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Recap

Cook’s Theorem (SAT is NP-Complete)

SAT is the granddaddy of all NP-complete problems.
(That’s because it’s the first that was proved NP-complete,)

Cook’s theorem gives a “generic reduction” for every problem in NP to SAT.
More formally, for each A ∈ NP we have A ≤P B.

So SAT is at least as hard as any other problem in NP.

Since SAT is also in NP, it’s NP-complete.

Many people have worked on the SAT problem, and there are now very efficient
(SAT) solversfor it.

People frequently translate NP-complete problems to propositional logic, and then
attack them with these general solvers! (Even if the problem is computationally
harder, this might be efficient – although we suffer from a blow-up.)

But SAT also serves as a good problem to reduce from! (We look at variants of it.)
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CNFSAT

CNFSAT

CNFSAT is a special case of SAT.

CNFSAT = { ⟨ϕ⟩ | ϕ is a satisfiable cnf formula }

where a Boolean formula is in cnf (for conjunctive normal form) if it is (also) generated
by the grammar

ϕ→ (c) | (c) ∧ ϕ c → ℓ | ℓ ∨ c

ℓ→ p | ¬p p → x | y | . . .

We call cs clauses, ℓs literals, and ps propositions.

Intuitively, a cnf is simply a conjunction of disjunctions (also called clauses).

Example 10.2.1

(x ∨ z) ∧ (¬y ∨ z) is a cnf for the Boolean formula (x ∧ ¬y) ∨ z .
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CNFSAT

CNFSAT is NP-Complete

Clearly CNFSAT is in NP because we can use the same certificate for ϕ in cnf as we
would for the same ϕ in SAT. (I.e., just guess an assignment and verify.)

Giving a P reduction from SAT to CNFSAT is tricky.

A straight-forward translation of Boolean formulae into equivalent cnf may result in an
exponential blow-up, meaning that this approach is useless.

Instead, we recall a reduction f won’t have to preserve satisfaction:

∀π (π |= ϕ ⇔ π |= f (ϕ))

but merely satisfiability

∃π (π |= ϕ) ⇔ ∃π (π |= f (ϕ))

meaning that we’re free to choose different πs for the two sides.
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CNFSAT

CNFSAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two steps which are both in P.

1 Translate to nnf (negation normal form). (A formula where each negation symbol
appears only in front of propositions.)
This is achieved by pushing all negation symbols down to propositions and
eliminating two consecutive negations. (This is still satisfaction-preserving.)

2 Translate from nnf to cnf. (This merely preserves satisfiability.)
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CNFSAT

Pushing Down ¬

We use de Morgan’s laws and the law of double negation to rewrite left-hand-sides to
right-hand-sides:

de Morgan on conjunctions: ¬(ϕ ∧ ψ) ⇔ ¬(ϕ) ∨ ¬(ψ)
de Morgan on disjunctions: ¬(ϕ ∨ ψ) ⇔ ¬(ϕ) ∧ ¬(ψ)
double-negation elimination: ¬(¬(ϕ)) ⇔ ϕ

Example 10.2.2

¬((¬(x ∨ y)) ∧ (¬x ∨ y)) =

⇔ ¬(¬(x ∨ y)) ∨ ¬(¬x ∨ y)

⇔ x ∨ y ∨ ¬(¬x ∨ y)

⇔ x ∨ y ∨ ¬(¬x) ∧ ¬y
⇔ x ∨ y ∨ x ∧ ¬y
⇔ x ∨ y ∨ (x ∧ ¬y) This is a disjunction!
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CNFSAT

Pushing Down ¬ cont.

Theorem 10.2.3

Every Boolean formula ϕ is equivalent to a Boolean formula ψ in nnf. Moreover, |ψ| is
linear in |ϕ| and ψ can be constructed from ϕ in P.

Proof.

By induction on the number n of Boolean operators (∧, ∨, ¬) in ϕ we may show that
there is an equivalent ψ in nnf with at most 2n− 1 operators. We also have to show that
the number of steps is bounded linearly and that each step has polynomial effort.
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CNFSAT

nnf −→ cnf

Theorem 10.2.4

There is a constant c such that every nnf ϕ has a cnf ψ such that:

1 ψ consists of at most |ϕ| clauses.
2 ψ is constructable from ϕ in time at most c|ϕ|2.
3 π |= ϕ iff there exists an extension π′ of π satisfying π′ |= ψ, for all interpretations π

of the propositions in ϕ

Thus, we can turn any nnf ψ into cnf in polynomial time.

Proof.

By induction on |ϕ|.
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CNFSAT

nnf −→ cnf cont.

The transformation is done by the Tseytin transformation (from 1968).
Example taken from Wikipedia.

Example 10.2.5

Let ϕ = ((p ∨ q) ∧ r) → (¬s). We introduce new auxiliary variables for all subformulae:

x1 ↔ ¬s x2 ↔ p ∨ q x3 ↔ x2 ∧ r x4 ↔ x3 → x1

Now we can express ϕ as the following:

ψ = x4 ∧ (x4 ↔ x3 → x1) ∧ (x3 ↔ x2 ∧ r) ∧ (x2 ↔ p ∨ q) ∧ (x1 ↔ ¬s)

Each disjunct can be turned (in polytime) into a cnf, e.g.,

x2 ↔ (p ∨ q) ≡ x2 → (p ∨ q) ∧ ((p ∨ q) → x2)

≡ (¬x2 ∨ p ∨ q) ∧ (¬(p ∨ q) ∨ x2)

≡ (¬x2 ∨ p ∨ q) ∧ ((¬p ∧ ¬q) ∨ x2)

≡ (¬x2 ∨ p ∨ q) ∧ (¬p ∨ x2) ∧ (¬q ∨ x2)
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CNFSAT

Conclusion

We proved that CNFSAT is NP-hard!

We reduced: SAT ≤P nnf ≤P CNFSAT

Since CNFSAT is clearly in NP as well, it’s NP-complete.

Pascal Bercher week 9: Time Complexity Semester 1, 2023 11 / 25



3SAT

3SAT

3SAT is a special case of CNFSAT.

3SAT = { ⟨ϕ⟩ | ϕ is a satisfiable 3cnf formula }

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal form) if it is (also)
generated by the grammar

ϕ→ (c) | (c) ∧ ϕ c → ℓ ∨ ℓ ∨ ℓ
ℓ→ p | ¬p p → x | y | . . .

Intuitively, a 3cnf is simply a conjunction of disjunctions of size exactly 3.

Example 10.3.1

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) is a 3cnf
for the Boolean formula x . (You can verify this by applying simplification rules or
constructing a truth table.)

Pascal Bercher week 9: Time Complexity Semester 1, 2023 12 / 25



3SAT

3SAT

3SAT is a special case of CNFSAT.

3SAT = { ⟨ϕ⟩ | ϕ is a satisfiable 3cnf formula }

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal form) if it is (also)
generated by the grammar

ϕ→ (c) | (c) ∧ ϕ c → ℓ ∨ ℓ ∨ ℓ
ℓ→ p | ¬p p → x | y | . . .

Intuitively, a 3cnf is simply a conjunction of disjunctions of size exactly 3.

Example 10.3.1

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) is a 3cnf
for the Boolean formula x . (You can verify this by applying simplification rules or
constructing a truth table.)

Pascal Bercher week 9: Time Complexity Semester 1, 2023 12 / 25



3SAT

3SAT is NP-Complete

Proof.

Clearly 3SAT is in NP because we can use the same certificate for ϕ in 3cnf as we would
for the same ϕ in SAT (or CNFSAT). (Guess and verify.)

We P-reduce from CNFSAT to 3SAT, by translating arbitrary clauses into clauses with
exactly three literals. (We do this on the next slides.)
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3SAT

Proof: 3SAT is NP-hard

How to transform a cnf ϕ =
∧n

i=1 ci into an equisatisfiable 3cnf?

We transform each clause ci =
∨ki

j=1 ℓi,j depending on the number ki of literals in it.
E.g., c2 = l2,1 ∨ l2,2 ∨ l2,3 ∨ l2,4 with k2 = 4. We omit subscript i ! c = l1 ∨ l2 ∨ l3 ∨ l4.

Case k = 1 (ℓ1) is replaced by

(ℓ1 ∨ u ∨ v) ∧ (ℓ1 ∨ u ∨ ¬v) ∧ (ℓ1 ∨ ¬u ∨ v) ∧ (ℓ1 ∨ ¬u ∨ ¬v)

for some fresh propositions u, v .

Case k = 2 (ℓ1 ∨ ℓ2) is replaced by

(ℓ1 ∨ ℓ2 ∨ u) ∧ (ℓ1 ∨ ℓ2 ∨ ¬u)

for some fresh proposition u.

Case k = 3 is 3cnf already.

Case k > 3 (
∨k

j=1 ℓj). On the next slide!
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3SAT

Proof: 3SAT is NP-hard

Case k > 3, (
∨k

j=1 ℓj) is replaced by

(ℓ1 ∨ ℓ2 ∨ u1) ∧
k−4∧
j=1

(ℓj+2 ∨ ¬uj ∨ uj+1) ∧ (¬uk−3 ∨ ℓk−1 ∨ ℓk)

for some k − 3 fresh propositions u1, . . . , uk−3.

Take l1 ∨ l2 ∨ l3 ∨ l4 ∨ l5 ∨ l6 ∨ l7. So k = 7 and k − 3 = 4. We can write this as:

(l1 ∨ l2 ∨ u1) ∧
(l3 ∨ ¬u1 ∨ u2) ∧
(l4 ∨ ¬u2 ∨ u3) ∧
(l5 ∨ ¬u3 ∨ u4) ∧

(¬u4 ∨ l6 ∨ l7)

You can see that you can always pick the new propositions in a way to make all disjuncts
true, no matter which literal is supposed to get true. E.g., if l4 is true, we set u1, u2, u4
true. Likewise, they don’t help us making the formula true unless at least one of the li
are true. (Check what happens if all li are false.)
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CLIQUE

CLIQUE is NP-Complete

Let CLIQUE =

{
⟨G , k⟩

∣∣∣∣ G is undirected graph
with k-clique

}
We show NP-completeness on the whiteboard. (Alban did that on Tuesday.)
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HAMPATH

HAMPATH is NP-Complete

Recall that HAMPATH =

{
⟨G , s, t⟩

∣∣∣∣ Directed graph G has a
Hamiltonian path from s to t

}
We already know that HAMPATH is in NP. We show NP-hardness by proving
3SAT ≤P HAMPATH on the whiteboard. (Alban did that on Tuesday.)
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Node Cover and Independent Set

Node Cover

Given an undirected graph G , a node cover of G is a set C of vertices such that:

for every edge (v1, v2) in the graph, at least one of v1 or v2 is in C .
In other words: The node cover covers all edges of the graph.

In the next example, the nodes marked in red are a node cover of the graph.

The Node Cover Problem is the problem of deciding whether a graph G has a node cover
with k or fewer nodes:

NC = {⟨G , k} | G has node cover of size ≤ k}
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Node Cover and Independent Set

Independent Set

Given an undirected graph G , an independent set of G is a set I of vertices such that:

no to vertices v1 and v2 ∈ I are connected by an edge.

The Independent Set Problem is the problem of deciding whether a graph G has an
independent set with k or more nodes:

IS = {⟨G , k} | G has independent set of size ≥ k}
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Node Cover and Independent Set

Node Cover vs. Independent Set

Q. How are node cover and independent set related?

A. The complement of a node cover is an independent set. (See next slide.)
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Node Cover and Independent Set

Node Cover vs. Independent Set II

Theorem 10.6.1

A graph G with |V | = n vertices has a node cover C of size |C | = k iff it has an
independent set of size n − k. (Both problems are polytime-reducible to each other.)

Proof.

Let G be a graph with n nodes. Let 0 ≤ k ≤ n.

Claim: C is a node cover of G iff V \ C is an independent set.

“⇒” C is a node cover of G . Let v1, v2 ∈ V \ C . Show that there is no edge between v1
and v2. Assume there is! Then, because C is a node cover, we have v1 ∈ C or v2 ∈ C .
Contradiction as v1, v2 ∈ V \ C . Thus, there is no edge between v1 and v2 and therefore
V \ C is an independent set.

“⇒” C is not a node cover of G . Thus there is an edge (v1, v2), such that neither of
these nodes are in C , v1, v2 /∈ C . But then v1, v2 ∈ V \ C . Therefore V \ C is not an
independent set.
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Node Cover and Independent Set

On the NP-completeness of these Problems

So far we’ve shown that both problems are equivalent, so how hard are they?

in NP Both problems are in NP: We can guess the respective set of nodes and
check the required property. The number of guessed nodes is polytime-
bounded in the input, and the property verification can also be done in
poly-time.

NP hard Since we saw that both problems are essentially the same, and once can
be turned into the other just by a simple computation, we can choose for
which we show hardness! Completeness then follows for both.

We show hardness for Node Cover.

Theorem 10.6.2

Node Cover is NP-hard.
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Node Cover and Independent Set

NP-hardness of Node Cover

Proof.

We reduce 3SAT to Node Cover.

Let ϕ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z).

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

∠ We have one column per clause.

∠ Vertically, we connect all nodes
within one column.

∠ Horizontally, we connect all contra-
dictory nodes.

∠ We claim: ϕ is satisfiable iff G has
a node cover of size k = 2n, where
n = 4 is the number of clauses (select
two from each column). The non-
selected ones encode the literal that
makes the respective clause true.

For example, π(x) = ⊤, π(y) = ⊤, π(z) = ⊥ makes the formula true.

Now we still need to show this claim!
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a node cover of size k = 2n

Let π make ϕ true, π |= ϕ. Then for all clauses i = 1, ..., n we can select literal li of ϕi ,
s.t. ϕ |= li . In our example: Let l1, . . . , l4 be the green nodes.

Now define the complement of these nodes as the node cover C (the yellow nodes) and
show desired properties, i.e., that for each edge (v1, v2), at least v1 or v2 is in C .

vertical

Selecting two nodes will always cover all edges.

horizontal

These edges are always between a variable and its negation. So the
only way to not have each edge covered is to have both literals
selected (green), which is impossible since we can’t make li and ¬li true.

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇒”).
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a node cover of size k = 2n

Let π make ϕ true, π |= ϕ. Then for all clauses i = 1, ..., n we can select literal li of ϕi ,
s.t. ϕ |= li . In our example: Let l1, . . . , l4 be the green nodes.

Now define the complement of these nodes as the node cover C (the yellow nodes) and
show desired properties, i.e., that for each edge (v1, v2), at least v1 or v2 is in C .

vertical Selecting two nodes will always cover all edges.

horizontal These edges are always between a variable and its negation. So the
only way to not have each edge covered is to have both literals
selected (green), which is impossible since we can’t make li and ¬li true.

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

Q. Why did we need the vertical edges, then?
They seem apparently don’t impose a constraint...
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a node cover of size k = 2n

Let π make ϕ true, π |= ϕ. Then for all clauses i = 1, ..., n we can select literal li of ϕi ,
s.t. ϕ |= li . In our example: Let l1, . . . , l4 be the green nodes.

Now define the complement of these nodes as the node cover C (the yellow nodes) and
show desired properties, i.e., that for each edge (v1, v2), at least v1 or v2 is in C .

vertical Selecting two nodes will always cover all edges.

horizontal These edges are always between a variable and its negation. So the
only way to not have each edge covered is to have both literals
selected (green), which is impossible since we can’t make li and ¬li true.

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

Q. Why did we need the vertical edges, then?
They seem apparently don’t impose a constraint...

A. They did! They forced us to select a (green) literal.
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇐”).

Recall: ϕ is satisfiable iff G has a node cover of size k = 2n

Define assignment π, such that π makes a literal true if it’s not in the node cover.

Notice that node cover of size k = 2n needs to select precisely 2 elements from each
column: because if it doesn’t we can always find an edge that’s not covered.

So, why does any node cover (with two yellow nodes in each column) encode an
assignment π that makes the formula true?

∠ Again, all nodes not in that cover give the
witness for making the respective clause true.

∠ Thus, each clause already has a witness mak-
ing it true!

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

So what could still go wrong?

We need consistent assignments!

∠ I.e., don’t make some literal li true and false, π(li ) = π(¬li ) = ⊤.

∠ This can’t happen! They all share a (horizontal) edge, so selecting both for π (green)
would exclude both for the node cover – leaving a non-covered edge.
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇐”).
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇐”).
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇐”).
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Node Cover and Independent Set

NP-hardness of Node Cover (cont’d)

Proof. (Reduction, “⇐”).
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