week 10: Other Complexity Classes

This Lecture Covers Chapter 11 of HMU: Other Complexity Classes
slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher convenor \& lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- The classes PSPACE, NPSPACE, and their co-classes
- The classes EXPTIME and NEXPTIME
- PSPACE vs. NPSPACE (Savitch's Theorem)
- Relationship among these (and other) classes

Additional Reading: Chapter 11 of HMU.

Polynomial Space

Definition 11.1.1

A Turing machine M is polyspace bounded if there is a polynomial p so that for all inputs w, M never uses more than $p(|w|)$ tape cells when started with w.

Polynomial Space

Definition 11.1.1

A Turing machine M is polyspace bounded if there is a polynomial p so that for all inputs w, M never uses more than $p(|w|)$ tape cells when started with w.

Note.
>For deterministic machines, this refers to the unique computation path.
> For non-det. machines, this refers to all computation paths starting with input w.

Polynomial Space

Definition 11.1.1

A Turing machine M is polyspace bounded if there is a polynomial p so that for all inputs w, M never uses more than $p(|w|)$ tape cells when started with w.

Note.

>For deterministic machines, this refers to the unique computation path.
> For non-det. machines, this refers to all computation paths starting with input w.

Definition 11.1.2

The class PSPACE is the class of languages L such that $L=L(M)$ for a polyspace bounded deterministic Turing machine.

The class NPSPACE is the class of languages L such that $L=L(M)$ for a polyspace-bounded non-deterministic Turing machine.

Relationship to Other Classes (A first Look)

Easy Inclusions

$\mathbf{P} \subseteq$ PSPACE and NP \subseteq NPSPACE.

(you cannot use more than polynomially many cells in polynomial time, but can spend more time than once on each cell).

Relationship to Other Classes (A first Look)

Easy Inclusions

$\mathbf{P} \subseteq$ PSPACE and NP \subseteq NPSPACE.

(you cannot use more than polynomially many cells in polynomial time, but can spend more time than once on each cell).

Inclusions Unknown (to the Literature)
We don't know whether $\mathbf{P}=$ PSPACE or NP $=$ NPSPACE or neither.

Example ALL ${ }_{\text {NFA }}$

$$
\mathrm{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Example ALL $_{\text {NFA }}$

$$
\mathrm{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in$ co-NP. Q. Why don't we know co-NP?

Example ALL $_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

Example ALL $_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N \mathbf{N}$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $\stackrel{N}{N F A}_{c}$ - the complement, which accepts A if $L(A) \neq \Sigma^{*}$

Example ALL ${ }_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $\stackrel{N}{N F A}_{c}$ - the complement, which accepts A if $L(A) \neq \Sigma^{*}$

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.

Example ALL ${ }_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept.

Example ALL ${ }_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{N F A} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$

Example ALL ${ }_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the currently marked states.
(2) Pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept.

Example ALL ${ }_{\text {NFA }}$

$$
\mathrm{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL ${\underset{N F A}{c}}_{c}$ - the complement, which accepts A if $L(A) \neq \Sigma^{*}$

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the currently marked states.
(2) Pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept. // Then, we found a state that's not accepted. // l.e., not all reachable states are accepting states, then some word wa $\notin L(A)$.

Example ALL ${ }_{\text {NFA }}$

$$
\mathrm{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL ${\underset{N F A}{c}}_{c}$ - the complement, which accepts A if $L(A) \neq \Sigma^{*}$

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the currently marked states.
(2) Pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept. // Then, we found a state that's not accepted. // l.e., not all reachable states are accepting states, then some word wa $\notin L(A)$.
(3) reject

Example ALL ${ }_{\text {NFA }}$

$$
A^{2 L L_{N F A}}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A^{2} L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the currently marked states.
(2) Pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept. // Then, we found a state that's not accepted.
// I.e., not all reachable states are accepting states, then some word wa $\notin L(A)$.
(3) reject // Since we can't find a word that's rejected, so $L(A)=\Sigma^{*}$

Example ALL ${ }_{\text {NFA }}$

$$
\mathrm{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{\text {NFA }} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $\stackrel{N}{N F A}_{c}$ - the complement, which accepts A if $L(A) \neq \Sigma^{*}$

Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the currently marked states.
(2) Pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept. // Then, we found a state that's not accepted.
// I.e., not all reachable states are accepting states, then some word wa $\notin L(A)$.
(3) reject // Since we can't find a word that's rejected, so $L(A)=\Sigma^{*}$
> M may use exponential time but linear space only.

Example ALL ${ }_{\text {NFA }}$

$$
\operatorname{ALL}_{\text {NFA }}=\left\{\langle A\rangle: A \text { is an NFA and } L(A)=\Sigma^{*}\right\}
$$

Currently, it's known neither whether $A L L_{\text {NFA }} \in$ NP nor whether $A L L_{N F A} \in \mathbf{c o}-N P$. Q. Why don't we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL ${ }_{\text {NFA }}^{c}$ - the complement, which accepts A if $L(A) \neq \Sigma^{*}$
Let M implement the following non-deterministic procedure when called with input $\langle A\rangle$ and $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA.
(1) Mark q_{0} (as being visited). If $q_{0} \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^{*}$
(2) Repeat $2^{|Q|}$ times:
(1) Let $m \subseteq Q$ be the currently marked states.
(2) Pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
(3) If $m \cap F=\emptyset$, accept. // Then, we found a state that's not accepted.
// l.e., not all reachable states are accepting states, then some word wa $\notin L(A)$.
(3) reject // Since we can't find a word that's rejected, so $L(A)=\Sigma^{*}$
> M may use exponential time but linear space only.
> Hence $A L L_{\text {NFA }}^{c} \in$ NPSPACE - and thus, by definition, $A L L_{\text {NFA }} \in$ co-NPSPACE

PSPACE vs. co-PSPACE

Theorem 11.1.3

PSPACE $=$ co-PSPACE (and NPSPACE $=$ co-NPSPACE)

Proof.
> Let $L \in$ PSPACE (resp., $L \in$ co-PSPACE).
> Decide L^{c} in PSPACE (resp., $L^{c} \in$ co-PSPACE) via:

- First, decide $L \in$ PSPACE (resp., $L \in$ co-PSPACE).
- Then, flip result. This decides L^{c}, taking poly-space.
> Intuitively, there's no reason why result flipping should not be allowed in a space class. The same arguments work for NPSPACE/co-NPSPACE.

PSPACE vs. co-PSPACE

Theorem 11.1.3
PSPACE = co-PSPACE (and NPSPACE = co-NPSPACE)

Proof.
> Let $L \in$ PSPACE (resp., $L \in$ co-PSPACE).
> Decide L^{c} in PSPACE (resp., $L^{c} \in$ co-PSPACE) via:

- First, decide $L \in$ PSPACE (resp., $L \in$ co-PSPACE).
- Then, flip result. This decides L^{c}, taking poly-space.
> Intuitively, there's no reason why result flipping should not be allowed in a space class. The same arguments work for NPSPACE/co-NPSPACE.

Note on ALL ${ }_{\text {NFA }}$
> Later, we will show that PSPACE $=$ NPSPACE.
> Thus, ALL $_{\text {NFA }} \in$ PSPACE.

Exponential Time

Definition 11.2.1

A deterministic or non-deterministic Turing machine runs in exponential time if it terminates in at most $c^{p(|w|)}$ steps for a constant c and polynomial p.

EXPTIME is the class of languages L for which $L=L(M)$ for an exptime deterministic Turing machine.

NEXPTIME is the class of languages L for which $L=L(M)$ for a nondeterministic exponential time Turing machine.

(More) Easy Inclusions

Recap:
$>P \subseteq P S P A C E$ and NP \subseteq NPSPACE.
>PSPACE $=$ co-PSPACE and NPSPACE $=$ co-NPSPACE

Exponential Time

Definition 11.2.1

A deterministic or non-deterministic Turing machine runs in exponential time if it terminates in at most $c^{p(|w|)}$ steps for a constant c and polynomial p.

EXPTIME is the class of languages L for which $L=L(M)$ for an exptime deterministic Turing machine.

NEXPTIME is the class of languages L for which $L=L(M)$ for a nondeterministic exponential time Turing machine.

(More) Easy Inclusions

Recap:

$>P \subseteq P S P A C E$ and NP \subseteq NPSPACE.
>PSPACE $=$ co-PSPACE and NPSPACE $=$ co-NPSPACE
Now also:
> EXPTIME \subseteq NEXPTIME
> $\mathbf{P} \subsetneq$ EXPTIME, that's one of the very few inclusions known to be proper

Exponential Time

Definition 11.2.1

A deterministic or non-deterministic Turing machine runs in exponential time if it terminates in at most $c^{p(|w|)}$ steps for a constant c and polynomial p.

EXPTIME is the class of languages L for which $L=L(M)$ for an exptime deterministic Turing machine.

NEXPTIME is the class of languages L for which $L=L(M)$ for a nondeterministic exponential time Turing machine.

(More) Easy Inclusions

Recap:

$>P \subseteq P S P A C E$ and NP \subseteq NPSPACE.
>PSPACE $=$ co-PSPACE and NPSPACE $=$ co-NPSPACE
Now also:
> EXPTIME \subseteq NEXPTIME
> $\mathbf{P} \subsetneq$ EXPTIME, that's one of the very few inclusions known to be proper
Still to show: PSPACE \subseteq EXPTIME (not that easy, but not that hard either)

PSPACE vs. EXPTIME

Theorem 11.2.2
PSPACE \subseteq EXPTIME

Proof.
> Let $L \in$ PSPACE.

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE $\subseteq E X P T I M E$

Proof.

> Let $L \in$ PSPACE.
> Then, L is decided by some TM M, such that for all w it decides $w \in L$ with $|w|=n$ within $O\left(n^{k}\right)$ space for some constant k.
>How many different TM configurations can we see before running into a loop?

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE \subseteq EXPTIME

Proof.

> Let $L \in$ PSPACE.
> Then, L is decided by some TM M, such that for all w it decides $w \in L$ with $|w|=n$ within $O\left(n^{k}\right)$ space for some constant k.
> How many different TM configurations can we see before running into a loop?
> Each cell can have at most $|\Gamma|$ different symbols.
> So we have at most $O\left(|\Gamma|^{\left(n^{k}\right)}\right)$ different tape configurations.

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE $\subseteq E X P T I M E$

Proof.

> Let $L \in$ PSPACE.

> Then, L is decided by some TM M, such that for all w it decides $w \in L$ with $|w|=n$ within $O\left(n^{k}\right)$ space for some constant k.
>How many different TM configurations can we see before running into a loop?
> Each cell can have at most $|\Gamma|$ different symbols.
> So we have at most $O\left(|\Gamma|^{\left(n^{k}\right)}\right)$ different tape configurations.
$>$ We have $|Q|$ states and at most $O\left(n^{k}\right)$ head positions.
$>$ In total we have at most $c^{p(n)}=O\left(|Q| \cdot\left(n^{k}\right) \cdot|\Gamma|^{\left(n^{k}\right)}\right)$ TM configurations.

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE $\subseteq E X P T I M E$

Proof.

> Let $L \in$ PSPACE.
> Then, L is decided by some TM M, such that for all w it decides $w \in L$ with $|w|=n$ within $O\left(n^{k}\right)$ space for some constant k.
>How many different TM configurations can we see before running into a loop?
> Each cell can have at most $|\Gamma|$ different symbols.
> So we have at most $O\left(|\Gamma|^{\left(n^{k}\right)}\right)$ different tape configurations.
$>$ We have $|Q|$ states and at most $O\left(n^{k}\right)$ head positions.
$>$ In total we have at most $c^{p(n)}=O\left(|Q| \cdot\left(n^{k}\right) \cdot|\Gamma|^{\left(n^{k}\right)}\right)$ TM configurations.
> Since k is a constant, we need at most exponential time before running into a loop (which we don't have to since the problem is decided).

Savitch's Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether $\mathbf{P}=\mathbf{N P}$.

```
Theorem 11.3.1
PSPACE = NPSPACE

\section*{Savitch's Theorem: PSPACE = NPSPACE}

\section*{Note}

The following is (maybe?) remarkable because we do not know whether \(\mathbf{P}=\mathbf{N P}\).

\section*{Theorem 11.3.1}

PSPACE = NPSPACE
Savitch's Theorem, 1970

\section*{Proof.}
\(>\) Let \(L \in\) NPSPACE and \(M\) be non-det. TM, polyspace-bounded by \(p(n)\) deciding \(L\).

\section*{Savitch's Theorem: PSPACE = NPSPACE}

\section*{Note}

The following is (maybe?) remarkable because we do not know whether \(\mathbf{P}=\mathbf{N P}\).

\section*{Theorem 11.3.1}

PSPACE = NPSPACE

\section*{Proof.}
\(>\) Let \(L \in\) NPSPACE and \(M\) be non-det. TM, polyspace-bounded by \(p(n)\) deciding \(L\).
> Noteworthy \({ }^{1}\), we are allowed to assume that \(M\) has the following properties:
- \(M\) has just a single accepting state, which is a halting state.

\footnotetext{
\({ }^{1}\) (Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)
}

\section*{Savitch's Theorem: PSPACE = NPSPACE}

\section*{Note}

The following is (maybe?) remarkable because we do not know whether \(\mathbf{P}=\mathbf{N P}\).

\section*{Theorem 11.3.1}

PSPACE = NPSPACE

\section*{Proof.}
\(>\) Let \(L \in\) NPSPACE and \(M\) be non-det. TM, polyspace-bounded by \(p(n)\) deciding \(L\).
> Noteworthy \({ }^{1}\), we are allowed to assume that \(M\) has the following properties:
- \(M\) has just a single accepting state, which is a halting state.
- When it accepts, the tape is empty.
- Taken together, there is just a single halting configuration. (We call it J.)

\footnotetext{
\({ }^{1}\) (Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)
}

\section*{Savitch's Theorem: PSPACE = NPSPACE}

\section*{Note}

The following is (maybe?) remarkable because we do not know whether \(\mathbf{P}=\mathbf{N P}\).

\section*{Theorem 11.3.1}

PSPACE = NPSPACE

\section*{Proof.}
> Let \(L \in\) NPSPACE and \(M\) be non-det. TM, polyspace-bounded by \(p(n)\) deciding \(L\).
> Noteworthy \({ }^{1}\), we are allowed to assume that \(M\) has the following properties:
- \(M\) has just a single accepting state, which is a halting state.
- When it accepts, the tape is empty.
- Taken together, there is just a single halting configuration. (We call it J.)
> Recall that \(M\) has \(c^{p(n)}\) different IDs, were \(n=|w|\).

\footnotetext{
\({ }^{1}\) (Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)
}

\section*{Savitch's Theorem: PSPACE = NPSPACE}

\section*{Note}

The following is (maybe?) remarkable because we do not know whether \(\mathbf{P}=\mathbf{N P}\).

\section*{Theorem 11.3.1}

PSPACE = NPSPACE

\section*{Proof.}
\(>\) Let \(L \in\) NPSPACE and \(M\) be non-det. TM, polyspace-bounded by \(p(n)\) deciding \(L\).
> Noteworthy \({ }^{1}\), we are allowed to assume that \(M\) has the following properties:
- \(M\) has just a single accepting state, which is a halting state.
- When it accepts, the tape is empty.
- Taken together, there is just a single halting configuration. (We call it J.)
\(>\) Recall that \(M\) has \(c^{p(n)}\) different IDs, were \(n=|w|\).
> Design a deterministic TM \(M^{\prime}\), which decides whether \(I \vdash^{*} J\) is possible within at most \(c^{p(n)}\) steps. \(M^{\prime}\) is space-bounded by \(p(n)\).

\footnotetext{
\({ }^{1}\) (Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)
}

\section*{Savitch's Theorem: PSPACE = NPSPACE}

\section*{Note}

The following is (maybe?) remarkable because we do not know whether \(\mathbf{P}=\mathbf{N P}\).

\section*{Theorem 11.3.1}

PSPACE = NPSPACE

\section*{Proof.}
\(>\) Let \(L \in\) NPSPACE and \(M\) be non-det. TM, polyspace-bounded by \(p(n)\) deciding \(L\).
> Noteworthy \({ }^{1}\), we are allowed to assume that \(M\) has the following properties:
- \(M\) has just a single accepting state, which is a halting state.
- When it accepts, the tape is empty.
- Taken together, there is just a single halting configuration. (We call it J.)
\(>\) Recall that \(M\) has \(c^{p(n)}\) different IDs, were \(n=|w|\).
> Design a deterministic TM \(M^{\prime}\), which decides whether \(I \vdash^{*} J\) is possible within at most \(c^{p(n)}\) steps. \(M^{\prime}\) is space-bounded by \(p(n)\).
\(>\) We formalize this via predicate \(P\left(I D_{1}, I D_{2}, m\right)\), initialized to \(P\left(I, J, c^{p(n)}\right)\).

\footnotetext{
\({ }^{1}\) (Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)
}

\section*{Savitch's Theorem: Recursive Doubling}

Goal. Implement \(P(I, J, m)=I \vdash^{*} J\) in deterministic polyspace
```

P(I, J, m): for all IDs K with length <= p(n) do {
if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false

```
Q. How much space does this implementation need? (Time does not matter!)

\section*{Savitch's Theorem: Recursive Doubling}

Goal. Implement \(P(I, J, m)=I \vdash^{*} J\) in deterministic polyspace
```

P(I, J, m): for all IDs K with length <= p(n) do {
if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false

```
Q. How much space does this implementation need? (Time does not matter!)


\section*{Savitch's Theorem: Recursive Doubling}

Goal. Implement \(P(I, J, m)=I \vdash^{*} J\) in deterministic polyspace
```

P(I, J, m): for all IDs K with length <= p(n) do {
if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false

```
Q. How much space does this implementation need? (Time does not matter!)

> Required space: \(\mathcal{O}\left(\log \left(c^{p(n)}\right) \cdot p(n)\right)=\mathcal{O}\left(p^{2}(n)\right)\).

\section*{Savitch's Theorem: Recursive Doubling}

Goal. Implement \(P(I, J, m)=I \vdash^{*} J\) in deterministic polyspace
```

P(I, J, m): for all IDs K with length <= p(n) do {
if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false

```
Q. How much space does this implementation need? (Time does not matter!)

> Required space: \(\mathcal{O}\left(\log \left(c^{p(n)}\right) \cdot p(n)\right)=\mathcal{O}\left(p^{2}(n)\right)\).
Q. Earlier we were assuming that there's a unique J. Did we have to?

\section*{Savitch's Theorem: Recursive Doubling}

Goal. Implement \(P(I, J, m)=I \vdash^{*} J\) in deterministic polyspace
```

P(I, J, m): for all IDs K with length <= p(n) do {
if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false

```
Q. How much space does this implementation need? (Time does not matter!)

> Required space: \(\mathcal{O}\left(\log \left(c^{p(n)}\right) \cdot p(n)\right)=\mathcal{O}\left(p^{2}(n)\right)\).
Q. Earlier we were assuming that there's a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!

\section*{Relationship to Other Classes (Recap)}

\section*{(Some of the) Classes covered so far}
\[
\begin{gather*}
\mathbf{P} \neq \mathrm{EXPTIME}  \tag{1}\\
\mathbf{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} \subseteq \text { NEXPTIME }  \tag{2}\\
\mathrm{co}-\mathrm{PSPACE}=\mathrm{PSPACE}=\mathrm{NPSPACE}=\mathbf{c o}-\text { NPSPACE } \tag{3}
\end{gather*}
\]

Note:
>Relationships of the other co-classes for time are not shown.
> In (2), at least one inclusion must be proper (see (1)!), but we don't know which!
> There are still many more classes,
- both on the right ((N)EXPSPACE, DEXPTIME, ...),
- in between, and
- there are even classes of infinitely large hierarchies.```

