
COMP3630 / COMP6363

week 1: Regular Expressions and Languages
This Lecture Covers Chapter 3 of HMU: Regular Expressions and Languages

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023



Content of this Chapter

 Introduction to regular expressions and regular languages

 Equivalence of classes of regular languages and languages accepted

 Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 2 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Overview

∠ So far: DFAs, NFAs were given a machine-like description

∠ Regular expressions are user-friendly and declarative formulation

∠ Regular expressions find extensive use.

∠ Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

∠ Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

∠ In Web forms to (structurally) validate entries (passwords, dates, email IDs)

∠ A regular expression over an alphabet Σ is a string consisting of:

∠ symbols from Σ
∠ constants: ∅, ϵ
∠ operators: +, ∗
∠ parantheses: (, )

∠ Each regular expression r denotes a language L(r) ⊆ Σ∗

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 3 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:

B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:

B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }

I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)

I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)
e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }

I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }

I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Definition

∠ Regular expressions are defined inductively as follows:

∠ Basis:
B1 ∅ and ϵ are regular expressions, with L(∅) = ∅ and L(ϵ) = {ϵ}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.

∠ Induction: If r and s are regular expressions, then:

I1 so is r∗ with L(r∗) = (L(r))∗

e.g., L(a∗) = (L(a))∗ = {a}∗ = {ϵ, a, aa, . . . }
I2 so is r + s with L(r + s) = L(r) ∪ L(s)
I3 so is rs with L(rs) = L(r) · L(s) (cf. Def. from day 1!)

e.g., L(a∗b) = L(a∗) · L(b) = {ϵ, a, aa, . . . } · {b} = {b, ab, aab, . . . }
I4 so is (r) with L((r)) = L(r).

∠ Only those generated by the above induction are regular.

∠ Remark: Some authors/texts use | instead of +. HMU uses +.

∠ Precedence Rules:
(·) > ∗ > · > +

where > is ‘binds more strongly than’, and both + and · associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 4 / 19



Regular Expressions and Languages

Regular Expressions: Examples

∠ r = 0+ 11∗10 is a regular expression

∠ with brackets that indicate precedence: r = 0+ (1(1∗)10)
∠ with more brackets indicating associativity: r = 0+ ((1(1∗))1)0

∠ Computing the language:

L(r) = L(0) ∪ L(11∗10)

= {0} ∪ L(1) · L(1∗) · L(1) · L(0)
= {0} ∪ {1} · {1}∗ · {1} · {0}
= {0} ∪ {1} · {1n | n ≥ 0} · {1} · {0}

= {1i0 | i ̸= 1}

∠ Q: What’s a regular expression that describes alternating sequences of 0s and 1s?

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 5 / 19



Regular Expressions and Languages

Regular Expressions: Examples

∠ r = 0+ 11∗10 is a regular expression

∠ with brackets that indicate precedence: r = 0+ (1(1∗)10)
∠ with more brackets indicating associativity: r = 0+ ((1(1∗))1)0

∠ Computing the language:

L(r) = L(0) ∪ L(11∗10)

= {0} ∪ L(1) · L(1∗) · L(1) · L(0)
= {0} ∪ {1} · {1}∗ · {1} · {0}
= {0} ∪ {1} · {1n | n ≥ 0} · {1} · {0}

= {1i0 | i ̸= 1}

∠ Q: What’s a regular expression that describes alternating sequences of 0s and 1s?

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 5 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let w ∈ Σ∗. Then {w} is regular.

Proof of Theorem 3.2.1

∠ {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w . For w = ϵ, {w} = {ϵ} = L(ϵ). For w of the
form w ′s, we have (by induction) r s.t. {w ′} = L(r) so that {w} = {w ′s} = L(rs).

Theorem 3.2.2

Let L1 and L2 be regular languages. Then, L∗
1 , L1 ∪ L2 and L1L2 are also regular.

Proof of Theorem 3.2.2

By definition of L(r∗), L(r + s) and L(rs).

∠ Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if L1, . . . , Lk are regular languages for any k ∈ N, then
L1 ∪ · · · ∪ Lk and L1 · · · Lk are also regular languages.

∠ Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 6 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

∠ WLOG, let Σ = {0, 1}. Let M be a regular language. Then, M = L(E) for some
regular expression E .

∠ For each regular expression, we will devise an ϵ-NFA.

∠ Basis:

q0 q1

A : 0; 1

q0 q1

A :

0; 1

q0 q1

A :

0

1

; ›

0 1

q2

q0 q1

A : 0

1

q2

Note that these automata
could be made smaller:

∅/ϵ only keep initial state
and no transitions since
runs with non-existent
transitions fail.

0/1 q2 can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 7 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E∗:

...

E

...

E

›

›

›(E⇤)

›

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 8 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E∗:

...

E

...

E

›

›

›(E⇤)

›

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 8 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E + F:

...

...

E

F

...

...

E

F

›

›

(E + F )

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 9 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont’d)

∠ Induction E + F:

...

...

E

F

...

...

E

F

›

›

(E + F )

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 9 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont’d)

∠ Induction I3’:

...

...

E

F

...
...

E F

(EF)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 10 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont’d)

∠ Induction I3’:

...

...

E

F

...
...

E F

(EF)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 10 / 19



DFAs and Regular Languages

So Far...

Regular Languages Languages accepted by

DFAs, NFAs, ›-NFAs

Finite languages

∠ Is the inclusion strict?

∠ Are there languages accepted by DFAs that are not regular?

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 11 / 19



DFAs and Regular Languages

So Far...

Regular Languages Languages accepted by

DFAs, NFAs, ›-NFAs

Finite languages

∠ Is the inclusion strict?

∠ Are there languages accepted by DFAs that are not regular?

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 11 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

∠ Let DFA A = (Q,Σ, δ, q0,F ) be given.

∠ Let us rename the states so that Q = {q0, q1, q2, . . . , qn−1}.

∠ For any string s1 . . . sk ∈ L(A), there is a path

q0
s1−→ qi1

s2−→ qi2 · · ·
sk−→ qik ∈ F

∠ Define: R(i , j , k) be the set of all input strings that move the internal state of A
from qi to qj using paths whose intermediate nodes comprise only of qℓ, ℓ < k.

qi qj

States q0,. . . ,qk�1

States qk ,. . . ,qn�1

∠ Idea: prove that (a) each R(i , j , k) is regular, and (b) L(A) is a union of R(i , j , k)’s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 12 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.

∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.

∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.

∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ Note that L(A) =
⋃

j:qj∈F

R(0, j , n). (i.e., paths that start in q0 and end in an accepting

state with intermediate nodes q0, q1, . . . , qn−1 (all nodes))

∠ L(A) will be regular if each R(i , j , k) to be regular. We now proceed by induction to
show that each R(i , j , k) is regular.

∠ Basis: Consider R(i , j , 0) for i , j ∈ {0, 1, . . . , n − 1}.
∠ R(i , j , 0) consists of strings whose corresponding paths start in qi and end in qj
with intermediate nodes qℓ, ℓ < 0.

⇒ No intermediate nodes

⇒ R(i , j , 0) contains strings that change state qi to qj directly

⇒ R(i , j , 0) ⊆ {ϵ} ∪ Σ

⇒ R(i , j , 0) is a regular language [Corollary 2]

∠ Induction: Let R(i , j , ℓ) be regular for i , j ∈ {0, . . . , n − 1} and 0 ≤ ℓ < k. Consider
R(i , j , k) for i , j ∈ {0, . . . , n − 1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 13 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

∠ The strings in R(i , j , k) correspond to paths whose intermediate nodes belong to
{q0, . . . , qk−1}.

∠ Partition R(i , j , k) as follows:

Case (a): Strings whose paths do not have qk−1 as an intermediate node.

Case (b): Strings whose paths do pass through qk−1 as an intermediate node.

case (b)
qi qj

States q0; : : : ; qk�2

∠ R(i , j , k) = {Case (a) strings} ∪ {Case (b) strings}.

∠ Case (a) Strings are exactly those in R(i , j , k − 1)

∠ Hence, R(i , j , k) = R(i , j , k − 1) ∪ {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 14 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
∠ Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

∠ From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 15 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
∠ Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

∠ From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 15 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
∠ Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

∠ From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 15 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
∠ Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

∠ From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 15 / 19



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

States q0; : : : ; qk�2| {z }
States q0; : : : ; qk�2States q0; : : : ; qk�2

qi qjqk�1 qk�1 qk�1
1 2 3

Case (b) path
∠ Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from qi to qk−1 through a path whose
intermediate nodes are q0, . . . , qk−2, i.e., R(i , k − 1, k − 1)

2. A finite concatenation of strings, each of which take qk−1 back to qk−1 via paths
that use only q0, . . . , qk−2 as intermediate nodes. i.e., i.e., R(k − 1, k − 1, k − 1)∗

3. A string that takes qk−1 back to qj via a path that uses only q0, . . . , qk−2 as
intermediate nodes, i.e., i.e., R(k − 1, j , k − 1)

Thus,

R(i , j , k) = R(i , j , k−1) ∪ [R(i , k−1, k−1)R(k−1, k−1, k−1)∗R(k−1, j , k−1)]

∠ From Thm 3.2.2, it follows that R(i , j , k) is regular for any i , j , k. Thus, L(A) is
regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 15 / 19



DFAs and Regular Languages

Equivalence of Languages

∠ The following are indeed equivalent:

∠ The class of regular languages

∠ The class of languages accepted by DFAs

∠ The class of languages accepted by NFAs

∠ The class of languages accepted by ϵ-NFAs

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 16 / 19



Properties of Regular Languages

Properties of Regular Languages

∠ Regular languages are closed under finite union, concatenation, and Kleene-∗
operation. (Theorem 3.2.2)

∠ They are also closed under:

∠ Complementation:
Given DFA A = (Q,Σ, δ, q0,F ), DFA A′ = (Q,Σ, δ, q0,F

c) accepts L(A)c .

∠ Intersection:
De Morgan’s Law: R1 ∩ R2 = (Rc

1 ∪ Rc
2 )

c

(Where F c = Q \ F and Lc
Σ (for some language L over Σ) is Σ∗ \ LΣ)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 17 / 19



Properties of Regular Languages

Properties of Regular Languages

∠ Regular languages are closed under finite union, concatenation, and Kleene-∗
operation. (Theorem 3.2.2)

∠ They are also closed under:

∠ Complementation:
Given DFA A = (Q,Σ, δ, q0,F ), DFA A′ = (Q,Σ, δ, q0,F

c) accepts L(A)c .

∠ Intersection:
De Morgan’s Law: R1 ∩ R2 = (Rc

1 ∪ Rc
2 )

c

(Where F c = Q \ F and Lc
Σ (for some language L over Σ) is Σ∗ \ LΣ)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 17 / 19



Properties of Regular Languages

Properties of Regular Languages

∠ Regular languages are closed under finite union, concatenation, and Kleene-∗
operation. (Theorem 3.2.2)

∠ They are also closed under:

∠ Complementation:
Given DFA A = (Q,Σ, δ, q0,F ), DFA A′ = (Q,Σ, δ, q0,F

c) accepts L(A)c .

∠ Intersection:
De Morgan’s Law: R1 ∩ R2 = (Rc

1 ∪ Rc
2 )

c

(Where F c = Q \ F and Lc
Σ (for some language L over Σ) is Σ∗ \ LΣ)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 17 / 19



Properties of Regular Languages

Properties of Regular Languages

∠ Regular languages are closed under finite union, concatenation, and Kleene-∗
operation. (Theorem 3.2.2)

∠ They are also closed under:

∠ Complementation:
Given DFA A = (Q,Σ, δ, q0,F ), DFA A′ = (Q,Σ, δ, q0,F

c) accepts L(A)c .

∠ Intersection:
De Morgan’s Law: R1 ∩ R2 = (Rc

1 ∪ Rc
2 )

c

(Where F c = Q \ F and Lc
Σ (for some language L over Σ) is Σ∗ \ LΣ)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 17 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:

B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:

∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:

B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:

∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:
B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:

∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:
B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:

∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:
B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:

∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:
B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:
∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Abstract Regular Expressions

∠ We can also define abstract regular expressions over languages over Σ.

∠ Let V be a set of variables (which will be interpreted as languages)

∠ Use the induction definition for regular languages replacing B2 alone by:
B2 M is an (abstract) regular expression for every M ∈ V

∠ Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

∠ Unlike concrete regular expressions (such as 1∗, 0+ 1), abstract regular expressions
(such as M∗, M+ N) don’t stand for a unique language.

∠ However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:
∠ Variable∗ −→ Kleene-∗ closure of its language
∠ Sum of variables −→ union of the languages assigned to them
∠ Concatenation of variables −→ concatenation of their the languages

∠ We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions E1 = E2 ⇔
For any assignment of languages to the

variables contained in E1,E2, their
evaluations equal (i.e., L(E1) = L(E2))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 18 / 19



Abstract Regular Expressions

Algebraic Laws of Abstract Regular Expressions

∠ Commutativity: L+ M = M+ L (Union is commutative)
LM ̸= ML (Concatenation is not commutative)

∠ Associativity: (L+ M) + N = L+ (M+ N) (Union is associative)
(LM)N = L(MN) (Concatenation is associative)

∠ Identity: ∅+ L = L+ ∅ = L (∅ is the identity element for +)
ϵL = Lϵ = L (ϵ is the identity element for concatenation)

∠ Annihilator: ∅L = L∅ = ∅

∠ Idempotent: L+ L = L

∠ Distributive: L(M+ N) = LM+ LN

(M+ N)L = ML+ NL

∠ Kleene ∗: (L∗)∗ = L∗; ∅∗ = ϵ; ϵ∗ = ϵ.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2023 19 / 19


	Regular Expressions and Languages
	DFAs and Regular Languages
	Properties of Regular Languages
	Abstract Regular Expressions

