week 10: Other Complexity Classes

This Lecture Covers Chapter 11 of HMU: Other Complexity Classes
slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher convenor \& lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- PSPACE-completeness
- Quantified Boolean Formulae (QBF)
- QBF is PSPACE-complete

Additional Reading: Chapter 11 of HMU.

PSPACE-completeness

Definition 11.1.1

A problem L is PSPACE-hard if there is a polytime reduction from any PSPACE problem to L.

A problem L is PSPACE-complete, if it is PSPACE-hard and in PSPACE.
Q. Why polytime, and not polyspace reductions?
A. As usual: otherwise the translation process could solve the problem.

Observation.

Let L be a PSPACE-complete problem.
(1) If $L \in \mathbf{P}$, then $\mathbf{P}=\mathbf{P S P A C E}$. (And thus $\mathbf{P}=\mathbf{N P}$)
(2) if $L \in \mathbf{N P}$, then $\mathbf{N P}=\mathbf{P S P A C E}$.

Quantified Boolean Formulae (QBFs)

Definition 11.2.1

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

- Every variable $v \in V$ is a QBF, and so are T and \perp
- If ϕ, ψ are QBF, then so are $\phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a QBF, then so is $\neg \phi$.
- If ϕ is a QBF and $v \in V$ is a variable, then $\exists v \phi$ and $\forall v \psi$ are QBF.

Definition 11.2.2

In a QBF ϕ, a variable v is bound if it is in the scope of a quantifier $\forall v$ or $\exists v$. The variable v is free otherwise.

If $x \in\{T, \perp\}$ is a truth value, then $\phi[x / v]$ is the result of replacing all free occurrences of v with x.

Example

> Usually, one writes these formulae without the parentheses pairs around the quantified variables, e.g, $\forall x \phi$ instead of $(\forall x) \phi$.
> Note how inner quantifiers have precedence over outer ones.
> Also, this formula does not have free variables, i.e., all are bound.

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

- evalQBF $(\forall v \phi)=\phi[T / v] \wedge \phi[\perp / v]$
- evalQBF $(\exists v \phi)=\phi[T / v] \vee \phi[\perp / v]$
and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v_{1}, \ldots, v_{n} is:

- satisfiable if $\exists v_{1} \exists v_{2} \ldots \exists v_{n} \phi$ evaluates to true.
- a tautology if $\forall v_{1} \forall v_{2} \ldots \forall v_{n} \phi$ evaluates to true.

Definition 11.2.3

The QBF problem is the problem of determining whether a given quantified boolean formula without free variables evaluates to true:

$$
\mathrm{QBF}=\{\langle\phi\rangle \mid \phi \text { a true QBF without free variables }\}
$$

QBFs vs Boolean Formulae

> Evaluating a boolean formula without free variables (i.e., with variables substituted by T or \perp) is in \mathbf{P}.
> So, an idea is to substitute all bound variables by its truth values:

- $(\forall v \phi) \rightsquigarrow \phi[T / x] \wedge \phi[\perp / x]$
- $(\exists v \phi) \rightsquigarrow \phi[\top / x] \vee \phi[\perp / x]$
>But due to doubling the formula with each substitution, the resulting formula may be exponentially large. So we showed that QBF is in EXPTIME.
Q. Can we do better?

QBF is in PSPACE

Main Idea.

$>$ to evaluate $\forall v \phi$, don't write out $\phi[T / v] \wedge \phi[\perp / v]$.
$>$ instead, evaluate $\phi[T / v]$ and $\phi[\perp / v]$ in sequence.
> avoids exponential space blowup

Recursive Algorithm evalQBF (ϕ)

> case $\phi=\mathrm{T}$: return \top
$>$ case $\phi=\left(\psi_{1} \wedge \psi_{2}\right)$: if evalQBF $\left(\psi_{1}\right)$ then return $\operatorname{evalQBF}\left(\psi_{2}\right)$ else return \perp
$>$ case $\phi=\forall v \psi$: if evalQBF $(\psi[T / v])$ then return $\operatorname{evalQBF}(\phi[\perp / v])$ else return \perp
$>$ other cases: analogous

Analysis.

Given QBF ϕ of size n :
> at most n recursive calls active
> each call stores a partially evaluated QBF of size n
> total space requirement $\mathcal{O}\left(n^{2}\right)$

QBF is PSPACE-hard (and hence -complete)

Proof Idea/Overview.

Reduce any problem in PSPACE to QBF:
> Let L be in PSPACE.
> Then L is accepted by a polyspace-bounded TM with bound $p(n)$.
> If $w \in L$, then M accepts in $\leq c^{p(n)}$ moves.
> Construct QBF ϕ : "there is a sequence of $c^{p(n)}$ ID's that accepts w ".
> Use recursive doubling to perform this reduction in polytime.
(Detailed encoding in next two slides. Shows similarities to Cook's SAT encoding.)

The Gory Detail

Variables.

$>$ We use two sets of variables, $x_{j, s}$ and $y_{j, s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
> variables $x_{j, s} / y_{j, s}=T$ iff the j-th symbol of the resp. ID is $s, 1 \leq j \leq p(n)+1$.

Structure of the QBF.

$$
\phi=(\exists X)(\exists Y)(S \wedge N \wedge F \wedge U)
$$

> We use X as the tuple of all x-variables, and Y as the tuple of all y-variables.
They will be used to encode the initial and final configuration.

- $(\exists \mathbf{X})$ is short for $\exists x_{0, q_{0}} \ldots \exists x_{0, q_{|Q|}} \ldots \exists x_{p(n), q_{0}} \ldots \exists x_{p(n), q_{|Q|}}$,
i.e., we quantify all x variables.
- $(\exists \mathbf{Y})$ is the very same as X, but works on all the y variables instead.
>S: says that X initially represents $I D_{0}=q_{0} w$, just as in Cook's theorem.
$x_{0, q_{0}} \wedge x_{1, w_{1}} \cdots \wedge x_{k, w_{|w|}} \wedge y_{|w|+1, B} \wedge \cdots \wedge y_{p(n), B}$
>F: says that Y represents an accepting ID $I D_{f}$, just as in Cook's theorem.
$\bigvee_{0 \leq i \leq p(n)} y_{i, q}$
q accepting
> U: says that every ID has at most one symbol per position, just as in Cook's theorem.
$>\mathrm{N}$: transition from $X \approx I D_{0}$ to some $Y \approx I D_{f}$ in $\leq c^{p(n)}$ steps (see next slide).

Recursive Doubling

$>N=N\left(I D_{0}, I D_{f}\right)$: have sequence of length $\leq c^{p(n)}$ from $I D_{0}$ to $I D_{f}$. Again, $I D_{0}$ and $I D_{f}$ are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.
> Detour: $N_{0}(X, Y)=X \vdash^{*} Y$ in ≤ 1 steps: as for Cook's theorem
> Detour: $N_{i}(X, Y)=X \vdash^{*} Y$ in $\leq 2^{i}$ steps:

$$
\begin{aligned}
N_{i}(X, Y)= & (\exists K)(\forall P)(\forall Q)[\\
& ((P, Q)=(X, K) \vee(P, Q)=(K, Y)) \\
& \left.\rightarrow N_{i-1}(P, Q)\right]
\end{aligned}
$$

$>$ Could also say $(\exists K)\left(N_{i-1}(X, K) \wedge N_{i-1}(K, Y)\right)$
$>$ this would write out N_{i-1} twice, doubling formula size at each step
> above trick is key step in proof to keep formula size small (prevent doubling)
$>$ Let $N(X, Y)=N_{k}(X, Y)$ where $2^{k} \geq c^{p(n)}($ note $k \in \mathcal{O}(p(n)))$
> each N_{i} can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
> so $\mathcal{O}\left(p(n)^{2}\right)$ overall
By construction, $\phi=\top$ iff M accepts w.

