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Content of this Chapter

The Tautology Problem.

co-NP and its relation to NP.

A different (possibly non-equivalent) notion of NP-Hardness.

Optimization Problems.

Additional Reading: Chapter 11 of HMU.
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Tautologies

The Tautology Problem

Definition 11.1.1

Recall:
SAT = { ⟨ϕ⟩ | ϕ is a satisfiable Boolean formula }

Definition 11.1.2

A boolean formula is a tautology if it evaluates to true for all truth value assignments.
The Tautology Problem is the set of all boolean formulae that are tautologies:

TAUT = { ⟨ϕ⟩ | ϕ is a tautological Boolean formula }

Is TAUT in NP?

Is there a check and verify approach?

∠ Guess an assignment π.

Assume π makes our formula false. Then we know the answer is false.
Assume π makes our formula true. Now what? (Is that even relevant?)

∠ So, we don’t know! TAUT could be in NP, but we don’t know.
(I.e., there could be certificate that’s not an assignment.)
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Tautologies

On the Hardness of TAUT

Theorem 11.1.3

If TAUT is in P, then every NP problem is in P.

Proof.

We show that we could solve any SAT problem in P if TAUT is in P. (SAT is NP-hard!)

∠ A formula ϕ is satisfiable if ¬ϕ is not a tautology. (You can easily prove this.)
E.g., ϕ = (x ∨ ¬y) ∧ y , ¬ϕ = (¬x ∧ y) ∨ ¬y .
For π(x) = ⊤ and π(y) = ⊤ we get π |= ϕ and π ̸|= ¬ϕ.

∠ Solve SAT in polytime:

If ϕ is the input, run TAUT on ¬ϕ.
flip the result.

Question

∠ Have we shown that TAUT is NP-hard?

∠ No! This was not a polytime reduction from SAT to TAUT. Why?

∠ Because we flipped the result! We don’t implement w ∈ SAT iff f (w) ∈ TAUT.
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Tautologies

The Tautology Problem – and its relation to its complement

Definition 11.1.4

TAUTc = { ⟨ϕ⟩ | ϕ is not a tautological Boolean formula }

Is TAUTc in NP?

Is there a check and verify approach?

∠ Guess an assignment π.

Assume π makes our formula false. Then we know the answer is yes. That’s
enough! This is our certificate.

∠ So, yes, TAUTc is in NP

Key Messages

So what was the problem on why can’t (easily, if at all) show that TAUT is in NP?

∠ The non-det. TM can’t (easily) guess and verify for the yes answer.

∠ A non-det. TM can guess and verify for the no answer. (The complement!)

∠ A non-det. TM could decide the problem if it could guess all assignments
simultaneously. (And return yes if all of them make the formula true.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11



Tautologies

The Tautology Problem – and its relation to its complement

Definition 11.1.4

TAUTc = { ⟨ϕ⟩ | ϕ is not a tautological Boolean formula }

Is TAUTc in NP?

Is there a check and verify approach?

∠ Guess an assignment π.

Assume π makes our formula false. Then we know the answer is yes. That’s
enough! This is our certificate.

∠ So, yes, TAUTc is in NP

Key Messages

So what was the problem on why can’t (easily, if at all) show that TAUT is in NP?

∠ The non-det. TM can’t (easily) guess and verify for the yes answer.

∠ A non-det. TM can guess and verify for the no answer. (The complement!)

∠ A non-det. TM could decide the problem if it could guess all assignments
simultaneously. (And return yes if all of them make the formula true.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11



Tautologies

The Tautology Problem – and its relation to its complement

Definition 11.1.4

TAUTc = { ⟨ϕ⟩ | ϕ is not a tautological Boolean formula }

Is TAUTc in NP?

Is there a check and verify approach?

∠ Guess an assignment π.

Assume π makes our formula false. Then we know the answer is yes. That’s
enough! This is our certificate.

∠ So, yes, TAUTc is in NP

Key Messages

So what was the problem on why can’t (easily, if at all) show that TAUT is in NP?

∠ The non-det. TM can’t (easily) guess and verify for the yes answer.

∠ A non-det. TM can guess and verify for the no answer. (The complement!)

∠ A non-det. TM could decide the problem if it could guess all assignments
simultaneously. (And return yes if all of them make the formula true.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11



Tautologies

The Tautology Problem – and its relation to its complement

Definition 11.1.4

TAUTc = { ⟨ϕ⟩ | ϕ is not a tautological Boolean formula }

Is TAUTc in NP?

Is there a check and verify approach?

∠ Guess an assignment π.

Assume π makes our formula false. Then we know the answer is yes. That’s
enough! This is our certificate.

∠ So, yes, TAUTc is in NP

Key Messages

So what was the problem on why can’t (easily, if at all) show that TAUT is in NP?

∠ The non-det. TM can’t (easily) guess and verify for the yes answer.

∠ A non-det. TM can guess and verify for the no answer. (The complement!)

∠ A non-det. TM could decide the problem if it could guess all assignments
simultaneously. (And return yes if all of them make the formula true.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11



Tautologies

The Tautology Problem – and its relation to its complement

Definition 11.1.4

TAUTc = { ⟨ϕ⟩ | ϕ is not a tautological Boolean formula }

Is TAUTc in NP?

Is there a check and verify approach?

∠ Guess an assignment π.

Assume π makes our formula false. Then we know the answer is yes. That’s
enough! This is our certificate.

∠ So, yes, TAUTc is in NP

Key Messages

So what was the problem on why can’t (easily, if at all) show that TAUT is in NP?

∠ The non-det. TM can’t (easily) guess and verify for the yes answer.

∠ A non-det. TM can guess and verify for the no answer. (The complement!)

∠ A non-det. TM could decide the problem if it could guess all assignments
simultaneously. (And return yes if all of them make the formula true.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11



co-NP

The class co-NP

Definition 11.2.1

A problem is in co-NP if and only if its complement is in NP.

Key Message

∠ Thus, co-NP contains problems where we can guess a certificate and verify it in
polytime for no instances.

∠ These are problems where disproving the property is “easier” than proving it.
(Easier in the sense that one witness suffices.)

Theorem 11.2.2

1 P ⊆ co-NP

2 If P = NP, then P = NP = co-NP.

Proof.

Because P is closed under complementation.
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co-NP

co-NP-Hardness and -Completeness

Definition 11.2.3

A problem B is co-NP-hard if every A ∈ co-NP is P-reducible to B.
A problem B is co-NP-complete if it’s in co-NP and co-NP-hard.

Theorem 11.2.4

TAUT is co-NP-complete.

Proof.

See (i.e., try it yourself) in the tutorials.
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Cook-Completeness

Cook-Completeness

Definition 11.3.1

A problem X is Karp-NP-hard (resp., complete), if every NP problem can be reduced to
X in polytime (and X ∈ NP, resp.). – That’s our standard definition!

Definition 11.3.2

A problem X is Cook-NP-hard (resp., complete), if one can show that if X ∈ P, then
P = NP (and X ∈ NP, resp.).

Example 11.3.3

We have shown that TAUT is Cook-NP-hard. (But we don’t know NP-membership.)

Remark

Cook-completeness is Cook’s original definition.

Cook was interested in why TAUT is hard.

TAUT as ’true mathematical theorems’.
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Cook-Completeness

Cook vs. Karp

Biggest Difference

∠ Cook lets us flip the answer after a polytime reduction.

∠ Karp-completeness implies Cook-completeness.

∠ If P = NP, they would both be the same.

Why Karp?

If we have a deterministic algorithm for an NP-complete problem that runs in time worse
than poly, but not yet exponential, e.g., O(nlog n), then

∠ with Karp, we can solve any NP problem in that time

∠ with Cook, we cannot conclude anything. (It’s too weak.)
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Optimization Problems

Optimization Problems

Observation

So far:

∠ We have just considered yes/no problems

∠ E.g., “Does problem X possess ‘a solution’?”

In Practice:

∠ We want to obtain a solution! And maybe even the best!

∠ For example, a satisfying assignment or the size of the smallest node cover.

Observation:

∠ If we can solve the optimization problem, we can solve the yes/no problem.

Example 11.4.1

∠ Yes/No problem: Does G have a node cover of size ≤ k?

∠ Optimisation problem: What is the size of the smallest node cover for G?
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Optimization Problems

Completeness for Optimisation Problems

Optimisation Problems

Cannot be in NP, as they are not yes/no problems

Theorem 11.4.2

If P ̸= NP, then we cannot solve the optimization version of a problem in polytime, if the
decision (yes/no) version is NP-complete.

Proof.

∠ We know: yes/no version is NP-complete and P ̸= NP (as assumed).

∠ Now assume we can solve the optimization version in P.

∠ Solve this problem in P. Compare solution size s with k of the decision variant.
Return yes iff s ≤ k.

∠ Since this comparison can be done in P, we also solved our decision problem in P.

∠ This is a contradiction to P ̸= NP, so the optimization problem is not in P.
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