
COMP3630 / COMP6363

week 10: Other Complexity Classes
This Lecture Covers Chapter 11 of HMU: Other Complexity Classes

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

PSPACE-completeness

Quantified Boolean Formulae (QBF)

QBF is PSPACE-complete

Additional Reading: Chapter 11 of HMU.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 2 / 11

PSPACE-completeness

PSPACE-completeness

Definition 11.1.1

A problem L is PSPACE-hard if there is a polytime reduction from any PSPACE
problem to L.

A problem L is PSPACE-complete, if it is PSPACE-hard and in PSPACE.

Q. Why polytime, and not polyspace reductions?
A. As usual: otherwise the translation process could solve the problem.

Observation.

Let L be a PSPACE-complete problem.

1 If L ∈ P, then P = PSPACE. (And thus P = NP)

2 if L ∈ NP, then NP = PSPACE.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 3 / 11

Quantified Boolean Formulae (QBFs)

Quantified Boolean Formulae (QBFs)

Definition 11.2.1

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

Every variable v ∈ V is a QBF, and so are ⊤ and ⊥
If ϕ, ψ are QBF, then so are ϕ ∧ ψ and ϕ ∨ ψ
If ϕ is a QBF, then so is ¬ϕ.
If ϕ is a QBF and v ∈ V is a variable, then ∃vϕ and ∀vψ are QBF.

Definition 11.2.2

In a QBF ϕ, a variable v is bound if it is in the scope of a quantifier ∀v or ∃v . The
variable v is free otherwise.

If x ∈ {⊤,⊥} is a truth value, then ϕ[x/v] is the result of replacing all free occurrences
of v with x .

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 4 / 11

Quantified Boolean Formulae (QBFs)

Example

∠ Usually, one writes these formulae without the parentheses pairs around the
quantified variables, e.g, ∀xϕ instead of (∀x)ϕ.

∠ Note how inner quantifiers have precedence over outer ones.

∠ Also, this formula does not have free variables, i.e., all are bound.

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 5 / 11

Quantified Boolean Formulae (QBFs)

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

evalQBF(∀vϕ) = ϕ[⊤/v] ∧ ϕ[⊥/v]
evalQBF(∃vϕ) = ϕ[⊤/v] ∨ ϕ[⊥/v]

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v1, . . . , vn is:

satisfiable if ∃v1∃v2 . . .∃vnϕ evaluates to true.

a tautology if ∀v1∀v2 . . .∀vnϕ evaluates to true.

Definition 11.2.3

The QBF problem is the problem of determining whether a given quantified boolean
formula without free variables evaluates to true:

QBF = {⟨ϕ⟩ | ϕ a true QBF without free variables}

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 6 / 11

Quantified Boolean Formulae (QBFs)

QBFs vs Boolean Formulae

∠ Evaluating a boolean formula without free variables
(i.e., with variables substituted by ⊤ or ⊥) is in P.

∠ So, an idea is to substitute all bound variables by its truth values:

(∀vϕ)⇝ ϕ[⊤/x] ∧ ϕ[⊥/x]
(∃vϕ)⇝ ϕ[⊤/x] ∨ ϕ[⊥/x]

∠ But due to doubling the formula with each substitution, the resulting formula may be
exponentially large. So we showed that QBF is in EXPTIME.

Q. Can we do better?

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 7 / 11

PSPACE-completeness of QBFs

QBF is in PSPACE

Main Idea.

∠ to evaluate ∀vϕ, don’t write out ϕ[⊤/v] ∧ ϕ[⊥/v].

∠ instead, evaluate ϕ[⊤/v] and ϕ[⊥/v] in sequence.

∠ avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

∠ case ϕ = ⊤: return ⊤
∠ case ϕ = (ψ1 ∧ ψ2): if evalQBF(ψ1) then return evalQBF(ψ2) else return ⊥
∠ case ϕ = ∀vψ: if evalQBF(ψ[⊤/v]) then return evalQBF(ϕ[⊥/v]) else return ⊥
∠ other cases: analogous

Analysis.

Given QBF ϕ of size n:

∠ at most n recursive calls active

∠ each call stores a partially evaluated QBF of size n

∠ total space requirement O(n2)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 8 / 11

PSPACE-completeness of QBFs

QBF is PSPACE-hard (and hence -complete)

Proof Idea/Overview.

Reduce any problem in PSPACE to QBF:

∠ Let L be in PSPACE.

∠ Then L is accepted by a polyspace-bounded TM with bound p(n).

∠ If w ∈ L, then M accepts in ≤ cp(n) moves.

∠ Construct QBF ϕ: “there is a sequence of cp(n) ID’s that accepts w”.

∠ Use recursive doubling to perform this reduction in polytime.

(Detailed encoding in next two slides. Shows similarities to Cook’s SAT encoding.)

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 9 / 11

PSPACE-completeness of QBFs

The Gory Detail

Variables.

∠ We use two sets of variables, xj,s and yj,s . Need O(p(n)) variables to represent an ID:

∠ variables xj,s/yj,s = ⊤ iff the j-th symbol of the resp. ID is s, 1 ≤ j ≤ p(n) + 1.

Structure of the QBF.

ϕ = (∃X)(∃Y)(S ∧ N ∧ F ∧ U)

∠ We use X as the tuple of all x-variables, and Y as the tuple of all y -variables.
They will be used to encode the initial and final configuration.

(∃X) is short for ∃x0,q0 . . .∃x0,q|Q| . . .∃xp(n),q0 . . .∃xp(n),q|Q| ,
i.e., we quantify all x variables.
(∃Y) is the very same as X , but works on all the y variables instead.

∠ S: says that X initially represents ID0 = q0w , just as in Cook’s theorem.
x0,q0 ∧ x1,w1 · · · ∧ xk,w|w| ∧ y|w|+1,B ∧ · · · ∧ yp(n),B

∠ F: says that Y represents an accepting ID IDf , just as in Cook’s theorem.∨
0≤i≤p(n)
q accepting

yi,q

∠ U: says that every ID has at most one symbol per position, just as in Cook’s theorem.

∠ N: transition from X ≈ ID0 to some Y ≈ IDf in ≤ cp(n) steps (see next slide).

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 10 / 11

PSPACE-completeness of QBFs

Recursive Doubling

∠ N = N(ID0, IDf): have sequence of length ≤ cp(n) from ID0 to IDf .
Again, ID0 and IDf are just our variables X and Y , but they are, by S and F ,
constrained to represent the initial ID and any accepting ID.

∠ Detour: N0(X ,Y) = X ⊢∗ Y in ≤ 1 steps: as for Cook’s theorem

∠ Detour: Ni (X ,Y) = X ⊢∗ Y in ≤ 2i steps:

Ni (X ,Y) = (∃K)(∀P)(∀Q)[

((P,Q) = (X ,K) ∨ (P,Q) = (K ,Y))

→ Ni−1(P,Q)]

∠ Could also say (∃K)(Ni−1(X ,K) ∧ Ni−1(K ,Y))
∠ this would write out Ni−1 twice, doubling formula size at each step
∠ above trick is key step in proof to keep formula size small (prevent doubling)

∠ Let N(X ,Y) = Nk(X ,Y) where 2k ≥ cp(n) (note k ∈ O(p(n)))

∠ each Ni can be written in O(p(n)) many steps, plus the time to write Ni−1

∠ so O(p(n)2) overall

By construction, ϕ = ⊤ iff M accepts w .

Pascal Bercher week 10: Other Complexity Classes Semester 1, 2023 11 / 11

	PSPACE-completeness
	Quantified Boolean Formulae (QBFs)
	PSPACE-completeness of QBFs

