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Content of this Chapter

> NP-Hardness

> Polytime Reductions

> SAT is NP-hard

Additional Reading: Chapter 10 of HMU.
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NP-Completeness

Question 10.1.1 (P = NP problem)

Can we simulate a non-deterministic TM (NTM) in polynomial time on a (deterministic)
T™M?

Recall:
o P—problems that can be solved in polynomial time on a TM.

o NP—problems that can be solved in polynomial time on an NTM.

At this point, no one knows for sure, but “no” might be a good bet.
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NP-Completeness

NP-complete problems

This is about decision problems (problems with yes/no answers). Equivalently, solving
the membership problem x € L.

Obviously P C NP.
Nobody knows for sure whether NP C P

Intuitively, NP-complete problems are the “hardest” problems in NP.
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NP-Completeness

P Reducibility

Definition 10.1.2

f:¥* — X" is a polynomial time-computable (or P-computable) function if some
polynomial time TM M exists that halts with just f(w) on its tape, when started on any
input w € X*.
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P Reducibility

Definition 10.1.2

f:¥* — X" is a polynomial time-computable (or P-computable) function if some
polynomial time TM M exists that halts with just f(w) on its tape, when started on any
input w € X*.

Definition 10.1.3

A C 37 is polynomial time mapping-reducible (or P-reducible) to B C X3, written
A <p B, if a P-computable function f : X7 — X3 exists that is also a reduction
(from A to B).
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P Reducibility

Definition 10.1.2

f:¥* — X" is a polynomial time-computable (or P-computable) function if some
polynomial time TM M exists that halts with just f(w) on its tape, when started on any
input w € %,

Definition 10.1.3

A C 37 is polynomial time mapping-reducible (or P-reducible) to B C X3, written
A <p B, if a P-computable function f : X7 — X3 exists that is also a reduction
(from A to B).

| A\

Definition 10.1.4

> A reduction is a polynomial-time translation of the problem, say r.

> If w is an instance of problem A, then r(w) is an instance of problem B.

> r must have two properties:
@ it preserves the answer. So the answer to w is "yes” iff the answer to r(w) is
“yes.” (The same automatically holds for the “no” due to the “iff".)
@ r(w) can be computed in time polynomial in |w]|.
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NP-Completeness

P Reducibility cont.

Theorem 10.1.5

If A<p B and B € P then A € P.
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NP-Completeness

P Reducibility cont.

Theorem 10.1.5
If A<p B and B € P then A € P.
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NP-Completeness

NP Membership, Hardness, and Completeness

Definition 10.1.6 (NP completeness, NP membership, NP hardness)

A language B is NP-complete if
@ B e NP = NP membership
@ every A € NP is P-reducible to B. = NP hardness
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NP Membership, Hardness, and Completeness

Definition 10.1.6 (NP completeness, NP membership, NP hardness)

A language B is NP-complete if
@ B e NP = NP membership
@ every A € NP is P-reducible to B. = NP hardness

> So from the second property we get A <p B for all A, and therefore we know that
B is “hard/expressive enough” to solve all other problems in NP.
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A language B is NP-complete if
@ B e NP = NP membership
@ every A € NP is P-reducible to B. = NP hardness

> So from the second property we get A <p B for all A, and therefore we know that
B is “hard/expressive enough” to solve all other problems in NP.

> Therefore, NP-complete problems are the hardest ones in NP.
(E.g., we probably can’t solve other NP problems using a P problem!)
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NP-Completeness

NP Membership, Hardness, and Completeness

Definition 10.1.6 (NP completeness, NP membership, NP hardness)

A language B is NP-complete if
@ B e NP = NP membership
@ every A € NP is P-reducible to B. = NP hardness

> So from the second property we get A <p B for all A, and therefore we know that
B is “hard/expressive enough” to solve all other problems in NP.

> Therefore, NP-complete problems are the hardest ones in NP.
(E.g., we probably can’t solve other NP problems using a P problem!)

> Note that if P £ NP, there do exist problems, which are in NP, not in P, but not
NP-hard! In other words: If P # NP (so non-determinism can't be compiled away in
poly-time), non-membership to P (which implies that we need non-determinism for
poly-time) does not imply that a problem is also NP-hard (and thus NP-complete).
(Ladner’s theorem, 1975)
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NP-Completeness

Motivation

Why are we interested in showing NP-hardness/completeness in the first place?
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> If we fail in providing a P procedure for a new problem it could be:
o Because we just did not think hard enough (it exits and we could find it)
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Motivation

Why are we interested in showing NP-hardness/completeness in the first place?
> If we fail in providing a P procedure for a new problem it could be:

o Because we just did not think hard enough (it exits and we could find it)
o Somebody else did just not think hard enough (it exists and somebody more
fortunate could find it)
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Motivation

Why are we interested in showing NP-hardness/completeness in the first place?
> If we fail in providing a P procedure for a new problem it could be:

o Because we just did not think hard enough (it exits and we could find it)

o Somebody else did just not think hard enough (it exists and somebody more
fortunate could find it)

o It doesn’t even exist!

> So ... How to find out whether we should just work harder?
(Or ask “this friend that's always better/quicker than me”?)
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Motivation

Why are we interested in showing NP-hardness/completeness in the first place?
> If we fail in providing a P procedure for a new problem it could be:

o Because we just did not think hard enough (it exits and we could find it)

o Somebody else did just not think hard enough (it exists and somebody more
fortunate could find it)

o It doesn’t even exist!

> So ... How to find out whether we should just work harder?
(Or ask “this friend that's always better/quicker than me”?)
o If we can prove NP-completeness, then at least we know that nobody before you
(and possibly long after you) found a P-procedure. (And maybe none even exists
for it, which follows directly once somebody proves P # NP.)
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NP-Completeness

Motivation

Why are we interested in showing NP-hardness/completeness in the first place?
> If we fail in providing a P procedure for a new problem it could be:
o Because we just did not think hard enough (it exits and we could find it)
o Somebody else did just not think hard enough (it exists and somebody more

fortunate could find it)
o It doesn't even exist!
> So ... How to find out whether we should just work harder?
(Or ask “this friend that's always better/quicker than me”?)

o If we can prove NP-completeness, then at least we know that nobody before you
(and possibly long after you) found a P-procedure. (And maybe none even exists
for it, which follows directly once somebody proves P # NP.)

> Why NP-completeness? Why not just showing NP-hardness?

o Since the problem could be even harder! (E.g., PSPACE (week 10), EXPTIME,
NEXPTIME, ..., RE\ R (undecidable), and infinitely more!)

o Each problem class has specific “properties’. E.g., “NP looks like Logic",
“"PSPACE looks like planning”.
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NP-Completeness

NP-Hardness

Theorem 10.1.7

If B is NP-hard and B <p C, then C is NP-hard.
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NP-Completeness

NP-Hardness

Theorem 10.1.7

If B is NP-hard and B <p C, then C is NP-hard.

Corollary 10.1.8
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NP-Hardness

Theorem 10.1.7

If B is NP-hard and B <p C, then C is NP-hard.

Corollary 10.1.8

Proof.
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NP-Completeness

NP-Hardness

Theorem 10.1.7

If B is NP-hard and B <p C, then C is NP-hard.

Corollary 10.1.8

Proof.

Important note! Corollary 10.1.8 is of major importance!! Why?

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 9/24



NP-Completeness

NP-Hardness

Theorem 10.1.7

If B is NP-hard and B <p C, then C is NP-hard.

Corollary 10.1.8

Proof.

Important note! Corollary 10.1.8 is of major importance!! Why?
— It gives us a convenient procedure to show NP-completeness!

> First, show NP-membership. (That's almost always very easy.)
> Then, show hardness by grabing any NP-complete problem and reducing it to yours!

Open issue: We need “a very first” NP-complete problem... (Hardness is the issue!)
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NP-Completeness

NP-Hardness by Reduction (Recap!)

Typical method to show NP-hardness:

> Reduce a known NP-hard problem A to the new problem B (Theorem 10.1.7).
That is: Take NP-hard A from the literature and show A <p B, where B is the (new)
problem for which you want to show NP-hardness.
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That is: Take NP-hard A from the literature and show A <p B, where B is the (new)
problem for which you want to show NP-hardness.

Why would we want to do so?

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 10/24



NP-Completeness

NP-Hardness by Reduction (Recap!)

Typical method to show NP-hardness:

> Reduce a known NP-hard problem A to the new problem B (Theorem 10.1.7).
That is: Take NP-hard A from the literature and show A <p B, where B is the (new)
problem for which you want to show NP-hardness.

Why would we want to do so?
> We just had some reasons a few slides back (see our Motivation slide!).

> One point is: we know that nobody has found a P solution to your problem B yet!
(That hopefully makes a good excuse!)
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NP-Completeness

Consequences of NP-Completeness

Theorem 10.1.9

If B is NP-complete and B € P then P = NP.

Proof.
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NP-Completeness

Consequences of NP-Completeness

Theorem 10.1.9
If B is NP-complete and B € P then P = NP.

Proof.

Question: Did we need NP-completeness of B? Would NP-hardness have sufficed?
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Consequences of NP-Completeness

Theorem 10.1.9
If B is NP-complete and B € P then P = NP.

Proof.

Question: Did we need NP-completeness of B? Would NP-hardness have sufficed?
— Yes! But it's less likely to show B € P if it's not NP-complete. (Discuss in tutorials.)
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NP-Completeness

Consequences of NP-Completeness

Theorem 10.1.9
If B is NP-complete and B € P then P = NP.

Since B is NP-hard, by Def. 10.1.6, for every A € NP holds A <p B.
Since B is in P, and since polynomial time reductions compose, each A is in P. O

Question: Did we need NP-completeness of B? Would NP-hardness have sufficed?
— Yes! But it's less likely to show B € P if it's not NP-complete. (Discuss in tutorials.)
Also:
> All NP-complete problems can be translated in deterministic polytime into every other
NP-complete problem. l.e., all NP-complete problems can be reduced to each other.
> So, if there is a P solution to one NP-complete problem, there is a P solution to
every NP problem. (This can be another “motivation” behind all this.)
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Consequences of NP-Completeness

Theorem 10.1.9
If B is NP-complete and B € P then P = NP.

Since B is NP-hard, by Def. 10.1.6, for every A € NP holds A <p B.
Since B is in P, and since polynomial time reductions compose, each A is in P. O

Question: Did we need NP-completeness of B? Would NP-hardness have sufficed?
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every NP problem. (This can be another “motivation” behind all this.)

Let A be NP-complete and B € NP. What can we conclude (at the moment)?
@ B <p A? Yes, by definition. Since A is NP-hard.
@ A <p B? No! Maybe P # NP, and B might be in P.
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Consequences of NP-Completeness

Theorem 10.1.9
If B is NP-complete and B € P then P = NP.
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NP-Completeness

Consequences of NP-Completeness

Theorem 10.1.9
If B is NP-complete and B € P then P = NP.

Since B is NP-hard, by Def. 10.1.6, for every A € NP holds A <p B.
Since B is in P, and since polynomial time reductions compose, each A is in P. O

Question: Did we need NP-completeness of B? Would NP-hardness have sufficed?
— Yes! But it's less likely to show B € P if it's not NP-complete. (Discuss in tutorials.)
Also:
> All NP-complete problems can be translated in deterministic polytime into every other
NP-complete problem. l.e., all NP-complete problems can be reduced to each other.
> So, if there is a P solution to one NP-complete problem, there is a P solution to
every NP problem. (This can be another “motivation” behind all this.)
Let A be NP-complete and B € NP. What can we conclude (at the moment)?
@ B <p A? Yes, by definition. Since A is NP-hard.
@ A <p B? No! Maybe P # NP, and B might be in P.
® A<p Bif B¢ P? Still no! Maybe P £ NP, then Ladner’s theorem says that there
are non-NP-hard problems in NP \ P! (And maybe that's our B.)
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NP-Completeness

Basic Proof Strategy (Another Recap!)

NP-completeness is a good news/bad news situation.
o Good news: The problem is in NP! (Why good? )
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NP-Completeness

Basic Proof Strategy (Another Recap!)

NP-completeness is a good news/bad news situation.
o Good news: The problem is in NP! (Why good? It's “not” harder!)
o Bummer: The problem is NP-hard! (Why bad? Likely not in P...)

So, a typical NP-completeness proof consists of two parts:

@ Prove that the problem is in NP (i.e., it has P verifier — or a non-deterministic TM).

@ Prove that the problem is at least as hard as other problems in NP.
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NP-Completeness

Basic Proof Strategy (Another Recap!)

NP-completeness is a good news/bad news situation.
o Good news: The problem is in NP! (Why good? It's “not” harder!)
o Bummer: The problem is NP-hard! (Why bad? Likely not in P...)

So, a typical NP-completeness proof consists of two parts:
@ Prove that the problem is in NP (i.e., it has P verifier — or a non-deterministic TM).

@ Prove that the problem is at least as hard as other problems in NP.

A TM can simulate an ordinary computer in polynomial time, so it is sufficient to
describe a polynomial-time checking algorithm that will run on any reasonable model of
computation. (Recall the pseudocode for gcd! That wasn't a TM either.)
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NP-Completeness

NP-hardness: How (not) to do it

Important warning;:

o Make sure you are reducing the known problem to the unknown problem!
“Unknown” here means that it's the “new” one that has unknown complexity.

o Recall Corollary 10.1.8: Show B <p C for C € NP, i.e., C is the unknown problem
and B was an NP-complete problem. (Any NP-hard problem will do for B, but if
it's harder than NP, you likely won't be able to do the reduction.)

o So, again, carefully double-check that you reduce in the right direction!
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NP-hardness: How (not) to do it

Important warning;:

o Make sure you are reducing the known problem to the unknown problem!
“Unknown” here means that it's the “new” one that has unknown complexity.

o Recall Corollary 10.1.8: Show B <p C for C € NP, i.e., C is the unknown problem
and B was an NP-complete problem. (Any NP-hard problem will do for B, but if
it's harder than NP, you likely won't be able to do the reduction.)

o So, again, carefully double-check that you reduce in the right direction!

In practice, there are now thousands of known NP-complete problems.
A great start: “Karp's 21 NP-complete problems” — google it!
(And attend/watch Alban’s guest lectures on examples! No slides!)

A good technique is to look for one similar to the one you are trying to prove NP-hard.
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SAT  Intro

Making our life easier...

So for NP-completeness we need to show NP-hardness. For this, we had two options:
@ Use Definition 10.1.6, i.e., show that all problems in NP reduce to our problem, or
@ use Theorem 10.1.7, i.e., reduce from an NP-hard problem.

So in the first case we need to show a property for all problems, in the second we only
need a single reduction... What's easier? :)

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 14 /24



SAT  Intro

Making our life easier...

So for NP-completeness we need to show NP-hardness. For this, we had two options:
@ Use Definition 10.1.6, i.e., show that all problems in NP reduce to our problem, or
@ use Theorem 10.1.7, i.e., reduce from an NP-hard problem.

So in the first case we need to show a property for all problems, in the second we only
need a single reduction... What's easier? :)

So we need a very first problem that's shown to be NP-hard — from then on we can start
reducing!

For this, we will use SAT!
(Note that this / the first choice is actually also just a single reduction!)
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SAT  Intro

Boolean Formulae

Let Prop = {x,y,...} be a (finite) set of Boolean variables (or propositions).
A CFG for Boolean formulae over Prop is:

¢—=ploNG| 0] ()

p—=x|yl| ...
We use abbreviations such as
1V ¢2 = (=1 A ) 1= g2 = P11V @2
FALSE = (x A —1x) TRUE = —FALSE

(Technically, we could handle countably infinite sets Prop if we had a naming scheme for
variables, say, x, for binary representations n of natural numbers. We won't need this!)
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SAT  Intro

Semantics of Boolean Formulae

A Boolean formula is either T (for “true”) or L (for “false”), possibly depending on the
interpretation of its propositions. Let B = {1, T}.

Definition 10.2.1

An interpretation (or assignment) of Prop is a function 7 : Prop — B.
For Boolean formulae ¢ we define 7 satisfies ¢, written 7 |= ¢, inductively by:
Base: 7 = x iff 7(x) = T.
Induction:
o 7= ¢ iff w £ .
o 7 [= ¢1 A ¢2 iff both 7 |= ¢1 and 7 = ¢s.
o = (¢) iff m = ¢.

¢ is satisfiable if there exists an interpretation 7 such that 7 = ¢.
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SAT  Patient Zero

SAT—An NP-Complete Problem

SAT ={ (¢) | ¢ is a satisfiable Boolean formula }

Theorem 10.2.2 (Cook-Levin Theorem — or: Cook’s Theorem, 1971/1973)

SAT is NP-complete.

Proof of SAT € NP.

Proof of SAT is NP-hard.
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SAT  Patient Zero

Proof of NP-Hardness of SAT

Let A€ NP. Let M = (Q,X%,T, 6, qo, F) be a deciding NTM with L(M) = A and let p be
a polynomial such that M takes at most p(|w|) steps on any computation for any
we X",

Construct a P reduction from A to SAT:

> Input w is turned into a Boolean formula ¢, that describes M's possible
computations on w.

> M accepts w iff ¢, is satisfiable. The satisfying interpretation resolves the
nondeterminism in the computation tree to arrive at an accepting branch of the
computation tree.

Remains to be done: define ¢u.
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SAT  Patient Zero

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an n < p(Jw|) exists and a sequence of configurations
(Gi)o<i<n (IDs), where

@ G = qow,

@ each G can yield Ciy1, and

@ C, is an accepting ID.

@ Note that we have at most n+ 1 IDs if the TM can make at most n < p(Jw|) steps.
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SAT  Patient Zero

dw

The Boolean formula ¢, shall represent all such sequences (Ci)o<i<n beginning with gow.

¢w = (z)cell N ¢start N ¢move A ¢accept

The different sub formulae serve the following purposes:
> ¢een: Defines all existing “cells”, which encode all possible IDs.
> @start: Sets the initial row of these cells: TM’s initial ID.
> ®move: Enforces legal TM transitions.

> @accept: Enforces ending up in an accepting state.
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SAT  Patient Zero

¢ce|l

... describes an n? grid using propositions Prop = { xixs | i,k € {0,...,n} As€ Ty },
where ¥4 = QUT (recall that B € T") is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i,k € {0,...,n}? Why s € 347
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¢ce|l

... describes an n? grid using propositions Prop = { xixs | i,k € {0,...,n} As€ Ty },
where ¥4 = QUT (recall that B € T") is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i,k € {0,...,n}? Why s € 347

o i: encode the rows. We need one for every possible ID (n+ 1 many!)
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¢ce|l

... describes an n? grid using propositions Prop = { xixs | i,k € {0,...,n} As€ Ty },
where ¥4 = QUT (recall that B € T") is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i,k € {0,...,n}? Why s € 347
o i: encode the rows. We need one for every possible ID (n+ 1 many!)

o k: encodes the columns. Each column is a possible value of an ID symbol.
n symbols are the TM cells that can be reached, and one is the state.

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 21/24



SAT  Patient Zero

¢ce|l

... describes an n? grid using propositions Prop = { xixs | i,k € {0,...,n} As€ Ty },
where ¥4 = QUT (recall that B € T") is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i,k € {0,...,n}? Why s € 347
o i: encode the rows. We need one for every possible ID (n+ 1 many!)

o k: encodes the columns. Each column is a possible value of an ID symbol.
n symbols are the TM cells that can be reached, and one is the state.

o s: The content of ID i at position k, i.e., a tape symbol or the state.
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¢ce|l

... describes an n? grid using propositions Prop = { xixs | i,k € {0,...,n} As€ Ty },
where ¥4 = QUT (recall that B € T") is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i,k € {0,...,n}? Why s € 347
o i: encode the rows. We need one for every possible ID (n+ 1 many!)

o k: encodes the columns. Each column is a possible value of an ID symbol.
n symbols are the TM cells that can be reached, and one is the state.

o s: The content of ID i at position k, i.e., a tape symbol or the state.

Peell = /\ \/ Xiks | A /\ (=i ks V Xk, t)

0<i,k<n SEXT, SALED

Meaning: “There is exactly one symbol at each cell”.
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SAT  Patient Zero

¢sta rt

... specifies that the first row of the grid contains gow where w = w; . .. Wi
Pstart = X0,0,q9 N\ /\ X0,i,w; N\ /\ Xo0,i,B
1<i<|w| |w|<i<n

So the first line of our grid contains:
> the go symbol in the first cell,
> followed by the symbols of our initial tape word,

> followed by the blank symbol until the end.
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SAT  Patient Zero

¢move

...ensures that G yields Ci1 by describing legal 2 x 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

P _ /\ \/ Xik—1,ap N\ Xikap N\ Xik+1,a3 N\
move —
i Xi+1,k—1,a3 N\ Xit+1,k,a5 /\ Xi+1,k+1,26
O<ivk<n[a; [ a [ a3 | legal
[ 24 [ a5 [ a6 |

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function §.
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¢move

...ensures that G yields Ci1 by describing legal 2 x 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

_ Xik—1,ap N\ Xikap N\ Xik+1,a3 N\
¢move =
Xi+1,k—1,a3 N\ Xit+1,k,a5 /\ Xi+1,k+1,26

T I T P
(oo a5 oo |

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function §.

Example: Let the current ID be wiwaqwsws (so we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

> wiwaqwsws — current |ID
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¢move

...ensures that G yields Ci1 by describing legal 2 x 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

_ Xik—1,ap N\ Xikap N\ Xik+1,a3 N\
¢move =
Xi+1,k—1,a3 N\ Xit+1,k,a5 /\ Xi+1,k+1,26

T I T P
(oo a5 oo |

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function §.

Example: Let the current ID be wiwaqwsws (so we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

> wiwaqwsws — current |ID

> wiwaxgiwa — if 8(q, ws) = (g1, x, R)
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¢move

...ensures that G yields Ci1 by describing legal 2 x 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

P _ /\ \/ Xik—1,ap N\ Xikap N\ Xik+1,a3 N\
move —
i Xi+1,k—1,a3 N\ Xit+1,k,a5 /\ Xi+1,k+1,26
O<ivk<n[a; [ a [ a3 | legal
[ 24 [ a5 [ a6 |

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function §.

Example: Let the current ID be wiwaqwsws (so we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

> wiwaqwsws — current |ID
> wiwaxgiwa — if 8(q, ws) = (g1, x, R)
> wiqewayws — if (g, ws) = (g2, y, L)
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¢move

...ensures that G yields Ci1 by describing legal 2 x 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

_ Xik—1,ap N\ Xikap N\ Xik+1,a3 N\
¢move -

i Xi+1,k—1,a3 N\ Xit+1,k,a5 /\ Xi+1,k+1,26
O<ivk<n[a; [ a [ a3 | legal
[ 24 [ a5 [ a6 |

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function §.

Example: Let the current ID be wiwaqwsws (so we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

> wiwaqwsws — current |ID
> wiwaxgiwa — if 8(q, ws) = (g1, x, R)
> wiqewayws — if (g, ws) = (g2, y, L)

Are we still complete?
We can't seem to be able to move to the left of the initial head position!
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¢move

...ensures that G yields Ci1 by describing legal 2 x 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

_ Xik—1,ap N\ Xikap N\ Xik+1,a3 N\
¢move -

i Xi+1,k—1,a3 N\ Xit+1,k,a5 /\ Xi+1,k+1,26
O<ivk<n[a; [ a [ a3 | legal
[ 24 [ a5 [ a6 |

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function §.

Example: Let the current ID be wiwaqwsws (so we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

> wiwaqwsws — current |ID
> wiwaxgiwa — if 8(q, ws) = (g1, x, R)
> wiqewayws — if (g, ws) = (g2, y, L)
Are we still complete?
We can't seem to be able to move to the left of the initial head position!
> Not a problem: We showed equivalence for semi-infinite tapes under polytime.
> We could alternatively have created a grid of size (2n)?, which also goes n to the left.
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SAT  Patient Zero

Paccept — and concluding the Proof

...states that the accept state is reached:

¢accept - \/ Xi k,qp

0<i,k<n,qe€F
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Paccept — and concluding the Proof

...states that the accept state is reached:

¢accept - \/ Xi k,qp

0<i,k<n,qr€F
Concluding the Proof:

Recall:
¢w = ¢ce|l N ¢star‘t A Qbmove A ¢accept

Finally we check that the size of ¢, is polynomial in |w| and that ¢ is constructable in
polynomial time. (Both is true!)
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Paccept — and concluding the Proof

...states that the accept state is reached:

¢accept - \/ Xi k,qp

0<i,k<n,qr€F
Concluding the Proof:

Recall:
¢w = ¢ce|l N ¢star‘t A Qbmove A ¢accept

Finally we check that the size of ¢, is polynomial in |w| and that ¢ is constructable in
polynomial time. (Both is true!)

So finding a valuation to this formula means deciding w € L(M) for the arbitrary
non-deterministic TM M! So SAT is NP-hard! (It can express every problem in NP!)

We have our patient zero now — so now we can prove NP-hardness of other problems by
reducing from SAT. (And we build our portfolio...)
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