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COMP3630/6363: Theory of Computation

Textbook. Introduction to Automata Theory, Languages and Computation
by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman [HMU].

Prerequisites. Chapter 1 of HMU (sets, functions, relations, induction)
(if you prefer lectures over reading, I uploaded one on YouTube)

Assessment. 3 assignments each @ 12%
1 online quiz (1 hour) in week 4 @ 4%
1 final exam @ 60%

Labs. Participation is voluntary, but highly recommended.

Thursday, 11 am to 1 pm and Friday, 12 pm to 2 pm
each tutorial covers the content of the same week
tutor of weeks 1 to 6: Adam Rowland
tutor of weeks 7 to 12: Timothy Horscroft

Content. Languages / Automata / Computability / Complexity
This course is basically an advanced Math course.

Convenor. Pascal (Bercher), pascal.bercher@anu.edu.au

Lecturer. same!

Slides. Dirk Pattinson
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Class Representatives

Interested?

Up to two class reps per course code (COMP1600 / COMP6260)
Self-nominate yourself by dropping Pascal an email
Selections must be final by the end of week 2
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Content of this Chapter

 Deterministic Finite Automata

 Nondeterministic Finite Automata

 NFA with ϵ-transitions

 An Equivalence among the above three.

(This was all covered in COMP1600)

Additional Reading: Chapter 2 of HMU.
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Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.
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The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

∠ The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

∠ The input is read from left to right

∠ Each read operation changes the internal state of the finite-state machine (FSM)

∠ Input is accepted/rejected based on the final state after reading all symbols
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The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F )

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10
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Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F ) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F
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Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.
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Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement
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Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F ) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivally an NFA).
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Languages Accepted by NFAs

Language Accepted by an NFA

∠ The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

∠ Basis:

δ̂(q, ϵ) = {q} (no state change)

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

∠ L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F ̸= ∅}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F
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Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.
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Languages Accepted by NFAs

Is Non-determinism Better?

∠ Non-determinism was introduced to increase the computational power.

∠ So is there a language L that is accepted by an NDA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.
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Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)
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Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.
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Languages Accepted by NFAs

Comments about the Subset Construction Method

∠ Generally, the DFA constructed using subset construction has 2n states (n = number
of states in the NFA).

∠ Not all states are reachable! (see example below)

∠ The state corresponding to the empty set is never a final state.

q0 q1 q2
1

0; 1

0; 1

;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

0; 1

0

1

0; 1

0; 1

0; 1

1
0

1

0 0

1

D :

Pascal Bercher week 1: Finite Automata Semester 1, 2023 17 / 24



Transtions without Symbol Reading

ϵ-Transitions

∠ State transitions occur without reading any symbols.

Definition: ϵ-transitions

An ϵ-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F ) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ϵ}) → 2Q

∠ An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

∠ Without reading any input symbols, the state of the ϵ-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.
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Transtions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ ϵ-closure of a state

∠ ECLOSE(q) = all states that are reachable from q by ϵ-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) = {q0, q1, q4, q2, q3}
ECLOSE(q1) = {q1, q2, q3}
ECLOSE(q2) = {q2, q3}
ECLOSE(q3) = {q3}
ECLOSE(q4) = {q4}
ECLOSE(q5) = {q5, q6}
ECLOSE(q6) = {q6}
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Transtions without Symbol Reading

Language Accepted by an ϵ-NFA

Given ϵ-NFA N = (Q,Σ, δ, q0,F ) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

∠ Basis:

δ̂(q, ϵ) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

( ⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ϵ · · · ϵ︸ ︷︷ ︸

finitely many

s ϵ · · · ϵ︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

( ⋃
p′∈δ(p,s)

ECLOSE(p′)

)
q

w

‹̂(q; w)

s
›

‹̂(q; ws)

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅
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Transtions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

∠ In other words:

∠ ϵ ∈ L(N) ⇔ ECLOSE(q0) ∩ F ̸= ∅
› › ›: : :q0 p1 pr 2 F

∠ For k > 0, w = s1s2 . . . sk ∈ L(N) ⇔ ∃ a path such as the following:
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Transtions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Theorem 2.5.1

Every Language L that is accepted by an ϵ-NFA is also accepted by some DFA.

Proof of Theorem 2.5.1 (Abstract idea)

N :

m

p1

p2

s2

sk

pk

,

q
s1

...

ECLOSE(pk) \ FN 6= ;

N 0 :

m
s1 : : : sk is accepted by ›-NFA N s1 : : : sk is accepted by NFA N 0

› ›
q0

›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F
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Transtions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

∠ Given L that is accepted by some ϵ-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

∠ Let ϵ-NFA N = (QN ,Σ, δN , q0,FN) accept L.

∠ Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′
0,FN′) as follows:

QN′ = QN q′
0 = q0 F ′

N = {q ∈ QN : ECLOSE(q) ∩ FN ̸= ∅}

δN′ : QN′ × Σ → 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.
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Transtions without Symbol Reading

To Summarize...

Languages accepted
by DFAs

=
Languages accepted

by NFAs
=

Languages accepted
by ϵ-NFAs

∠ Allowing non-determinism and/or ϵ-transitions does not improve the language
acceptance power of (finite) automata.
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