COMP3630 / COMP6363

week 1: Regular Expressions and Languages

This Lecture Covers Chapter 3 of HMU: Regular Expressions and Languages
slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher convenor \& lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

> Introduction to regular expressions and regular languages
> Equivalence of classes of regular languages and languages accepted
> Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
>Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
>Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
> In Web forms to (structurally) validate entries (passwords, dates, email IDs)

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
>Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
> In Web forms to (structurally) validate entries (passwords, dates, email IDs)
>A regular expression over an alphabet Σ is a string consisting of:

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
>Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
> In Web forms to (structurally) validate entries (passwords, dates, email IDs)
>A regular expression over an alphabet Σ is a string consisting of:
$>$ symbols from Σ
$>$ constants: \emptyset, ϵ
> operators:,+ *
> parantheses: (,)

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description
>Regular expressions are user-friendly and declarative formulation
> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
>Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
> In Web forms to (structurally) validate entries (passwords, dates, email IDs)
>A regular expression over an alphabet Σ is a string consisting of:
$>$ symbols from Σ
$>$ constants: \emptyset, ϵ
> operators:,+ *
> parantheses: (,)
> Each regular expression r denotes a language $L(r) \subseteq \Sigma^{*}$

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma$, a is a regular expression with $L(a)=\{a\}$.

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:
I1 so is r^{*} with $L\left(r^{*}\right)=(L(r))^{*}$ e.g., $L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}$

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:
I1 so is r^{*} with $L\left(r^{*}\right)=(L(r))^{*}$

$$
\text { e.g., } L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}
$$

I2 so is $r+s$ with $L(r+s)=L(r) \cup L(s)$

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:

```
I1 so is \(r^{*}\) with \(L\left(r^{*}\right)=(L(r))^{*}\)
    e.g., \(L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}\)
12 so is \(r+s\) with \(L(r+s)=L(r) \cup L(s)\)
13 so is \(r s\) with \(L(r s)=L(r) \cdot L(s) \quad\) (cf. Def. from day 1!)
    e.g., \(L\left(a^{*} b\right)=L\left(a^{*}\right) \cdot L(b)=\{\epsilon, a, a a, \ldots\} \cdot\{b\}=\{b, a b, a a b, \ldots\}\)
```


Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:
I1 so is r^{*} with $L\left(r^{*}\right)=(L(r))^{*}$
e.g., $L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}$

12 so is $r+s$ with $L(r+s)=L(r) \cup L(s)$
13 so is $r s$ with $L(r s)=L(r) \cdot L(s) \quad$ (cf. Def. from day 1!)
e.g., $L\left(a^{*} b\right)=L\left(a^{*}\right) \cdot L(b)=\{\epsilon, a, a a, \ldots\} \cdot\{b\}=\{b, a b, a a b, \ldots\}$

14 so is (r) with $L((r))=L(r)$.

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:

```
I1 so is \(r^{*}\) with \(L\left(r^{*}\right)=(L(r))^{*}\)
    e.g., \(L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}\)
12 so is \(r+s\) with \(L(r+s)=L(r) \cup L(s)\)
13 so is \(r s\) with \(L(r s)=L(r) \cdot L(s)\)
(cf. Def. from day 1!)
    e.g., \(L\left(a^{*} b\right)=L\left(a^{*}\right) \cdot L(b)=\{\epsilon, a, a a, \ldots\} \cdot\{b\}=\{b, a b, a a b, \ldots\}\)
14 so is \((r)\) with \(L((r))=L(r)\).
```

> Only those generated by the above induction are regular.

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:

```
I1 so is \(r^{*}\) with \(L\left(r^{*}\right)=(L(r))^{*}\)
    e.g., \(L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}\)
12 so is \(r+s\) with \(L(r+s)=L(r) \cup L(s)\)
13 so is \(r s\) with \(L(r s)=L(r) \cdot L(s)\)
(cf. Def. from day 1!)
    e.g., \(L\left(a^{*} b\right)=L\left(a^{*}\right) \cdot L(b)=\{\epsilon, a, a a, \ldots\} \cdot\{b\}=\{b, a b, a a b, \ldots\}\)
14 so is \((r)\) with \(L((r))=L(r)\).
```

> Only those generated by the above induction are regular.
> Remark: Some authors/texts use \mid instead of + . HMU uses + .

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:
> Basis:
B1 \emptyset and ϵ are regular expressions, with $L(\emptyset)=\emptyset$ and $L(\epsilon)=\{\epsilon\}$.
B2 For each $a \in \Sigma, a$ is a regular expression with $L(a)=\{a\}$.
> Induction: If r and s are regular expressions, then:

```
I1 so is \(r^{*}\) with \(L\left(r^{*}\right)=(L(r))^{*}\)
    e.g., \(L\left(a^{*}\right)=(L(a))^{*}=\{a\}^{*}=\{\epsilon, a, a a, \ldots\}\)
12 so is \(r+s\) with \(L(r+s)=L(r) \cup L(s)\)
13 so is \(r s\) with \(L(r s)=L(r) \cdot L(s)\)
(cf. Def. from day 1!)
    e.g., \(L\left(a^{*} b\right)=L\left(a^{*}\right) \cdot L(b)=\{\epsilon, a, a a, \ldots\} \cdot\{b\}=\{b, a b, a a b, \ldots\}\)
14 so is \((r)\) with \(L((r))=L(r)\).
```

> Only those generated by the above induction are regular.
> Remark: Some authors/texts use \mid instead of + . HMU uses + .
> Precedence Rules:

$$
(\cdot)>*>\cdot>+
$$

where $>$ is 'binds more strongly than', and both + and \cdot associate to the left.

Regular Expressions: Examples

> $r=0+11^{*} 10$ is a regular expression
$>$ with brackets that indicate precedence: $r=0+\left(1\left(1^{*}\right) 10\right)$
$>$ with more brackets indicating associativity: $r=0+\left(\left(1\left(1^{*}\right)\right) 1\right) 0$
> Q: What's a regular expression that describes alternating sequences of 0 s and 1 s ?

Regular Expressions: Examples

> $r=0+11^{*} 10$ is a regular expression
> with brackets that indicate precedence: $r=0+\left(1\left(1^{*}\right) 10\right)$
$>$ with more brackets indicating associativity: $r=0+\left(\left(1\left(1^{*}\right)\right) 1\right) 0$
> Computing the language:

$$
\begin{aligned}
L(r) & =L(0) \cup L\left(11^{*} 10\right) \\
& =\{0\} \cup L(1) \cdot L\left(1^{*}\right) \cdot L(1) \cdot L(0) \\
& =\{0\} \cup\{1\} \cdot\{1\}^{*} \cdot\{1\} \cdot\{0\} \\
& =\{0\} \cup\{1\} \cdot\left\{1^{n} \mid n \geq 0\right\} \cdot\{1\} \cdot\{0\} \\
& =\left\{1^{i} 0 \mid i \neq 1\right\}
\end{aligned}
$$

> Q: What's a regular expression that describes alternating sequences of 0 s and 1 s ?

Regular Languages: Some Basic Properties

Theorem 3.2.1
Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

$>\{w\}$ being regular means there is a regular expression r with $L(r)=\{w\}$. Proof by induction on the length of w. For $w=\epsilon,\{w\}=\{\epsilon\}=L(\epsilon)$. For w of the form $w^{\prime} s$, we have (by induction) r s.t. $\left\{w^{\prime}\right\}=L(r)$ so that $\{w\}=\left\{w^{\prime} s\right\}=L(r s)$.

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

$>\{w\}$ being regular means there is a regular expression r with $L(r)=\{w\}$. Proof by induction on the length of w. For $w=\epsilon,\{w\}=\{\epsilon\}=L(\epsilon)$. For w of the form $w^{\prime} s$, we have (by induction) r s.t. $\left\{w^{\prime}\right\}=L(r)$ so that $\{w\}=\left\{w^{\prime} s\right\}=L(r s)$.

Theorem 3.2.2

Let L_{1} and L_{2} be regular languages. Then, $L_{1}^{*}, L_{1} \cup L_{2}$ and $L_{1} L_{2}$ are also regular.

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

$>\{w\}$ being regular means there is a regular expression r with $L(r)=\{w\}$.
Proof by induction on the length of w. For $w=\epsilon,\{w\}=\{\epsilon\}=L(\epsilon)$. For w of the form $w^{\prime} s$, we have (by induction) r s.t. $\left\{w^{\prime}\right\}=L(r)$ so that $\{w\}=\left\{w^{\prime} s\right\}=L(r s)$.

Theorem 3.2.2

Let L_{1} and L_{2} be regular languages. Then, $L_{1}^{*}, L_{1} \cup L_{2}$ and $L_{1} L_{2}$ are also regular.

Proof of Theorem 3.2.2

By definition of $L\left(r^{*}\right), L(r+s)$ and $L(r s)$.

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

$>\{w\}$ being regular means there is a regular expression r with $L(r)=\{w\}$.
Proof by induction on the length of w. For $w=\epsilon,\{w\}=\{\epsilon\}=L(\epsilon)$. For w of the form $w^{\prime} s$, we have (by induction) r s.t. $\left\{w^{\prime}\right\}=L(r)$ so that $\{w\}=\left\{w^{\prime} s\right\}=L(r s)$.

Theorem 3.2.2

Let L_{1} and L_{2} be regular languages. Then, $L_{1}^{*}, L_{1} \cup L_{2}$ and $L_{1} L_{2}$ are also regular.

Proof of Theorem 3.2.2

By definition of $L\left(r^{*}\right), L(r+s)$ and $L(r s)$.
>Corollary 1: The class of regular languages is closed under finite union and concatenation, i.e., if L_{1}, \ldots, L_{k} are regular languages for any $k \in \mathbb{N}$, then $L_{1} \cup \cdots \cup L_{k}$ and $L_{1} \cdots L_{k}$ are also regular languages.

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^{*}$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

$>\{w\}$ being regular means there is a regular expression r with $L(r)=\{w\}$.
Proof by induction on the length of w. For $w=\epsilon,\{w\}=\{\epsilon\}=L(\epsilon)$. For w of the form $w^{\prime} s$, we have (by induction) r s.t. $\left\{w^{\prime}\right\}=L(r)$ so that $\{w\}=\left\{w^{\prime} s\right\}=L(r s)$.

Theorem 3.2.2

Let L_{1} and L_{2} be regular languages. Then, $L_{1}^{*}, L_{1} \cup L_{2}$ and $L_{1} L_{2}$ are also regular.

Proof of Theorem 3.2.2

By definition of $L\left(r^{*}\right), L(r+s)$ and $L(r s)$.
>Corollary 1: The class of regular languages is closed under finite union and concatenation, i.e., if L_{1}, \ldots, L_{k} are regular languages for any $k \in \mathbb{N}$, then $L_{1} \cup \cdots \cup L_{k}$ and $L_{1} \cdots L_{k}$ are also regular languages.
>Corollary 2: Any finite language is regular.

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that $M=L(A)$.

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that $M=L(A)$.

Proof of Theorem 3.2.3

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that $M=L(A)$.

Proof of Theorem 3.2.3

$>$ WLOG, let $\Sigma=\{0,1\}$. Let M be a regular language. Then, $M=L(E)$ for some regular expression E.

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that $M=L(A)$.

Proof of Theorem 3.2.3

$>$ WLOG, let $\Sigma=\{0,1\}$. Let M be a regular language. Then, $M=L(E)$ for some regular expression E.
> For each regular expression, we will devise an ϵ-NFA.

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that $M=L(A)$.

Proof of Theorem 3.2.3

$>$ WLOG, let $\Sigma=\{0,1\}$. Let M be a regular language. Then, $M=L(E)$ for some regular expression E.
> For each regular expression, we will devise an ϵ-NFA.
> Basis:
\emptyset
ϵ

0
1

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that $M=L(A)$.

Proof of Theorem 3.2.3

$>$ WLOG, let $\Sigma=\{0,1\}$. Let M be a regular language. Then, $M=L(E)$ for some regular expression E.
> For each regular expression, we will devise an ϵ-NFA.
> Basis:

Note that these automata could be made smaller:
\emptyset / ϵ only keep initial state and no transitions since runs with non-existent transitions fail.
$0 / 1 q_{2}$ can be removed since runs with non-existent transitions fail.

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont'd)

$>$ Induction E^{*} :

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont'd)

$>$ Induction E^{*} :

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont'd)

> Induction E +F :

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont'd)

> Induction $\mathrm{E}+\mathrm{F}$:

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont'd)

> Induction I3':

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont'd)

> Induction 13 ':

(EF)

So Far...

So Far...

> Is the inclusion strict?
>Are there languages accepted by DFAs that are not regular?

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

DFAs and Regular Languages

Theorem 3.2.4
For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

Proof of Theorem 3.2.4

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

Proof of Theorem 3.2.4

$>$ Let DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given.

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

Proof of Theorem 3.2.4

$>$ Let DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given.
$>$ Let us rename the states so that $Q=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{n-1}\right\}$.

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

Proof of Theorem 3.2.4

$>$ Let DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given.
$>$ Let us rename the states so that $Q=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{n-1}\right\}$.
$>$ For any string $s_{1} \ldots s_{k} \in L(A)$, there is a path

$$
q_{0} \xrightarrow{s_{1}} q_{i_{1}} \xrightarrow{s_{2}} q_{i_{2}} \cdots \xrightarrow{s_{k}} q_{i_{k}} \in F
$$

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

Proof of Theorem 3.2.4

$>$ Let DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given.
$>$ Let us rename the states so that $Q=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{n-1}\right\}$.
$>$ For any string $s_{1} \ldots s_{k} \in L(A)$, there is a path

$$
q_{0} \xrightarrow{s_{1}} q_{i_{1}} \xrightarrow{s_{2}} q_{i_{2}} \cdots \xrightarrow{s_{k}} q_{i_{k}} \in F
$$

> Define: $R(i, j, k)$ be the set of all input strings that move the internal state of A from q_{i} to q_{j} using paths whose intermediate nodes comprise only of $q_{\ell}, \ell<k$.

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that $L(A)=L(E)$.

Proof of Theorem 3.2.4

$>$ Let DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given.
$>$ Let us rename the states so that $Q=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{n-1}\right\}$.
$>$ For any string $s_{1} \ldots s_{k} \in L(A)$, there is a path

$$
q_{0} \xrightarrow{s_{1}} q_{i_{1}} \xrightarrow{s_{2}} q_{i_{2}} \cdots \xrightarrow{s_{k}} q_{i_{k}} \in F
$$

> Define: $R(i, j, k)$ be the set of all input strings that move the internal state of A from q_{i} to q_{j} using paths whose intermediate nodes comprise only of $q_{\ell}, \ell<k$.

> Idea: prove that (a) each $R(i, j, k)$ is regular, and (b) $L(A)$ is a union of $R(i, j, k)$'s.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
> $L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
> $L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
> Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
> $L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
> Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.
> $R(i, j, 0)$ consists of strings whose corresponding paths start in q_{i} and end in q_{j} with intermediate nodes $q_{\ell}, \ell<0$.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
> $L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
> Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.
> $R(i, j, 0)$ consists of strings whose corresponding paths start in q_{i} and end in q_{j} with intermediate nodes $q_{\ell}, \ell<0$.
\Rightarrow No intermediate nodes

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
$>L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
>Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.
$>R(i, j, 0)$ consists of strings whose corresponding paths start in q_{i} and end in q_{j} with intermediate nodes $q_{\ell}, \ell<0$.
\Rightarrow No intermediate nodes
$\Rightarrow R(i, j, 0)$ contains strings that change state q_{i} to q_{j} directly

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
> $L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
>Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.
$>R(i, j, 0)$ consists of strings whose corresponding paths start in q_{i} and end in q_{j} with intermediate nodes $q_{\ell}, \ell<0$.
\Rightarrow No intermediate nodes
$\Rightarrow R(i, j, 0)$ contains strings that change state q_{i} to q_{j} directly
$\Rightarrow R(i, j, 0) \subseteq\{\epsilon\} \cup \Sigma$

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
> $L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
>Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.
$>R(i, j, 0)$ consists of strings whose corresponding paths start in q_{i} and end in q_{j} with intermediate nodes $q_{\ell}, \ell<0$.
\Rightarrow No intermediate nodes
$\Rightarrow R(i, j, 0)$ contains strings that change state q_{i} to q_{j} directly
$\Rightarrow R(i, j, 0) \subseteq\{\epsilon\} \cup \Sigma$
$\Rightarrow R(i, j, 0)$ is a regular language [Corollary 2]

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

$>$ Note that $L(A)=\bigcup_{j: q_{j} \in F} R(0, j, n)$. (i.e., paths that start in q_{0} and end in an accepting state with intermediate nodes $q_{0}, q_{1}, \ldots, q_{n-1}$ (all nodes))
$>L(A)$ will be regular if each $R(i, j, k)$ to be regular. We now proceed by induction to show that each $R(i, j, k)$ is regular.
>Basis: Consider $R(i, j, 0)$ for $i, j \in\{0,1, \ldots, n-1\}$.
$>R(i, j, 0)$ consists of strings whose corresponding paths start in q_{i} and end in q_{j} with intermediate nodes $q_{\ell}, \ell<0$.
\Rightarrow No intermediate nodes
$\Rightarrow R(i, j, 0)$ contains strings that change state q_{i} to q_{j} directly
$\Rightarrow R(i, j, 0) \subseteq\{\epsilon\} \cup \Sigma$
$\Rightarrow R(i, j, 0)$ is a regular language [Corollary 2]
> Induction: Let $R(i, j, \ell)$ be regular for $i, j \in\{0, \ldots, n-1\}$ and $0 \leq \ell<k$. Consider $R(i, j, k)$ for $i, j \in\{0, \ldots, n-1\}$.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in $R(i, j, k)$ correspond to paths whose intermediate nodes belong to $\left\{q_{0}, \ldots, q_{k-1}\right\}$.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in $R(i, j, k)$ correspond to paths whose intermediate nodes belong to $\left\{\boldsymbol{q}_{0}, \ldots, \boldsymbol{q}_{k-1}\right\}$.
> Partition $R(i, j, k)$ as follows:

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in $R(i, j, k)$ correspond to paths whose intermediate nodes belong to $\left\{\boldsymbol{q}_{0}, \ldots, \boldsymbol{q}_{k-1}\right\}$.
> Partition $R(i, j, k)$ as follows:
Case (a): Strings whose paths do not have q_{k-1} as an intermediate node.
Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in $R(i, j, k)$ correspond to paths whose intermediate nodes belong to $\left\{\boldsymbol{q}_{0}, \ldots, \boldsymbol{q}_{k-1}\right\}$.
> Partition $R(i, j, k)$ as follows:
Case (a): Strings whose paths do not have q_{k-1} as an intermediate node.
Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

$>R(i, j, k)=\{$ Case (a) strings $\} \cup\{$ Case (b) strings $\}$.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in $R(i, j, k)$ correspond to paths whose intermediate nodes belong to $\left\{q_{0}, \ldots, q_{k-1}\right\}$.
> Partition $R(i, j, k)$ as follows:
Case (a): Strings whose paths do not have q_{k-1} as an intermediate node.
Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

$>R(i, j, k)=\{$ Case (a) strings $\} \cup\{$ Case (b) strings $\}$.
> Case (a) Strings are exactly those in $R(i, j, k-1)$

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in $R(i, j, k)$ correspond to paths whose intermediate nodes belong to $\left\{q_{0}, \ldots, q_{k-1}\right\}$.
> Partition $R(i, j, k)$ as follows:
Case (a): Strings whose paths do not have q_{k-1} as an intermediate node.
Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

$>R(i, j, k)=\{$ Case (a) strings $\} \cup\{$ Case (b) strings $\}$.
> Case (a) Strings are exactly those in $R(i, j, k-1)$
$>$ Hence, $R(i, j, k)=R(i, j, k-1) \cup\{$ Case (b) strings $\}$.

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path
> Each case (b) string is the concatenation of 3 strings:

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path
> Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from q_{i} to q_{k-1} through a path whose intermediate nodes are q_{0}, \ldots, q_{k-2}, i.e., $R(i, k-1, k-1)$

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path
> Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from q_{i} to q_{k-1} through a path whose intermediate nodes are q_{0}, \ldots, q_{k-2}, i.e., $R(i, k-1, k-1)$
2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_{0}, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^{*}$

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path
> Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from q_{i} to q_{k-1} through a path whose intermediate nodes are q_{0}, \ldots, q_{k-2}, i.e., $R(i, k-1, k-1)$
2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_{0}, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^{*}$
3. A string that takes q_{k-1} back to q_{j} via a path that uses only q_{0}, \ldots, q_{k-2} as intermediate nodes, i.e., i.e., $R(k-1, j, k-1)$

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path
> Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from q_{i} to q_{k-1} through a path whose intermediate nodes are q_{0}, \ldots, q_{k-2}, i.e., $R(i, k-1, k-1)$
2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_{0}, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^{*}$
3. A string that takes q_{k-1} back to q_{j} via a path that uses only q_{0}, \ldots, q_{k-2} as intermediate nodes, i.e., i.e., $R(k-1, j, k-1)$
Thus,

$$
R(i, j, k)=R(i, j, k-1) \cup\left[R(i, k-1, k-1) R(k-1, k-1, k-1)^{*} R(k-1, j, k-1)\right]
$$

> From Thm 3.2.2, it follows that $R(i, j, k)$ is regular for any i, j, k. Thus, $L(A)$ is regular.

Equivalence of Languages

> The following are indeed equivalent:
> The class of regular languages
> The class of languages accepted by DFAs
> The class of languages accepted by NFAs
> The class of languages accepted by ϵ-NFAs

Properties of Regular Languages

> Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)

Properties of Regular Languages

> Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
> They are also closed under:

Properties of Regular Languages

>Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
> They are also closed under:
> Complementation: Given DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, DFA $A^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{c}\right)$ accepts $L(A)^{c}$.
(Where $F^{c}=Q \backslash F$ and $L_{\Sigma}^{c}($ for some language L over $\Sigma)$ is $\Sigma^{*} \backslash L_{\Sigma}$)

Properties of Regular Languages

>Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
> They are also closed under:
> Complementation: Given DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, DFA $A^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{c}\right)$ accepts $L(A)^{c}$.
> Intersection:
De Morgan's Law: $R_{1} \cap R_{2}=\left(R_{1}^{c} \cup R_{2}^{c}\right)^{c}$
(Where $F^{c}=Q \backslash F$ and $L_{\Sigma}^{c}($ for some language L over $\Sigma)$ is $\Sigma^{*} \backslash L_{\Sigma}$)

Abstract Regular Expressions

> We can also define abstract regular expressions over languages over Σ.

Abstract Regular Expressions

$>$ We can also define abstract regular expressions over languages over Σ.
> Let \mathcal{V} be a set of variables (which will be interpreted as languages)

Abstract Regular Expressions

$>$ We can also define abstract regular expressions over languages over Σ.
> Let \mathcal{V} be a set of variables (which will be interpreted as languages)
> Use the induction definition for regular languages replacing B 2 alone by: $B 2 M$ is an (abstract) regular expression for every $M \in \mathcal{V}$

Abstract Regular Expressions

> We can also define abstract regular expressions over languages over Σ.
> Let \mathcal{V} be a set of variables (which will be interpreted as languages)
> Use the induction definition for regular languages replacing B 2 alone by: B 2 M is an (abstract) regular expression for every $\mathrm{M} \in \mathcal{V}$
> Remark: Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.

Abstract Regular Expressions

> We can also define abstract regular expressions over languages over Σ.
> Let \mathcal{V} be a set of variables (which will be interpreted as languages)
> Use the induction definition for regular languages replacing B 2 alone by: $B 2 M$ is an (abstract) regular expression for every $M \in \mathcal{V}$
>Remark: Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.
> Unlike concrete regular expressions (such as $1^{*}, 0+1$), abstract regular expressions (such as $\mathrm{M}^{*}, \mathrm{M}+\mathrm{N}$) don't stand for a unique language.

Abstract Regular Expressions

> We can also define abstract regular expressions over languages over Σ.
> Let \mathcal{V} be a set of variables (which will be interpreted as languages)
> Use the induction definition for regular languages replacing B 2 alone by: $B 2 M$ is an (abstract) regular expression for every $M \in \mathcal{V}$
>Remark: Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.
> Unlike concrete regular expressions (such as $1^{*}, 0+1$), abstract regular expressions (such as $\mathrm{M}^{*}, \mathrm{M}+\mathrm{N}$) don't stand for a unique language.
> However, we can evaluate abstract regular expressions by assigning any languages to variables, and inductively interpreting:
> Variable* \longrightarrow Kleene-* closure of its language
> Sum of variables \longrightarrow union of the languages assigned to them
> Concatenation of variables \longrightarrow concatenation of their the languages

Abstract Regular Expressions

> We can also define abstract regular expressions over languages over Σ.
> Let \mathcal{V} be a set of variables (which will be interpreted as languages)
> Use the induction definition for regular languages replacing B 2 alone by: $B 2 M$ is an (abstract) regular expression for every $M \in \mathcal{V}$
> Remark: Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.
> Unlike concrete regular expressions (such as $1^{*}, 0+1$), abstract regular expressions (such as $\mathrm{M}^{*}, \mathrm{M}+\mathrm{N}$) don't stand for a unique language.
>However, we can evaluate abstract regular expressions by assigning any languages to variables, and inductively interpreting:
> Variable* \longrightarrow Kleene-* closure of its language
> Sum of variables \longrightarrow union of the languages assigned to them
> Concatenation of variables \longrightarrow concatenation of their the languages
> We can introduce a notion of equality of (abstract) regular expression:
For any assignment of languages to the
Abstract regular expressions $E_{1}=E_{2} \Leftrightarrow$ variables contained in E_{1}, E_{2}, their evaluations equal (i.e., $L\left(E_{1}\right)=L\left(E_{2}\right)$)

Algebraic Laws of Abstract Regular Expressions

> Commutativity: $\mathrm{L}+\mathrm{M}=\mathrm{M}+\mathrm{L}$ (Union is commutative) $\mathrm{LM} \neq \mathrm{ML}$ (Concatenation is not commutative)
> Associativity: $(\mathrm{L}+\mathrm{M})+\mathrm{N}=\mathrm{L}+(\mathrm{M}+\mathrm{N})$ (Union is associative) $(\mathrm{LM}) \mathrm{N}=\mathrm{L}(\mathrm{MN})$ (Concatenation is associative)
> Identity: $\emptyset+\mathrm{L}=\mathrm{L}+\emptyset=\mathrm{L}(\emptyset$ is the identity element for +)

$$
\epsilon \mathrm{L}=\mathrm{L} \epsilon=\mathrm{L}(\epsilon \text { is the identity element for concatenation })
$$

>Annihilator: $\emptyset \mathrm{L}=\mathrm{L} \emptyset=\emptyset$
> Idempotent: $\mathrm{L}+\mathrm{L}=\mathrm{L}$
> Distributive: $\mathrm{L}(\mathrm{M}+\mathrm{N})=\mathrm{LM}+\mathrm{LN}$

$$
(\mathrm{M}+\mathrm{N}) \mathrm{L}=\mathrm{ML}+\mathrm{NL}
$$

>Kleene $*:\left(\mathrm{L}^{*}\right)^{*}=\mathrm{L}^{*} ; \quad \emptyset^{*}=\epsilon ; \quad \epsilon^{*}=\epsilon$.

