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Content of this Chapter

∠ NP-Hardness

∠ Polytime Reductions

∠ SAT is NP-hard

Additional Reading: Chapter 10 of HMU.
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NP-Completeness

P
?
= NP

Question 10.1.1 (P = NP problem)

Can we simulate a non-deterministic TM (NTM) in polynomial time on a (deterministic)
TM?

Recall:

P—problems that can be solved in polynomial time on a TM.

NP—problems that can be solved in polynomial time on an NTM.

At this point, no one knows for sure, but “no” might be a good bet.
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NP-Completeness

NP-complete problems

This is about decision problems (problems with yes/no answers). Equivalently, solving
the membership problem x ∈ L.

Obviously P ⊆ NP.

Nobody knows for sure whether NP ⊆ P

Intuitively, NP-complete problems are the “hardest” problems in NP.
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NP-Completeness

P Reducibility

Definition 10.1.2

f : Σ∗ −→ Σ∗ is a polynomial time-computable (or P-computable) function if some
polynomial time TM M exists that halts with just f (w) on its tape, when started on any
input w ∈ Σ∗.

Definition 10.1.3

A ⊆ Σ∗
1 is polynomial time mapping-reducible (or P-reducible) to B ⊆ Σ∗

2 , written
A ≤P B, if a P-computable function f : Σ∗

1 −→ Σ∗
2 exists that is also a reduction

(from A to B).

Definition 10.1.4

∠ A reduction is a polynomial-time translation of the problem, say r .

∠ If w is an instance of problem A, then r(w) is an instance of problem B.

∠ r must have two properties:

1 it preserves the answer. So the answer to w is “yes” iff the answer to r(w) is
“yes.” (The same automatically holds for the “no” due to the “iff”.)

2 r(w) can be computed in time polynomial in |w |.
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NP-Completeness

P Reducibility cont.

Theorem 10.1.5

If A ≤P B and B ∈ P then A ∈ P.

Proof.

To decide w ∈ A first compute f (w) (in P) where f is the P reduction from A to B, and
then run a P decider for B. This is still in P because p1(p2(n)) is a polynomial if p1(n)
and p2(n) are.
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NP-Completeness

NP Membership, Hardness, and Completeness

Definition 10.1.6 (NP completeness, NP membership, NP hardness)

A language B is NP-complete if

1 B ∈ NP = NP membership

2 every A ∈ NP is P-reducible to B. = NP hardness

∠ So from the second property we get A ≤P B for all A, and therefore we know that
B is “hard/expressive enough” to solve all other problems in NP.

∠ Therefore, NP-complete problems are the hardest ones in NP.
(E.g., we probably can’t solve other NP problems using a P problem!)

∠ Note that if P ̸= NP, there do exist problems, which are in NP, not in P, but not
NP-hard! In other words: If P ̸= NP (so non-determinism can’t be compiled away in
poly-time), non-membership to P (which implies that we need non-determinism for
poly-time) does not imply that a problem is also NP-hard (and thus NP-complete).
(Ladner’s theorem, 1975)
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NP-Completeness

Motivation

Why are we interested in showing NP-hardness/completeness in the first place?

∠ If we fail in providing a P procedure for a new problem it could be:

Because we just did not think hard enough (it exits and we could find it)
Somebody else did just not think hard enough (it exists and somebody more
fortunate could find it)
It doesn’t even exist!

∠ So ... How to find out whether we should just work harder?
(Or ask “this friend that’s always better/quicker than me”?)

If we can prove NP-completeness, then at least we know that nobody before you
(and possibly long after you) found a P-procedure. (And maybe none even exists
for it, which follows directly once somebody proves P ̸= NP.)

∠ Why NP-completeness? Why not just showing NP-hardness?

Since the problem could be even harder! (E.g., PSPACE (week 10), EXPTIME,
NEXPTIME, . . . , RE \ R (undecidable), and infinitely more!)
Each problem class has specific “properties”. E.g., “NP looks like Logic”,
“PSPACE looks like planning”.
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NP-Completeness

NP-Hardness

Theorem 10.1.7

If B is NP-hard and B ≤P C, then C is NP-hard.

Corollary 10.1.8

If B is NP-complete and B ≤P C for C ∈ NP, then C is NP-complete.

Proof.

Polynomial time reductions compose.

Important note! Corollary 10.1.8 is of major importance!! Why?
→ It gives us a convenient procedure to show NP-completeness!

∠ First, show NP-membership. (That’s almost always very easy.)

∠ Then, show hardness by grabing any NP-complete problem and reducing it to yours!

Open issue: We need “a very first” NP-complete problem... (Hardness is the issue!)
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NP-Completeness

NP-Hardness by Reduction (Recap!)

Typical method to show NP-hardness:

∠ Reduce a known NP-hard problem A to the new problem B (Theorem 10.1.7).
That is: Take NP-hard A from the literature and show A ≤P B, where B is the (new)
problem for which you want to show NP-hardness.

Why would we want to do so?

∠ We just had some reasons a few slides back (see our Motivation slide!).

∠ One point is: we know that nobody has found a P solution to your problem B yet!
(That hopefully makes a good excuse!)

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 10 / 24



NP-Completeness

NP-Hardness by Reduction (Recap!)

Typical method to show NP-hardness:

∠ Reduce a known NP-hard problem A to the new problem B (Theorem 10.1.7).
That is: Take NP-hard A from the literature and show A ≤P B, where B is the (new)
problem for which you want to show NP-hardness.

Why would we want to do so?

∠ We just had some reasons a few slides back (see our Motivation slide!).

∠ One point is: we know that nobody has found a P solution to your problem B yet!
(That hopefully makes a good excuse!)

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 10 / 24



NP-Completeness

NP-Hardness by Reduction (Recap!)

Typical method to show NP-hardness:

∠ Reduce a known NP-hard problem A to the new problem B (Theorem 10.1.7).
That is: Take NP-hard A from the literature and show A ≤P B, where B is the (new)
problem for which you want to show NP-hardness.

Why would we want to do so?

∠ We just had some reasons a few slides back (see our Motivation slide!).

∠ One point is: we know that nobody has found a P solution to your problem B yet!
(That hopefully makes a good excuse!)

Pascal Bercher week 7 & 8: Time Complexity Semester 1, 2023 10 / 24



NP-Completeness

Consequences of NP-Completeness

Theorem 10.1.9

If B is NP-complete and B ∈ P then P = NP.

Proof.

Since B is NP-hard, by Def. 10.1.6, for every A ∈ NP holds A ≤P B.
Since B is in P, and since polynomial time reductions compose, each A is in P.

Question: Did we need NP-completeness of B? Would NP-hardness have sufficed?
→ Yes! But it’s less likely to show B ∈ P if it’s not NP-complete. (Discuss in tutorials.)

Also:

∠ All NP-complete problems can be translated in deterministic polytime into every other
NP-complete problem. I.e., all NP-complete problems can be reduced to each other.

∠ So, if there is a P solution to one NP-complete problem, there is a P solution to
every NP problem. (This can be another “motivation” behind all this.)

Let A be NP-complete and B ∈ NP. What can we conclude (at the moment)?
1 B ≤P A? Yes, by definition. Since A is NP-hard.
2 A ≤P B? No! Maybe P ̸= NP, and B might be in P.
3 A ≤P B if B /∈ P? Still no! Maybe P ̸= NP, then Ladner’s theorem says that there

are non-NP-hard problems in NP \ P! (And maybe that’s our B.)
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1 B ≤P A? Yes, by definition. Since A is NP-hard.
2 A ≤P B? No! Maybe P ̸= NP, and B might be in P.
3 A ≤P B if B /∈ P? Still no! Maybe P ̸= NP, then Ladner’s theorem says that there

are non-NP-hard problems in NP \ P! (And maybe that’s our B.)
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NP-Completeness

Basic Proof Strategy (Another Recap!)

NP-completeness is a good news/bad news situation.

Good news: The problem is in NP! (Why good?

It’s “not” harder!

)

Bummer: The problem is NP-hard! (Why bad?

Likely not in P...

)

So, a typical NP-completeness proof consists of two parts:

1 Prove that the problem is in NP (i.e., it has P verifier – or a non-deterministic TM).

2 Prove that the problem is at least as hard as other problems in NP.

A TM can simulate an ordinary computer in polynomial time, so it is sufficient to
describe a polynomial-time checking algorithm that will run on any reasonable model of
computation. (Recall the pseudocode for gcd! That wasn’t a TM either.)
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NP-Completeness

NP-hardness: How (not) to do it

Important warning:

Make sure you are reducing the known problem to the unknown problem!
“Unknown” here means that it’s the “new” one that has unknown complexity.

Recall Corollary 10.1.8: Show B ≤P C for C ∈ NP, i.e., C is the unknown problem
and B was an NP-complete problem. (Any NP-hard problem will do for B, but if
it’s harder than NP, you likely won’t be able to do the reduction.)

So, again, carefully double-check that you reduce in the right direction!

In practice, there are now thousands of known NP-complete problems.
A great start: “Karp’s 21 NP-complete problems” – google it!
(And attend/watch Alban’s guest lectures on examples! No slides!)

A good technique is to look for one similar to the one you are trying to prove NP-hard.
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SAT Intro

Making our life easier...

So for NP-completeness we need to show NP-hardness. For this, we had two options:

1 Use Definition 10.1.6, i.e., show that all problems in NP reduce to our problem, or

2 use Theorem 10.1.7, i.e., reduce from an NP-hard problem.

So in the first case we need to show a property for all problems, in the second we only
need a single reduction... What’s easier? :)

So we need a very first problem that’s shown to be NP-hard – from then on we can start
reducing!

For this, we will use SAT!
(Note that this / the first choice is actually also just a single reduction!)
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SAT Intro

Boolean Formulae

Let Prop = {x , y , . . .} be a (finite) set of Boolean variables (or propositions).
A CFG for Boolean formulae over Prop is:

ϕ → p | ϕ ∧ ϕ | ¬ϕ | (ϕ)
p → x | y | . . .

We use abbreviations such as

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2) ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

false = (x ∧ ¬x) true = ¬false

(Technically, we could handle countably infinite sets Prop if we had a naming scheme for
variables, say, xn for binary representations n of natural numbers. We won’t need this!)
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SAT Intro

Semantics of Boolean Formulae

A Boolean formula is either ⊤ (for “true”) or ⊥ (for “false”), possibly depending on the
interpretation of its propositions. Let B = {⊥,⊤}.

Definition 10.2.1

An interpretation (or assignment) of Prop is a function π : Prop −→ B.
For Boolean formulae ϕ we define π satisfies ϕ, written π |= ϕ, inductively by:
Base: π |= x iff π(x) = ⊤.
Induction:

π |= ¬ϕ iff π ̸|= ϕ.

π |= ϕ1 ∧ ϕ2 iff both π |= ϕ1 and π |= ϕ2.

π |= (ϕ) iff π |= ϕ.

ϕ is satisfiable if there exists an interpretation π such that π |= ϕ.
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SAT Patient Zero

SAT—An NP-Complete Problem

SAT = { ⟨ϕ⟩ | ϕ is a satisfiable Boolean formula }

Theorem 10.2.2 (Cook-Levin Theorem – or: Cook’s Theorem, 1971/1973)

SAT is NP-complete.

Proof of SAT ∈ NP.

If π |= ϕ we use ⟨π⟩ as certicate. (I.e., guess it and verify.) Had we chosen a countably
infinite Prop, we’d restrict π to the propositions occurring in ϕ.

Proof of SAT is NP-hard.

The entire rest of these slides!
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SAT Patient Zero

Proof of NP-Hardness of SAT

Let A ∈ NP. Let M = (Q,Σ,Γ, δ, q0,F ) be a deciding NTM with L(M) = A and let p be
a polynomial such that M takes at most p(|w |) steps on any computation for any
w ∈ Σ∗.

Construct a P reduction from A to SAT:

∠ Input w is turned into a Boolean formula ϕw that describes M’s possible
computations on w .

∠ M accepts w iff ϕw is satisfiable. The satisfying interpretation resolves the
nondeterminism in the computation tree to arrive at an accepting branch of the
computation tree.

Remains to be done: define ϕw .
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SAT Patient Zero

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an n ≤ p(|w |) exists and a sequence of configurations
(Ci )0≤i≤n (IDs), where

1 C0 = q0w ,

2 each Ci can yield Ci+1, and

3 Cn is an accepting ID.

4 Note that we have at most n + 1 IDs if the TM can make at most n ≤ p(|w |) steps.
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SAT Patient Zero

ϕw

The Boolean formula ϕw shall represent all such sequences (Ci )0<i≤n beginning with q0w .

ϕw = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

The different sub formulae serve the following purposes:

∠ ϕcell: Defines all existing “cells”, which encode all possible IDs.

∠ ϕstart: Sets the initial row of these cells: TM’s initial ID.

∠ ϕmove: Enforces legal TM transitions.

∠ ϕaccept: Enforces ending up in an accepting state.
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SAT Patient Zero

ϕcell

. . . describes an n2 grid using propositions Prop = { xi,k,s | i , k ∈ {0, . . . , n} ∧ s ∈ Σϕ },
where Σϕ = Q ∪ Γ (recall that B ∈ Γ) is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i , k ∈ {0, . . . , n}? Why s ∈ Σϕ?

i : encode the rows. We need one for every possible ID (n + 1 many!)

k: encodes the columns. Each column is a possible value of an ID symbol.
n symbols are the TM cells that can be reached, and one is the state.

s: The content of ID i at position k, i.e., a tape symbol or the state.

ϕcell =
∧

0≤i,k≤n

 ∨
s∈Σϕ

xi,k,s

 ∧

 ∧
s ̸=t∈Σϕ

(¬xi,k,s ∨ ¬xi,k,t)


Meaning: “There is exactly one symbol at each cell”.
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k: encodes the columns. Each column is a possible value of an ID symbol.
n symbols are the TM cells that can be reached, and one is the state.

s: The content of ID i at position k, i.e., a tape symbol or the state.

ϕcell =
∧

0≤i,k≤n

 ∨
s∈Σϕ

xi,k,s

 ∧

 ∧
s ̸=t∈Σϕ

(¬xi,k,s ∨ ¬xi,k,t)


Meaning: “There is exactly one symbol at each cell”.
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SAT Patient Zero

ϕstart

. . . specifies that the first row of the grid contains q0w where w = w1 . . .w|w|:

ϕstart = x0,0,q0 ∧
∧

1≤i≤|w|

x0,i,wi ∧
∧

|w|<i≤n

x0,i,B

So the first line of our grid contains:

∠ the q0 symbol in the first cell,

∠ followed by the symbols of our initial tape word,

∠ followed by the blank symbol until the end.
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SAT Patient Zero

ϕmove

. . . ensures that Ci yields Ci+1 by describing legal 2× 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

ϕmove =
∧

0<i,k<n

∨
a1 a2 a3
a4 a5 a6

is legal

(
xi,k−1,a1 ∧ xi,k,a2 ∧ xi,k+1,a3 ∧
xi+1,k−1,a4 ∧ xi+1,k,a5 ∧ xi+1,k+1,a6

)

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function δ.

Example: Let the current ID be w1w2qw3w4 (so we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

∠ w1w2qw3w4 – current ID

∠ w1w2xq1w4 – if δ(q,w3) = (q1, x ,R)

∠ w1q2w2yw4 – if δ(q,w3) = (q2, y , L)

Are we still complete?
We can’t seem to be able to move to the left of the initial head position!

∠ Not a problem: We showed equivalence for semi-infinite tapes under polytime.

∠ We could alternatively have created a grid of size (2n)2, which also goes n to the left.
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SAT Patient Zero

ϕaccept – and concluding the Proof

. . . states that the accept state is reached:

ϕaccept =
∨

0≤i,k≤n,qF∈F

xi,k,qF

Concluding the Proof:

Recall:
ϕw = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

Finally we check that the size of ϕw is polynomial in |w | and that ϕw is constructable in
polynomial time. (Both is true!)

So finding a valuation to this formula means deciding w ∈ L(M) for the arbitrary
non-deterministic TM M! So SAT is NP-hard! (It can express every problem in NP!)

We have our patient zero now – so now we can prove NP-hardness of other problems by
reducing from SAT. (And we build our portfolio...)
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