
COMP3630 / COMP6363

week 10: Other Complexity Classes
This Lecture Covers Chapter 11 of HMU: Other Complexity Classes

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

The classes PSPACE, NPSPACE, and their co-classes

The classes EXPTIME and NEXPTIME

PSPACE vs. NPSPACE (Savitch’s Theorem)

Relationship among these (and other) classes

Additional Reading: Chapter 11 of HMU.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 2 / 11

The classes PSPACE, NPSPACE, and their co-classes

Polynomial Space

Definition 11.1.1

A Turing machine M is polyspace bounded if there is a polynomial p so that for all inputs
w , M never uses more than p(|w |) tape cells when started with w .

Note.

∠ For deterministic machines, this refers to the unique computation path.

∠ For non-det. machines, this refers to all computation paths starting with input w .

Definition 11.1.2

The class PSPACE is the class of languages L such that L = L(M) for a polyspace
bounded deterministic Turing machine.

The class NPSPACE is the class of languages L such that L = L(M) for a
polyspace-bounded non-deterministic Turing machine.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 3 / 11

The classes PSPACE, NPSPACE, and their co-classes

Polynomial Space

Definition 11.1.1

A Turing machine M is polyspace bounded if there is a polynomial p so that for all inputs
w , M never uses more than p(|w |) tape cells when started with w .

Note.

∠ For deterministic machines, this refers to the unique computation path.

∠ For non-det. machines, this refers to all computation paths starting with input w .

Definition 11.1.2

The class PSPACE is the class of languages L such that L = L(M) for a polyspace
bounded deterministic Turing machine.

The class NPSPACE is the class of languages L such that L = L(M) for a
polyspace-bounded non-deterministic Turing machine.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 3 / 11

The classes PSPACE, NPSPACE, and their co-classes

Polynomial Space

Definition 11.1.1

A Turing machine M is polyspace bounded if there is a polynomial p so that for all inputs
w , M never uses more than p(|w |) tape cells when started with w .

Note.

∠ For deterministic machines, this refers to the unique computation path.

∠ For non-det. machines, this refers to all computation paths starting with input w .

Definition 11.1.2

The class PSPACE is the class of languages L such that L = L(M) for a polyspace
bounded deterministic Turing machine.

The class NPSPACE is the class of languages L such that L = L(M) for a
polyspace-bounded non-deterministic Turing machine.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 3 / 11

The classes PSPACE, NPSPACE, and their co-classes

Relationship to Other Classes (A first Look)

Easy Inclusions

P ⊆ PSPACE and NP ⊆ NPSPACE.
(you cannot use more than polynomially many cells in polynomial time, but can spend
more time than once on each cell).

Inclusions Unknown (to the Literature)

We don’t know whether P = PSPACE or NP = NPSPACE or neither.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 4 / 11

The classes PSPACE, NPSPACE, and their co-classes

Relationship to Other Classes (A first Look)

Easy Inclusions

P ⊆ PSPACE and NP ⊆ NPSPACE.
(you cannot use more than polynomially many cells in polynomial time, but can spend
more time than once on each cell).

Inclusions Unknown (to the Literature)

We don’t know whether P = PSPACE or NP = NPSPACE or neither.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 4 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP?

A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept.

// Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept.

// Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject

// Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.
Q. Why don’t we know co-NP? A. Word can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts A if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ M may use exponential time but linear space only.

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

The classes PSPACE, NPSPACE, and their co-classes

PSPACE vs. co-PSPACE

Theorem 11.1.3

PSPACE = co-PSPACE (and NPSPACE = co-NPSPACE)

Proof.

∠ Let L ∈ PSPACE (resp., L ∈ co-PSPACE).

∠ Decide Lc in PSPACE (resp., Lc ∈ co-PSPACE) via:

First, decide L ∈ PSPACE (resp., L ∈ co-PSPACE).
Then, flip result. This decides Lc , taking poly-space.

∠ Intuitively, there’s no reason why result flipping should not be allowed in a space class.

The same arguments work for NPSPACE/co-NPSPACE.

Note on ALLNFA

∠ Later, we will show that PSPACE = NPSPACE.

∠ Thus, ALLNFA ∈ PSPACE.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 6 / 11

The classes PSPACE, NPSPACE, and their co-classes

PSPACE vs. co-PSPACE

Theorem 11.1.3

PSPACE = co-PSPACE (and NPSPACE = co-NPSPACE)

Proof.

∠ Let L ∈ PSPACE (resp., L ∈ co-PSPACE).

∠ Decide Lc in PSPACE (resp., Lc ∈ co-PSPACE) via:

First, decide L ∈ PSPACE (resp., L ∈ co-PSPACE).
Then, flip result. This decides Lc , taking poly-space.

∠ Intuitively, there’s no reason why result flipping should not be allowed in a space class.

The same arguments work for NPSPACE/co-NPSPACE.

Note on ALLNFA

∠ Later, we will show that PSPACE = NPSPACE.

∠ Thus, ALLNFA ∈ PSPACE.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 6 / 11

PSPACE and EXPTIME, NEXPTIME

Exponential Time

Definition 11.2.1

A deterministic or non-deterministic Turing machine runs in exponential time if it

terminates in at most cp(|w|) steps for a constant c and polynomial p.

EXPTIME is the class of languages L for which L = L(M) for an exptime deterministic
Turing machine.

NEXPTIME is the class of languages L for which L = L(M) for a nondeterministic
exponential time Turing machine.

(More) Easy Inclusions

Recap:

∠ P ⊆ PSPACE and NP ⊆ NPSPACE.

∠ PSPACE = co-PSPACE and NPSPACE = co-NPSPACE

Now also:

∠ EXPTIME ⊆ NEXPTIME

∠ P ⊊ EXPTIME, that’s one of the very few inclusions known to be proper

Still to show: PSPACE ⊆ EXPTIME (not that easy, but not that hard either)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 7 / 11

PSPACE and EXPTIME, NEXPTIME

Exponential Time

Definition 11.2.1

A deterministic or non-deterministic Turing machine runs in exponential time if it

terminates in at most cp(|w|) steps for a constant c and polynomial p.

EXPTIME is the class of languages L for which L = L(M) for an exptime deterministic
Turing machine.

NEXPTIME is the class of languages L for which L = L(M) for a nondeterministic
exponential time Turing machine.

(More) Easy Inclusions

Recap:

∠ P ⊆ PSPACE and NP ⊆ NPSPACE.

∠ PSPACE = co-PSPACE and NPSPACE = co-NPSPACE

Now also:

∠ EXPTIME ⊆ NEXPTIME

∠ P ⊊ EXPTIME, that’s one of the very few inclusions known to be proper

Still to show: PSPACE ⊆ EXPTIME (not that easy, but not that hard either)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 7 / 11

PSPACE and EXPTIME, NEXPTIME

Exponential Time

Definition 11.2.1

A deterministic or non-deterministic Turing machine runs in exponential time if it

terminates in at most cp(|w|) steps for a constant c and polynomial p.

EXPTIME is the class of languages L for which L = L(M) for an exptime deterministic
Turing machine.

NEXPTIME is the class of languages L for which L = L(M) for a nondeterministic
exponential time Turing machine.

(More) Easy Inclusions

Recap:

∠ P ⊆ PSPACE and NP ⊆ NPSPACE.

∠ PSPACE = co-PSPACE and NPSPACE = co-NPSPACE

Now also:

∠ EXPTIME ⊆ NEXPTIME

∠ P ⊊ EXPTIME, that’s one of the very few inclusions known to be proper

Still to show: PSPACE ⊆ EXPTIME (not that easy, but not that hard either)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 7 / 11

PSPACE and EXPTIME, NEXPTIME

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE ⊆ EXPTIME

Proof.

∠ Let L ∈ PSPACE.

∠ Then, L is decided by some TM M, such that for all w it decides w ∈ L with |w | = n
within O(nk) space for some constant k.

∠ How many different TM configurations can we see before running into a loop?

∠ Each cell can have at most |Γ| different symbols.

∠ So we have at most O(|Γ|(n
k)) different tape configurations.

∠ We have |Q| states and at most O(nk) head positions.

∠ In total we have at most cp(n) = O(|Q| · (nk) · |Γ|(n
k)) TM configurations.

∠ Since k is a constant, we need at most exponential time before running into a loop
(which we don’t have to since the problem is decided).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 8 / 11

PSPACE and EXPTIME, NEXPTIME

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE ⊆ EXPTIME

Proof.

∠ Let L ∈ PSPACE.

∠ Then, L is decided by some TM M, such that for all w it decides w ∈ L with |w | = n
within O(nk) space for some constant k.

∠ How many different TM configurations can we see before running into a loop?

∠ Each cell can have at most |Γ| different symbols.

∠ So we have at most O(|Γ|(n
k)) different tape configurations.

∠ We have |Q| states and at most O(nk) head positions.

∠ In total we have at most cp(n) = O(|Q| · (nk) · |Γ|(n
k)) TM configurations.

∠ Since k is a constant, we need at most exponential time before running into a loop
(which we don’t have to since the problem is decided).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 8 / 11

PSPACE and EXPTIME, NEXPTIME

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE ⊆ EXPTIME

Proof.

∠ Let L ∈ PSPACE.

∠ Then, L is decided by some TM M, such that for all w it decides w ∈ L with |w | = n
within O(nk) space for some constant k.

∠ How many different TM configurations can we see before running into a loop?

∠ Each cell can have at most |Γ| different symbols.

∠ So we have at most O(|Γ|(n
k)) different tape configurations.

∠ We have |Q| states and at most O(nk) head positions.

∠ In total we have at most cp(n) = O(|Q| · (nk) · |Γ|(n
k)) TM configurations.

∠ Since k is a constant, we need at most exponential time before running into a loop
(which we don’t have to since the problem is decided).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 8 / 11

PSPACE and EXPTIME, NEXPTIME

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE ⊆ EXPTIME

Proof.

∠ Let L ∈ PSPACE.

∠ Then, L is decided by some TM M, such that for all w it decides w ∈ L with |w | = n
within O(nk) space for some constant k.

∠ How many different TM configurations can we see before running into a loop?

∠ Each cell can have at most |Γ| different symbols.

∠ So we have at most O(|Γ|(n
k)) different tape configurations.

∠ We have |Q| states and at most O(nk) head positions.

∠ In total we have at most cp(n) = O(|Q| · (nk) · |Γ|(n
k)) TM configurations.

∠ Since k is a constant, we need at most exponential time before running into a loop
(which we don’t have to since the problem is decided).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 8 / 11

PSPACE and EXPTIME, NEXPTIME

PSPACE vs. EXPTIME

Theorem 11.2.2

PSPACE ⊆ EXPTIME

Proof.

∠ Let L ∈ PSPACE.

∠ Then, L is decided by some TM M, such that for all w it decides w ∈ L with |w | = n
within O(nk) space for some constant k.

∠ How many different TM configurations can we see before running into a loop?

∠ Each cell can have at most |Γ| different symbols.

∠ So we have at most O(|Γ|(n
k)) different tape configurations.

∠ We have |Q| states and at most O(nk) head positions.

∠ In total we have at most cp(n) = O(|Q| · (nk) · |Γ|(n
k)) TM configurations.

∠ Since k is a constant, we need at most exponential time before running into a loop
(which we don’t have to since the problem is decided).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 8 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.

When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

1(Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

1(Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.

∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

1(Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

1(Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem 11.3.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ Noteworthy1, we are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).

1(Related to why we were allowed to assume that our CFL is given in Chomsky NF, cf. Theorem 10.2.9.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: Recursive Doubling

Goal. Implement P(I , J,m) = I ⊢∗ J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need? (Time does not matter!)

P(I ,K0 = J,m)

P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

.

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 10 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: Recursive Doubling

Goal. Implement P(I , J,m) = I ⊢∗ J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need? (Time does not matter!)

P(I ,K0 = J,m)

P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

.

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 10 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: Recursive Doubling

Goal. Implement P(I , J,m) = I ⊢∗ J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need? (Time does not matter!)

P(I ,K0 = J,m)

P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

.

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 10 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: Recursive Doubling

Goal. Implement P(I , J,m) = I ⊢∗ J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need? (Time does not matter!)

P(I ,K0 = J,m)

P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

.

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?

A. No, we could have just generated all possible (accepting) IDs and try all of them!

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 10 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: Recursive Doubling

Goal. Implement P(I , J,m) = I ⊢∗ J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need? (Time does not matter!)

P(I ,K0 = J,m)

P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

.

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 10 / 11

PSPACE vs. NPSPACE (Savitch’s Theorem)

Relationship to Other Classes (Recap)

(Some of the) Classes covered so far

P ̸= EXPTIME (1)

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME (2)

co-PSPACE = PSPACE = NPSPACE = co-NPSPACE (3)

Note:

∠ Relationships of the other co-classes for time are not shown.

∠ In (2), at least one inclusion must be proper (see (1)!), but we don’t know which!

∠ There are still many more classes,

both on the right ((N)EXPSPACE, DEXPTIME, . . .),
in between, and
there are even classes of infinitely large hierarchies.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 11 / 11

	The classes PSPACE, NPSPACE, and their co-classes
	PSPACE and EXPTIME, NEXPTIME
	PSPACE vs. NPSPACE (Savitch's Theorem)

