example

Example 10.2.5

Could we do still better for L?

Is there a TM that decides L asymptotically more quickly, that is, is L ∈ TIME(t(n)) for
some t = o(n log n)?

We won’t prove this here, but the answer is no, not with a deterministic single-tape TM.

Consider the two-tape TM M3, which on input w does:

1 Scan from left to right and copy 0s onto the second tape
until the first 1 occurs.

2 Keep scanning left to right across the 1s while scanning
right to left on the second tape.

3 Accept if both heads encounter their first blank at the same time,
otherwise reject.

So L(M3) = L “∈” TIME(n). (If we could use a multi-tape TM.)
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Complexity Classes

Complexity vs. Computability

∠ In computability theory we proved that the various TM models (deterministic vs.
non-deterministic, single-tape vs. multi-tape) were equally powerful.

∠ In complexity theory the choice of TM models affects the time complexity of
languages. (As you have just seen! Provided you believe that there’s no single-tape
TM running in O(n).)

∠ So it’s important to differentiate between expressiveness and complexity!
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Complexity Classes

Multi-Tape TM vs. Single-Tape TM

Theorem 10.2.6

Let t : N −→ R≥0 be such that ∀n ∈ N (t(n) ≥ n). Every t-time multi-tape TM has an
equivalent O((t(n))2)-time single-tape TM.

Proof.

By analysing the time complexity of the construction given to show that every multi-tape
TM M has an equivalent single-tape TM S .
Since for every step of M S might have to scan all of the tape used so far, the single step
number k of M may cost S up to O(k) steps. Hence the running time of S on an input

of length n is O(
∑t(n)

i=1 i) = O(
t(n)·(t(n)+1)

2
) = O((t(n))2)
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Complexity Classes

Running Time of Non-Deterministic TM

The running time of a deciding non-deterministic TM N on an input word w is the
maximum number of steps N uses on any branch of its computation tree when starting
on w .

Theorem 10.2.7

Let t : N −→ R≥0 be such that ∀n ∈ N (t(n) ≥ n). Every t-time non-deterministic TM
has an equivalent 2O(t(n)) time single-tape TM.

Proof.

By analysing the time complexity of the construction given to show that every
non-deterministic TM N has an equivalent deterministic TM S .
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has an equivalent 2O(t(n)) time single-tape TM.

Proof.

By analysing the time complexity of the construction given to show that every
non-deterministic TM N has an equivalent deterministic TM S . (Cf. week 5)

ID1

ID2;1 ID2;2 ID2;k

ID3;1 ID3;2 ID3;3 ID3;4 ID3;‘

· · ·

· · ·

ID1

ID2;1 ID2;2 ID2;k

ID3;1 ID3;2 ID3;3 ID3;4 ID3;‘

· · ·

· · ·

ID1

ID3;1 ID3;2

ID3;3 ID3;4

‡ †

ID1 ID2;1 ID2;2‡ † † · · ·† † ID2;k †

ID1 ID2;1 ID2;2‡ † · · ·† † ID2;k † † †

ID3;1 ID3;2ID1 ID2;1 ID2;2‡ · · ·† † ID2;k † † † † †

‡

‡ ‡

Tape 1

(If M does not halt at ID1)

(If M does not halt at ID1 and ID2;1)

(If M does not halt at ID1, ID2;1 and ID2;2)

(N does Breadth-First exploration of IDs of M)
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Complexity Classes

Running Time of Non-Deterministic TM

The running time of a deciding non-deterministic TM N on an input word w is the
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on w .
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Let t : N −→ R≥0 be such that ∀n ∈ N (t(n) ≥ n). Every t-time non-deterministic TM
has an equivalent 2O(t(n)) time single-tape TM.

Proof.

By analysing the time complexity of the construction given to show that every
non-deterministic TM N has an equivalent deterministic TM S .

∠ For inputs of length n the computation tree of N has depth at most t(n).

∠ Every tree node has at most b children, where b ∈ N depends on N’s transition
function. Thus the tree has no more than bt(n)+1 nodes.

∠ S may have to explore all of them, in a breadth first fashion. Each exploration may
take O(t(n)) steps (from the root to a node).

∠ So all explorations together may take O(t(n)) · O(bt(n)+1) = 2O(t(n)) time.
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Complexity Classes

Our First Complexity Class: P

We are interested in problems that can be decided efficiently, i.e., in polynomial time.
Formally:

Definition 10.2.8

P =
⋃

k∈N
TIME(nk)

Note: All deterministic models of computation are time equivalent up to some
polynomial! (This thus further motivates this definition.)
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Complexity Classes

Examples in P

PATH = { ⟨G , s, t⟩ | t is reachable from s in directed graph G }

RELPRIME = { ⟨x , y⟩ | x , y ∈ N ∧ gcd(x , y) = 1 }

gcd means greatest common divisor. E.g.,

∠ ⟨3, 5⟩ ∈ RELPRIME, since 3 and 5 are prime, so gcd(3, 5) = 1

∠ ⟨8, 21⟩ ∈ RELPRIME, since 8 = 2 · 4 and 21 = 3 · 7, so gcd(8, 21) = 1

∠ ⟨9, 12⟩ /∈ RELPRIME, since 9 = 3 · 3 and 12 = 2 · 2 · 3, so gcd(9, 12) = 3

Details are in [Sipser2006].
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Complexity Classes

Examples in P cont.

Theorem 10.2.9

Every CFL is in P.

First, what does that mean? When is a language in P?

∠ According to Definition 10.2.8, P is the set of languages for which there exists a TM
that decides it in polytime.

∠ Thus, L ∈ P is true once there exists one representation (grammar or automaton) of
it for which there exists a decision procedure (a TM) running in polytime. This is
even true if there exist representations generating L for which deciding L is not in P!

∠ Thus, for a CFL L to show that L ∈ P, we pick the most suitable representation!

Proof.

Let L be context-free. We thus know that there exists a CFG G in Chomsky Normal
Normal (CNF). Let G be given. Now run CYK on the input w , taking O(|w |3) time.

Note that this proof would even be correct if converting a CFG G into CNF would take
exponential time! (Due to the arguments above.) But it’s not! Conversion is polytime.
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Complexity Classes

Beyond (?) P

HAMPATH =

{
⟨G , s, t⟩

∣∣∣∣ Directed graph G has a
Hamiltonian path from s to t

}

COMPOSITES = { ⟨x⟩ | ∃p, q ∈ N>1 (x = p · q) }

A Hamiltonian path is a path in a graph that visits each vertex exactly once.
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Complexity Classes

Verifying an answer is often much easier than finding it.

Definition 10.2.10

A verifier for a language A is an algorithm V , such that

A = { w | V accepts ⟨w , c⟩ for some string c }

We measure the running time of a verifier only in terms of the length of w , not that of
the certificate (or proof) c. (This prevents exponentially long certificates.) Language A is
polynomially verifiable if it has a polynomial time verifier.

Note that for many problems certificates are ‘directly’ those properties that are being
demanded (e.g., a Hamiltonian path, the divisor, etc.), but it can also be another
property, from which membership follows logically. (See week 12!)

Examples 10.2.11

For HAMPATH a certificate for ⟨G , s, t⟩ could be the sequence of nodes forming a
Hamiltonian path from s to t in G .

For COMPOSITES a certificate for ⟨x⟩ could be a non-trivial divisor of x .
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Complexity Classes

NP

Definition 10.2.12

NP is the class of languages that have polynomial time verifiers.

Theorem 10.2.13

A language is in NP iff it is decided by some non-deterministic polynomial time TM.

Proof.

→: Let L ∈ NP. We thus know that a (deterministic) verifier V exists, and for each word
w ∈ L a certificate that’s poly-length in w . Design a poly-time NTM M with L = L(M)
as follows. First, M non-deterministically generates all possible certificates (i.e., each run
produces one certificate). Then, we switch into the second phase which implements V ,
which in turn verifies the written certificate and accepts or rejects accordingly.

←: Let M be a poly-time NTM with L = L(M). Then there must be a sequence of
configurations, bounded by a polynomial in the length of each input, which ends in an
accepting state/configuration. Use this sequence as certificate: Design a deterministic
verifier V , which tests whether a given sequence of configurations is valid with regard to
M and ends in an accepting configuration. Accept/reject accordingly.

Note that one can also switch what is a definition and what is the theorem!
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Complexity Classes

NTIME

Definition 10.2.14

NTIME(t(n)) is the class of languages decided by an O(t(n)) time non-deterministic
TM.

Corollary 10.2.15

NP =
⋃

k∈N
NTIME(nk)
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Complexity Classes

Example: Cliques

A clique in an undirected graph is a fully connected subgraph. A k-clique is a clique with
k nodes.

CLIQUE = { ⟨G , k⟩ | Undirected graph G contains a k-clique }

is in NP.

Proof.

The certificate is a (representation of a) k-clique.
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