COMP3630 / COMP6363

week 10: Other Complexity Classes

This Lecture Covers Chapter 11 of HMU: Other Complexity Classes

slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- PSPACE-completeness
- Quantified Boolean Formulae (QBF)
- QBF is **PSPACE**-complete

Additional Reading: Chapter 11 of HMU.

PSPACE-completeness

Definition 11.1.1

A problem L is <u>PSPACE-hard</u> if there is a polytime reduction from any <u>PSPACE</u> problem to L.

A problem *L* is **PSPACE**-complete, if it is **PSPACE**-hard and in **PSPACE**.

Q. Why polytime, and not polyspace reductions?

PSPACE-completeness

Definition 11.1.1

A problem L is <u>PSPACE-hard</u> if there is a polytime reduction from any <u>PSPACE</u> problem to L.

A problem L is **PSPACE**-complete, if it is **PSPACE**-hard and in **PSPACE**.

Q. Why polytime, and not polyspace reductions?

A. As usual: otherwise the translation process could solve the problem.

PSPACE-completeness

Definition 11.1.1

A problem L is <u>PSPACE-hard</u> if there is a polytime reduction from any **PSPACE** problem to L.

A problem L is PSPACE-complete, if it is PSPACE-hard and in PSPACE.

Q. Why polytime, and not polyspace reductions?

A. As usual: otherwise the translation process could solve the problem.

Observation.

Let *L* be a **PSPACE**-complete problem.

- ① If $L \in P$, then P = PSPACE. (And thus P = NP)
- ② if $L \in NP$, then NP = PSPACE.

Quantified Boolean Formulae (QBFs)

Definition 11.2.1

If V is a set of variables, then the set of <u>quantified boolean formulae</u> over V is given by:

- Every variable $v \in V$ is a QBF, and so are \top and \bot
- \bullet If ϕ, ψ are QBF, then so are $\phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a QBF, then so is $\neg \phi$.
- If ϕ is a QBF and $v \in V$ is a variable, then $\exists v \phi$ and $\forall v \psi$ are QBF.

Quantified Boolean Formulae (QBFs)

Definition 11.2.1

If V is a set of variables, then the set of <u>quantified boolean formulae</u> over V is given by:

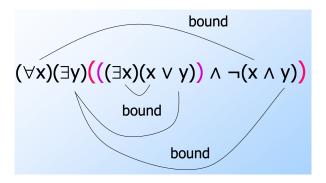
- ullet Every variable $v \in V$ is a QBF, and so are op and op
- \bullet If ϕ, ψ are QBF, then so are $\phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a QBF, then so is $\neg \phi$.
- If ϕ is a QBF and $v \in V$ is a variable, then $\exists v \phi$ and $\forall v \psi$ are QBF.

Definition 11.2.2

In a QBF ϕ , a variable v is bound if it is in the scope of a quantifier $\forall v$ or $\exists v$. The variable v is free otherwise.

If $x \in \{\top, \bot\}$ is a truth value, then $\phi[x/v]$ is the result of replacing all $\underline{\mathsf{free}}$ occurrences of v with x.

Example



- > Usually, one writes these formulae without the parentheses pairs around the quantified variables, e.g., $\forall x \phi$ instead of $(\forall x) \phi$.
- > Note how inner quantifiers have precedence over outer ones.
- > Also, this formula does not have free variables, i.e., all are bound.

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

• evalQBF(
$$\forall v \phi$$
) = $\phi[\top/v] \land \phi[\bot/v]$

• evalQBF(
$$\exists v \phi$$
) = $\phi[\top/v] \lor \phi[\bot/v]$

and quantifier-free formulae without free variables can be evaluated.

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

- evalQBF($\forall v \phi$) = $\phi[\top/v] \land \phi[\bot/v]$
- evalQBF($\exists v \phi$) = $\phi[\top/v] \lor \phi[\bot/v]$

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v_1, \ldots, v_n is:

- satisfiable if $\exists v_1 \exists v_2 \dots \exists v_n \phi$ evaluates to true.
- a tautology if $\forall v_1 \forall v_2 \dots \forall v_n \phi$ evaluates to true.

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

- evalQBF($\forall v \phi$) = $\phi[\top/v] \land \phi[\bot/v]$
- evalQBF($\exists v \phi$) = $\phi[\top/v] \lor \phi[\bot/v]$

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v_1, \ldots, v_n is:

- satisfiable if $\exists v_1 \exists v_2 \dots \exists v_n \phi$ evaluates to true.
- a tautology if $\forall v_1 \forall v_2 \dots \forall v_n \phi$ evaluates to true.

Definition 11.2.3

The QBF problem is the problem of determining whether a given quantified boolean formula without free variables evaluates to true:

QBF =
$$\{\langle \phi \rangle \mid \phi \text{ a true QBF without free variables}\}$$

Pascal Bercher week 10

QBFs vs Boolean Formulae

> Evaluating a boolean formula without free variables (i.e., with variables substituted by \top or \bot) is in **P**.

QBFs vs Boolean Formulae

- > Evaluating a boolean formula without free variables (i.e., with variables substituted by ⊤ or ⊥) is in P.
- > So, an idea is to substitute all bound variables by its truth values:
 - $\bullet \ (\forall v \phi) \leadsto \phi[\top/x] \land \phi[\bot/x]$
 - $\bullet \ (\exists v \phi) \leadsto \phi[\top/x] \lor \phi[\bot/x]$

QBFs vs Boolean Formulae

- > Evaluating a boolean formula without free variables (i.e., with variables substituted by ⊤ or ⊥) is in P.
- > So, an idea is to substitute all bound variables by its truth values:
 - $(\forall v \phi) \leadsto \phi[\top/x] \land \phi[\bot/x]$ • $(\exists v \phi) \leadsto \phi[\top/x] \lor \phi[\bot/x]$
- > But due to doubling the formula with each substitution, the resulting formula may be exponentially large. So we showed that QBF is in **EXPTIME**.
- Q. Can we do better?

Main Idea.

- > to evaluate $\forall v \phi$, don't write out $\phi[\top/v] \land \phi[\bot/v]$.
- > instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence.
- > avoids exponential space blowup

Recursive Algorithm eval $\overline{\mathsf{QBF}(\phi)}$

Main Idea.

- \Rightarrow to evaluate $\forall v \phi$, don't write out $\phi[\top/v] \land \phi[\bot/v]$.
- > instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence.
- > avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

> case $\phi = \top$: return \top

Main Idea.

- \Rightarrow to evaluate $\forall v \phi$, don't write out $\phi[\top/v] \land \phi[\bot/v]$.
- \Rightarrow instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence.
- > avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

- \rightarrow case $\phi = \top$: return \top
- > case $\phi = (\psi_1 \wedge \psi_2)$: if evalQBF (ψ_1) then return evalQBF (ψ_2) else return \bot

Main Idea.

- \rightarrow to evaluate $\forall v \phi$, don't write out $\phi[\top/v] \land \phi[\bot/v]$.
- \rightarrow instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence.
- > avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

- \rightarrow case $\phi = \top$: return \top
- > case $\phi = (\psi_1 \wedge \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot
- > case $\phi = \forall v \psi$: if evalQBF($\psi[\top/v]$) then return evalQBF($\phi[\bot/v]$) else return \bot

Main Idea.

- > to evaluate $\forall \nu \phi$, don't write out $\phi[\top/\nu] \wedge \phi[\bot/\nu]$.
- \rightarrow instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence.
- > avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

- \rightarrow case $\phi = \top$: return \top
- > case $\phi = (\psi_1 \wedge \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot
- > case $\phi = \forall v \psi$: if evalQBF($\psi[\top/v]$) then return evalQBF($\phi[\bot/v]$) else return \bot
- > other cases: analogous

Main Idea.

- \rightarrow to evaluate $\forall v \phi$, don't write out $\phi[\top/v] \land \phi[\bot/v]$.
- > instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence.
- > avoids exponential space blowup

Recursive Algorithm evalQBF(ϕ)

- \rightarrow case $\phi = \top$: return \top
- \rightarrow case $\phi = (\psi_1 \land \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot
- > case $\phi = \forall v \psi$: if evalQBF($\psi[\top/v]$) then return evalQBF($\phi[\bot/v]$) else return \bot
- > other cases: analogous

Analysis.

Given QBF ϕ of size n:

- > at most n recursive calls active
- > each call stores a partially evaluated QBF of size n
- > total space requirement $\mathcal{O}(n^2)$

QBF is **PSPACE**-hard (and hence -complete)

Proof Idea/Overview.

Reduce any problem in **PSPACE** to QBF:

- > Let L be in PSPACE.
- > Then L is accepted by a polyspace-bounded TM with bound p(n).
- > If $w \in L$, then M accepts in $< c^{p(n)}$ moves.
- > Construct QBF ϕ : "there is a sequence of $c^{p(n)}$ ID's that accepts w".
- > Use recursive doubling to perform this reduction in polytime.

(Detailed encoding in next two slides. Shows similarities to Cook's SAT encoding.)

Variables.

- > We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- ightarrow variables $x_{j,s}/y_{j,s}= op$ iff the j-th symbol of the resp. ID is $s,\ 1\leq j\leq p(n)+1$.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID is $s,\ 1\leq j\leq p(n)+1$.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land F \land U)$$

> We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the initial and final configuration.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID is $s,\ 1\leq j\leq p(n)+1$.

$$\phi = (\exists X)(\exists Y)(S \land N \land F \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the initial and final configuration.
 - (\exists **X**) is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),q_{|Q|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID is $s,\ 1\leq j\leq p(n)+1$.

$$\phi = (\exists X)(\exists Y)(S \land N \land F \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the initial and final configuration.
 - $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),q_{|Q|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem.

$$x_{0,q_0} \wedge x_{1,w_1} \cdots \wedge x_{k,w_{|w|}} \wedge y_{|w|+1,B} \wedge \cdots \wedge y_{p(n),B}$$

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID is $s,\ 1\leq j\leq p(n)+1$.

$$\phi = (\exists X)(\exists Y)(S \land N \land F \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the initial and final configuration.
 - (\exists **X**) is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),q_{|Q|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem. $x_{0,q_0} \wedge x_{1,w_1} \cdots \wedge x_{k,w_{|w|}} \wedge y_{|w|+1,B} \wedge \cdots \wedge y_{p(n),B}$
- > **F**: says that Y represents an accepting ID ID_f , just as in Cook's theorem.
 - $\bigvee_{\substack{0 \le i \le p(n) \\ q \text{ accepting}}}^{j} y_{i,q}$

Variables.

- > We use two sets of variables, $x_{i,s}$ and $y_{i,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{i,s}/y_{i,s} = \top$ iff the j-th symbol of the resp. ID is s, $1 \le j \le p(n) + 1$.

$$\phi = (\exists X)(\exists Y)(S \land N \land F \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the initial and final configuration.
 - $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|\Omega|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),q_{|\Omega|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem. $x_{0,q_0} \wedge x_{1,w_1} \cdots \wedge x_{k,w_{|w|}} \wedge y_{|w|+1,B} \wedge \cdots \wedge y_{p(n),B}$
- \rightarrow **F**: says that Y represents an accepting ID ID_f , just as in Cook's theorem.
- $\bigvee_{0 \le i \le p(n)} y_{i,q}$
- > U: says that every ID has at most one symbol per position, just as in Cook's theorem.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s} = \top$ iff the j-th symbol of the resp. ID is s, $1 \le j \le p(n) + 1$.

$$\phi = (\exists X)(\exists Y)(S \land N \land F \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the initial and final configuration.
 - $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),q_{|Q|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem.

$$x_{0,q_0} \wedge x_{1,w_1} \cdots \wedge x_{k,w_{|w|}} \wedge y_{|w|+1,B} \wedge \cdots \wedge y_{p(n),B}$$

- > **F**: says that *Y* represents an accepting ID ID_f , just as in Cook's theorem. $\bigvee_{0 \le i \le p(n)} y_{i,q}$
- > **U**: says that every ID has at most one symbol per position, just as in Cook's theorem.
- > **N**: transition from $X \approx ID_0$ to some $Y \approx ID_f$ in ≤ $c^{p(n)}$ steps (see next slide).

> $N = N(ID_0, ID_f)$: have sequence of length $\leq c^{p(n)}$ from ID_0 to ID_f . Again, ID_0 and ID_f are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.

- > $N = N(ID_0, ID_f)$: have sequence of length $\leq c^{p(n)}$ from ID_0 to ID_f . Again, ID_0 and ID_f are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem

- > $N = N(ID_0, ID_f)$: have sequence of length $\leq c^{p(n)}$ from ID_0 to ID_f . Again, ID_0 and ID_f are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X ⊢^* Y$ in $\leq 2^i$ steps:

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)

- > $N = N(ID_0, ID_f)$: have sequence of length $\leq c^{p(n)}$ from ID_0 to ID_f . Again, ID_0 and ID_f are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.
- > Detour: $N_0(X,Y) = X \vdash^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X ⊢^* Y$ in $\leq 2^i$ steps:

$$N_i(X, Y) = (\exists K)(\forall P)(\forall Q)[$$

$$((P, Q) = (X, K) \lor (P, Q) = (K, Y))$$

$$\rightarrow N_{i-1}(P, Q)]$$

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)

- > $N = N(ID_0, ID_f)$: have sequence of length $\leq c^{p(n)}$ from ID_0 to ID_f . Again, ID_0 and ID_f are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X ⊢^* Y$ in $\leq 2^i$ steps:

$$N_i(X, Y) = (\exists K)(\forall P)(\forall Q)[$$

$$((P, Q) = (X, K) \lor (P, Q) = (K, Y))$$

$$\rightarrow N_{i-1}(P, Q)]$$

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)
- \rightarrow Let $N(X,Y) = N_k(X,Y)$ where $2^k \ge c^{p(n)}$ (note $k \in \mathcal{O}(p(n))$)
- \rightarrow each N_i can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
- \rightarrow so $\mathcal{O}(p(n)^2)$ overall

- > $N = N(ID_0, ID_f)$: have sequence of length $\leq c^{p(n)}$ from ID_0 to ID_f . Again, ID_0 and ID_f are just our variables X and Y, but they are, by S and F, constrained to represent the initial ID and any accepting ID.
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X \vdash^* Y$ in ≤ 2^i steps:

$$N_i(X, Y) = (\exists K)(\forall P)(\forall Q)[$$

$$((P, Q) = (X, K) \lor (P, Q) = (K, Y))$$

$$\rightarrow N_{i-1}(P, Q)]$$

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)
- ightarrow Let $N(X,Y)=N_k(X,Y)$ where $2^k\geq c^{p(n)}$ (note $k\in\mathcal{O}(p(n))$)
- \rightarrow each N_i can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
- \rightarrow so $\mathcal{O}(p(n)^2)$ overall

By construction, $\phi = \top$ iff M accepts w.