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Content of this Chapter

PSPACE-completeness

Quantified Boolean Formulae (QBF)

QBF is PSPACE-complete

Additional Reading: Chapter 11 of HMU.
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PSPACE-completeness

PSPACE-completeness

Definition 11.1.1

A problem L is PSPACE-hard if there is a polytime reduction from any PSPACE
problem to L.

A problem L is PSPACE-complete, if it is PSPACE-hard and in PSPACE.

Q. Why polytime, and not polyspace reductions?
A. As usual: otherwise the translation process could solve the problem.

Observation.

Let L be a PSPACE-complete problem.

1 If L ∈ P, then P = PSPACE. (And thus P = NP)

2 if L ∈ NP, then NP = PSPACE.
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Quantified Boolean Formulae (QBFs)

Quantified Boolean Formulae (QBFs)

Definition 11.2.1

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

Every variable v ∈ V is a QBF, and so are ⊤ and ⊥
If ϕ, ψ are QBF, then so are ϕ ∧ ψ and ϕ ∨ ψ
If ϕ is a QBF, then so is ¬ϕ.
If ϕ is a QBF and v ∈ V is a variable, then ∃vϕ and ∀vψ are QBF.

Definition 11.2.2

In a QBF ϕ, a variable v is bound if it is in the scope of a quantifier ∀v or ∃v . The
variable v is free otherwise.

If x ∈ {⊤,⊥} is a truth value, then ϕ[x/v ] is the result of replacing all free occurrences
of v with x .
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Quantified Boolean Formulae (QBFs)

Example

∠ Usually, one writes these formulae without the parentheses pairs around the
quantified variables, e.g, ∀xϕ instead of (∀x)ϕ.

∠ Note how inner quantifiers have precedence over outer ones.

∠ Also, this formula does not have free variables, i.e., all are bound.
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Quantified Boolean Formulae (QBFs)

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

evalQBF(∀vϕ) = ϕ[⊤/v ] ∧ ϕ[⊥/v ]
evalQBF(∃vϕ) = ϕ[⊤/v ] ∨ ϕ[⊥/v ]

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v1, . . . , vn is:

satisfiable if ∃v1∃v2 . . .∃vnϕ evaluates to true.

a tautology if ∀v1∀v2 . . .∀vnϕ evaluates to true.

Definition 11.2.3

The QBF problem is the problem of determining whether a given quantified boolean
formula without free variables evaluates to true:

QBF = {⟨ϕ⟩ | ϕ a true QBF without free variables}
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Quantified Boolean Formulae (QBFs)

QBFs vs Boolean Formulae

∠ Evaluating a boolean formula without free variables
(i.e., with variables substituted by ⊤ or ⊥) is in P.

∠ So, an idea is to substitute all bound variables by its truth values:

(∀vϕ)⇝ ϕ[⊤/x ] ∧ ϕ[⊥/x ]
(∃vϕ)⇝ ϕ[⊤/x ] ∨ ϕ[⊥/x ]

∠ But due to doubling the formula with each substitution, the resulting formula may be
exponentially large. So we showed that QBF is in EXPTIME.

Q. Can we do better?
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PSPACE-completeness of QBFs

QBF is in PSPACE

Main Idea.

∠ to evaluate ∀vϕ, don’t write out ϕ[⊤/v ] ∧ ϕ[⊥/v ].

∠ instead, evaluate ϕ[⊤/v ] and ϕ[⊥/v ] in sequence.

∠ avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

∠ case ϕ = ⊤: return ⊤
∠ case ϕ = (ψ1 ∧ ψ2): if evalQBF(ψ1) then return evalQBF(ψ2) else return ⊥
∠ case ϕ = ∀vψ: if evalQBF(ψ[⊤/v ]) then return evalQBF(ϕ[⊥/v ]) else return ⊥
∠ other cases: analogous

Analysis.

Given QBF ϕ of size n:

∠ at most n recursive calls active

∠ each call stores a partially evaluated QBF of size n

∠ total space requirement O(n2)
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PSPACE-completeness of QBFs

QBF is PSPACE-hard (and hence -complete)

Proof Idea/Overview.

Reduce any problem in PSPACE to QBF:

∠ Let L be in PSPACE.

∠ Then L is accepted by a polyspace-bounded TM with bound p(n).

∠ If w ∈ L, then M accepts in ≤ cp(n) moves.

∠ Construct QBF ϕ: “there is a sequence of cp(n) ID’s that accepts w”.

∠ Use recursive doubling to perform this reduction in polytime.

(Detailed encoding in next two slides. Shows similarities to Cook’s SAT encoding.)
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PSPACE-completeness of QBFs

The Gory Detail

Variables.

∠ We use two sets of variables, xj,s and yj,s . Need O(p(n)) variables to represent an ID:

∠ variables xj,s/yj,s = ⊤ iff the j-th symbol of the resp. ID is s, 1 ≤ j ≤ p(n) + 1.

Structure of the QBF.

ϕ = (∃X )(∃Y )(S ∧ N ∧ F ∧ U)

∠ We use X as the tuple of all x-variables, and Y as the tuple of all y -variables.
They will be used to encode the initial and final configuration.

(∃X) is short for ∃x0,q0 . . .∃x0,q|Q| . . .∃xp(n),q0 . . .∃xp(n),q|Q| ,
i.e., we quantify all x variables.
(∃Y) is the very same as X , but works on all the y variables instead.

∠ S: says that X initially represents ID0 = q0w , just as in Cook’s theorem.
x0,q0 ∧ x1,w1 · · · ∧ xk,w|w| ∧ y|w|+1,B ∧ · · · ∧ yp(n),B

∠ F: says that Y represents an accepting ID IDf , just as in Cook’s theorem.∨
0≤i≤p(n)
q accepting

yi,q

∠ U: says that every ID has at most one symbol per position, just as in Cook’s theorem.

∠ N: transition from X ≈ ID0 to some Y ≈ IDf in ≤ cp(n) steps (see next slide).
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PSPACE-completeness of QBFs

Recursive Doubling

∠ N = N(ID0, IDf ): have sequence of length ≤ cp(n) from ID0 to IDf .
Again, ID0 and IDf are just our variables X and Y , but they are, by S and F ,
constrained to represent the initial ID and any accepting ID.

∠ Detour: N0(X ,Y ) = X ⊢∗ Y in ≤ 1 steps: as for Cook’s theorem

∠ Detour: Ni (X ,Y ) = X ⊢∗ Y in ≤ 2i steps:

Ni (X ,Y ) = (∃K)(∀P)(∀Q)[

((P,Q) = (X ,K) ∨ (P,Q) = (K ,Y ))

→ Ni−1(P,Q)]

∠ Could also say (∃K)(Ni−1(X ,K) ∧ Ni−1(K ,Y ))
∠ this would write out Ni−1 twice, doubling formula size at each step
∠ above trick is key step in proof to keep formula size small (prevent doubling)

∠ Let N(X ,Y ) = Nk(X ,Y ) where 2k ≥ cp(n) (note k ∈ O(p(n)))

∠ each Ni can be written in O(p(n)) many steps, plus the time to write Ni−1

∠ so O(p(n)2) overall

By construction, ϕ = ⊤ iff M accepts w .
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