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Content of this Chapter

 Introduction to regular expressions and regular languages

 Equivalence of classes of regular languages and languages accepted

 Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.
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Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗
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Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:

B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.
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Regular Expressions and Languages

Regular Expressions: Examples

∠ r = 0+ 11∗10 is a regular expression

∠ with brackets that indicate precedence: r = 0+ (1(1∗)10)
∠ with more brackets indicating associativity: r = 0+ ((1(1∗))1)0

∠ Computing the language:

L(r) = L(0) ∪ L(11∗10)

= {0} ∪ L(1) · L(1∗) · L(1) · L(0)
= {0} ∪ {1} · {1}∗ · {1} · {0}
= {0} ∪ {1} · {1n | n ≥ 0} · {1} · {0}

= {1i0 | i ̸= 1}

∠ Q: What’s a regular expression that describes alternating sequences of 0s and 1s?
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DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.
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DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E∗:

...

E

...

E

›

›

›(E⇤)

›

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 8 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E∗:

...

E

...

E

›

›

›(E⇤)

›

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 8 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E + F:

...

...

E

F

...

...

E

F

›

›

(E + F )
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DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont’d)

∠ Induction I3’:

...

...

E

F

...
...

E F

(EF)
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DFAs and Regular Languages

So Far...

Regular Languages Languages accepted by

DFAs, NFAs, ›-NFAs

Finite languages

∠ Is the inclusion strict?

∠ Are there languages accepted by DFAs that are not regular?
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DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.
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DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.

∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.
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DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.
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DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
∠ Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

∠ From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.
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DFAs and Regular Languages

Equivalence of Languages

∠ The following are indeed equivalent:

∠ The class of regular languages

∠ The class of languages accepted by DFAs

∠ The class of languages accepted by NFAs

∠ The class of languages accepted by ϵ-NFAs
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Properties of Regular Languages

Properties of Regular Languages

∠ Regular languages are closed under finite union, concatenation, and Kleene-∗
operation. (Theorem 3.2.2)

∠ They are also closed under:

∠ Complementation:
Given DFA A = (Q,Σ, δ, q0,F ), DFA A′ = (Q,Σ, δ, q0,F

c) accepts L(A)c .

∠ Intersection:
De Morgan’s Law: R1 ∩ R2 = (Rc

1 ∪ Rc
2 )

c

(Where F c = Q \ F and Lc
Σ (for some language L over Σ) is Σ∗ \ LΣ)
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Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:

B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:

∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))
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Abstract Regular Expressions

Algebraic Laws of Abstract Regular Expressions

∠ Commutativity: L+ M = M+ L (Union is commutative)
LM ̸= ML (Concatenation is not commutative)

∠ Associativity: (L+ M) + N = L+ (M+ N) (Union is associative)
(LM)N = L(MN) (Concatenation is associative)

∠ Identity: ∅+ L = L+ ∅ = L (∅ is the identity element for +)
ϵL = Lϵ = L (ϵ is the identity element for concatenation)

∠ Annihilator: ∅L = L∅ = ∅

∠ Idempotent: L+ L = L

∠ Distributive: L(M+ N) = LM+ LN

(M+ N)L = ML+ NL

∠ Kleene ∗: (L∗)∗ = L∗; ∅∗ = ϵ; ϵ∗ = ϵ.
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