week 10: Other Complexity Classes

This Lecture Covers Chapter 11 of HMU: Other Complexity Classes
slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher convenor \& lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- The Tautology Problem.
- co-NP and its relation to NP.
- A different (possibly non-equivalent) notion of NP-Hardness.
- Optimization Problems.

Additional Reading: Chapter 11 of HMU.

The Tautology Problem

Definition 11.1.1

Recall:

$$
\text { SAT }=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

Definition 11.1.2

A boolean formula is a tautology if it evaluates to true for all truth value assignments. The Tautology Problem is the set of all boolean formulae that are tautologies:

$$
\text { TAUT }=\{\langle\phi\rangle \mid \phi \text { is a tautological Boolean formula }\}
$$

Is TAUT in NP?

Is there a check and verify approach?
> Guess an assignment π.

- Assume π makes our formula false. Then we know the answer is false.
- Assume π makes our formula true. Now what? (Is that even relevant?)
> So, we don't know! TAUT could be in NP, but we don't know. (I.e., there could be certificate that's not an assignment.)

On the Hardness of TAUT

Theorem 11.1.3

If TAUT is in \mathbf{P}, then every NP problem is in \mathbf{P}.

Proof.

We show that we could solve any SAT problem in \mathbf{P} if TAUT is in \mathbf{P}. (SAT is NP-hard!)
$>$ A formula ϕ is satisfiable if $\neg \phi$ is not a tautology. (You can easily prove this.)
E.g., $\phi=(x \vee \neg y) \wedge y, \neg \phi=(\neg x \wedge y) \vee \neg y$.

For $\pi(x)=T$ and $\pi(y)=T$ we get $\pi \models \phi$ and $\pi \not \vDash \neg \phi$.
> Solve SAT in polytime:

- If ϕ is the input, run TAUT on $\neg \phi$.
- flip the result.

Questions

> Have we shown that TAUT is NP-hard?
> No! This was not a polytime reduction from SAT to TAUT. Why?
> Because we flipped the result! We don't implement $w \in S A T$ iff $f(w) \in T A U T$.

The Tautology Problem - and its relation to its complement

Definition 11.1.4

$$
\operatorname{TAUT}^{c}=\{\langle\phi\rangle \mid \phi \text { is not a tautological Boolean formula }\}
$$

Is TAUT ${ }^{c}$ in NP?
Is there a check and verify approach?
> Guess an assignment π.

- Assume π makes our formula false. Then we know the answer is yes. That's enough! This is our certificate.
> So, yes, TAUT ${ }^{c}$ is in NP
Key Messages
So what was the problem on why can't (easily, if at all) show that TAUT is in NP?
> The non-det. TM can't (easily) guess and verify for the yes answer.
>A non-det. TM can guess and verify for the no answer. (The complement!)
>A non-det. TM could decide the problem if it could guess all assignments simultaneously. (And return yes if all of them make the formula true.)

The class co-NP

Definition 11.2.1

A problem is in co-NP if and only if its complement is in NP.

Key Message
> Thus, co-NP contains problems where we can guess a certificate and verify it in polytime for no instances.
> These are problems where disproving the property is "easier" than proving it. (Easier in the sense that one witness suffices.)

Theorem 11.2.2

(1) $\mathbf{P} \subseteq \mathbf{c o}-\mathbf{N P}$
(2) If $\mathbf{P}=\mathbf{N P}$, then $\mathbf{P}=\mathbf{N P}=\mathbf{c o}-\mathbf{N P}$.

Proof.

Because P is closed under complementation.

co-NP-Hardness and -Completeness

Definition 11.2.3

A problem B is co-NP-hard if every $A \in \mathbf{c o - N P}$ is \mathbf{P}-reducible to B. A problem B is co-NP-complete if it's in co-NP and co-NP-hard.

Theorem 11.2.4
TAUT is co-NP-complete.

Proof.

See (i.e., try it yourself) in the tutorials.

Cook-Completeness

Definition 11.3.1

A problem X is Karp-NP-hard (resp., complete), if every NP problem can be reduced to X in polytime (and $X \in$ NP, resp.). - That's our standard definition!

Definition 11.3.2

A problem X is Cook-NP-hard (resp., complete), if one can show that if $X \in \mathbf{P}$, then $\mathbf{P}=\mathbf{N P}$ (and $X \in \mathbf{N P}$, resp.).

Example 11.3.3

We have shown that TAUT is Cook-NP-hard. (But we don't know NP-membership.)

Remark

- Cook-completeness is Cook's original definition.
- Cook was interested in why TAUT is hard.
- TAUT as 'true mathematical theorems'.

Cook vs. Karp

Biggest Difference

> Cook lets us flip the answer after a polytime reduction.
> Karp-completeness implies Cook-completeness.
> If $\mathbf{P}=\mathbf{N P}$, they would both be the same.

Why Karp?

If we have a deterministic algorithm for an NP-complete problem that runs in time worse than poly, but not yet exponential, e.g., $\mathcal{O}\left(n^{\log n}\right)$, then
> with Karp, we can solve any NP problem in that time
> with Cook, we cannot conclude anything. (It's too weak.)

Optimization Problems

Observation

So far:

> We have just considered yes/no problems
> E.g., "Does problem X possess 'a solution'?"

In Practice:

> We want to obtain a solution! And maybe even the best!
> For example, a satisfying assignment or the size of the smallest node cover.

Observation:

> If we can solve the optimization problem, we can solve the yes/no problem.

Example 11.4.1
$>$ Yes/No problem: Does G have a node cover of size $\leq k$?
$>$ Optimisation problem: What is the size of the smallest node cover for G ?

Completeness for Optimisation Problems

Optimisation Problems

Cannot be in NP, as they are not yes/no problems

Theorem 11.4.2

If $\mathbf{P} \neq \mathbf{N P}$, then we cannot solve the optimization version of a problem in polytime, if the decision (yes/no) version is NP-complete.

Proof.

$>$ We know: yes/no version is NP-complete and $\mathbf{P} \neq \mathbf{N P}$ (as assumed).
> Now assume we can solve the optimization version in \mathbf{P}.
> Solve this problem in \mathbf{P}. Compare solution size s with k of the decision variant. Return yes iff $s \leq k$.
> Since this comparison can be done in \mathbf{P}, we also solved our decision problem in \mathbf{P}.
$>$ This is a contradiction to $\mathbf{P} \neq \mathbf{N P}$, so the optimization problem is not in \mathbf{P}.

