COMP3630 / COMP6363

week 1: Regular Expressions and Languages

This Lecture Covers Chapter 3 of HMU: Regular Expressions and Languages

slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

- > Introduction to regular expressions and regular languages
- > Equivalence of classes of regular languages and languages accepted
- > Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.

> So far: DFAs, NFAs were given a machine-like description

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)

3/19

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)
- > A regular expression over an alphabet Σ is a string consisting of:

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)
- > A regular expression over an alphabet $\boldsymbol{\Sigma}$ is a string consisting of:
 - > symbols from $\boldsymbol{\Sigma}$
 - > constants: \emptyset, ϵ
 - > operators: +, *
 - > parantheses: (,)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)
- > A regular expression over an alphabet Σ is a string consisting of:
 - > symbols from $\boldsymbol{\Sigma}$
 - > constants: \emptyset, ϵ
 - > operators: +, *
 - > parantheses: (,)
- > Each regular expression r denotes a language $L(r) \subseteq \Sigma^*$

> Regular expressions are defined inductively as follows:

- > Regular expressions are defined inductively as follows:
 - > Basis:

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Induction: If r and s are regular expressions, then:

> Regular expressions are defined inductively as follows:

> Basis:

B1 Ø and ε are regular expressions, with L(Ø) = Ø and L(ε) = {ε}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.
> Induction: If r and s are regular expressions, then:

I1 so is
$$r^*$$
 with $L(r^*) = (L(r))^*$
e.g., $L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\}$

> Regular expressions are defined inductively as follows:

> Basis:

B1 Ø and ε are regular expressions, with L(Ø) = Ø and L(ε) = {ε}.
B2 For each a ∈ Σ, a is a regular expression with L(a) = {a}.
Induction: If r and s are regular expressions, then:

11 so is
$$r^*$$
 with $L(r^*) = (L(r))^*$
e.g., $L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, ...\}$
12 so is $r + s$ with $L(r + s) = L(r) \cup L(s)$

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Induction: If r and s are regular expressions, then:

$$\begin{array}{ll} \text{I1 so is } r^* \text{ with } L(r^*) = (L(r))^* \\ \text{ e.g., } L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots \} \\ \text{I2 so is } r + s \text{ with } L(r + s) = L(r) \cup L(s) \\ \text{I3 so is } rs \text{ with } L(rs) = L(r) \cdot L(s) & (\text{cf. Def. from day 1!}) \\ \text{ e.g., } L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\} \end{array}$$

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Induction: If r and s are regular expressions, then:

$$\begin{array}{ll} \text{I1 so is } r^* \text{ with } L(r^*) = (L(r))^* \\ \text{ e.g., } L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\} \\ \text{I2 so is } r + s \text{ with } L(r + s) = L(r) \cup L(s) \\ \text{I3 so is } rs \text{ with } L(rs) = L(r) \cdot L(s) \qquad (\text{cf. Def. from day 1!}) \\ \text{ e.g., } L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\} \\ \text{I4 so is } (r) \text{ with } L((r)) = L(r). \end{array}$$

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Induction: If r and s are regular expressions, then:

$$\begin{array}{ll} \text{I1 so is } r^* \text{ with } L(r^*) = (L(r))^* \\ \text{ e.g., } L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\} \\ \text{I2 so is } r + s \text{ with } L(r + s) = L(r) \cup L(s) \\ \text{I3 so is } rs \text{ with } L(rs) = L(r) \cdot L(s) & (\text{cf. Def. from day 1!}) \\ \text{ e.g., } L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\} \\ \text{I4 so is } (r) \text{ with } L((r)) = L(r). \end{array}$$

> Only those generated by the above induction are regular.

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Induction: If r and s are regular expressions, then:

$$\begin{array}{ll} \text{I1 so is } r^* \text{ with } L(r^*) = (L(r))^* \\ \text{ e.g., } L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\} \\ \text{I2 so is } r + s \text{ with } L(r + s) = L(r) \cup L(s) \\ \text{I3 so is } rs \text{ with } L(rs) = L(r) \cdot L(s) & (\text{cf. Def. from day 1!}) \\ \text{ e.g., } L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\} \\ \text{I4 so is } (r) \text{ with } L((r)) = L(r). \end{array}$$

- > Only those generated by the above induction are regular.
- > Remark: Some authors/texts use | instead of +. HMU uses +.

4/19

> Regular expressions are defined inductively as follows:

> Basis:

B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.

B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

> Induction: If r and s are regular expressions, then:

$$\begin{array}{ll} \text{I1 so is } r^* \text{ with } L(r^*) = (L(r))^* \\ \text{ e.g., } L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\} \\ \text{I2 so is } r + s \text{ with } L(r + s) = L(r) \cup L(s) \\ \text{I3 so is } rs \text{ with } L(rs) = L(r) \cdot L(s) & (\text{cf. Def. from day 1!}) \\ \text{ e.g., } L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\} \\ \text{I4 so is } (r) \text{ with } L((r)) = L(r). \end{array}$$

- > Only those generated by the above induction are regular.
- > Remark: Some authors/texts use | instead of +. HMU uses +.
- > Precedence Rules:

 $(\cdot)>*>\cdot>+$

where > is 'binds more strongly than', and both + and \cdot associate to the left.

Pascal Bercher

Regular Expressions: Examples

- > $r = 0 + 11^*10$ is a regular expression
 - > with brackets that indicate precedence: $r = 0 + (1(1^*)10)$
 - > with more brackets indicating associativity: $r = 0 + ((1(1^*))1)0$

> Q: What's a regular expression that describes alternating sequences of 0s and 1s?

Regular Expressions: Examples

> $r = 0 + 11^*10$ is a regular expression

- > with brackets that indicate precedence: $r = 0 + (1(1^*)10)$
- > with more brackets indicating associativity: $r = 0 + ((1(1^*))1)0$

> Computing the language:

$$L(r) = L(0) \cup L(11^*10)$$

= {0} \cdot L(1) \cdot L(1^*) \cdot L(1) \cdot L(0)
= {0} \cdot {1} \cdot {1}^* \cdot {1} \cdot {0}
= {0} \cdot {1} \cdot {1}^* | n \ge 0} \cdot {1} \cdot {0}
= {1^i 0 | i \neq 1}

> Q: What's a regular expression that describes alternating sequences of 0s and 1s?

Regular Languages: Some Basic Properties

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> {w} being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> {w} being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> {w} being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Proof of Theorem 3.2.2

```
By definition of L(r^*), L(r + s) and L(rs).
```

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> {w} being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Proof of Theorem 3.2.2

```
By definition of L(r^*), L(r + s) and L(rs).
```

> **Corollary 1:** The class of regular languages is closed under finite union and concatenation, i.e., if L_1, \ldots, L_k are regular languages for any $k \in \mathbb{N}$, then $L_1 \cup \cdots \cup L_k$ and $L_1 \cdots L_k$ are also regular languages.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> {w} being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Proof of Theorem 3.2.2

```
By definition of L(r^*), L(r + s) and L(rs).
```

- > **Corollary 1:** The class of regular languages is closed under finite union and concatenation, i.e., if L_1, \ldots, L_k are regular languages for any $k \in \mathbb{N}$, then $L_1 \cup \cdots \cup L_k$ and $L_1 \cdots L_k$ are also regular languages.
- > Corollary 2: Any finite language is regular.

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

> WLOG, let $\Sigma = \{0, 1\}$. Let *M* be a regular language. Then, M = L(E) for some regular expression *E*.

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

- > WLOG, let $\Sigma = \{0, 1\}$. Let *M* be a regular language. Then, M = L(E) for some regular expression *E*.
- > For each regular expression, we will devise an ϵ -NFA.

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

- > WLOG, let $\Sigma = \{0, 1\}$. Let *M* be a regular language. Then, M = L(E) for some regular expression *E*.
- > For each regular expression, we will devise an $\epsilon\text{-NFA}.$

Pascal Bercher

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

- > WLOG, let $\Sigma = \{0, 1\}$. Let *M* be a regular language. Then, M = L(E) for some regular expression *E*.
- > For each regular expression, we will devise an $\epsilon\text{-NFA}.$

Note that these automata could be made smaller:

- \emptyset/ϵ only keep initial state and no transitions since runs with non-existent transitions fail.
- 0/1 q_2 can be removed since runs with non-existent transitions fail.

Proof of Theorem 3.2.3 (Cont'd)

> Induction E^* :

So Far...

11/19

So Far...

- > Is the inclusion strict?
- > Are there languages accepted by DFAs that are not regular?

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

> Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

> Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.

> Let us rename the states so that $Q = \{q_0, q_1, q_2, \dots, q_{n-1}\}.$

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- > Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.
- > Let us rename the states so that $Q = \{q_0, q_1, q_2, \dots, q_{n-1}\}.$
- > For any string $s_1 \dots s_k \in L(A)$, there is a path

$$q_0 \stackrel{s_1}{\longrightarrow} q_{i_1} \stackrel{s_2}{\longrightarrow} q_{i_2} \cdots \stackrel{s_k}{\longrightarrow} q_{i_k} \in F$$

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- > Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.
- > Let us rename the states so that $Q = \{q_0, q_1, q_2, \dots, q_{n-1}\}.$
- > For any string $s_1 \dots s_k \in L(A)$, there is a path

$$q_0 \stackrel{s_1}{\longrightarrow} q_{i_1} \stackrel{s_2}{\longrightarrow} q_{i_2} \cdots \stackrel{s_k}{\longrightarrow} q_{i_k} \in F$$

> **Define:** R(i, j, k) be the set of all input strings that move the internal state of A from q_i to q_j using paths whose intermediate nodes comprise only of q_{ℓ} , $\ell < k$.

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- > Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.
- > Let us rename the states so that $Q = \{q_0, q_1, q_2, \dots, q_{n-1}\}.$
- > For any string $s_1 \dots s_k \in L(A)$, there is a path

$$q_0 \stackrel{s_1}{\longrightarrow} q_{i_1} \stackrel{s_2}{\longrightarrow} q_{i_2} \cdots \stackrel{s_k}{\longrightarrow} q_{i_k} \in F$$

> **Define:** R(i, j, k) be the set of all input strings that move the internal state of A from q_i to q_j using paths whose intermediate nodes comprise only of q_{ℓ} , $\ell < k$.

> Idea: prove that (a) each R(i, j, k) is regular, and (b) L(A) is a union of R(i, j, k)'s.

Proof of Theorem 3.2.4 (Cont'd)

Proof of Theorem 3.2.4 (Cont'd)

> Note that $L(A) = \bigcup_{j:q_j \in F} R(0, j, n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))

> L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.
 - > R(i, j, 0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.
 - > R(i, j, 0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - \Rightarrow No intermediate nodes

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.
 - > R(i, j, 0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - \Rightarrow No intermediate nodes
 - \Rightarrow R(i,j,0) contains strings that change state q_i to q_j directly

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.
 - > R(i, j, 0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_{ℓ} , $\ell < 0$.
 - \Rightarrow No intermediate nodes
 - \Rightarrow R(i, j, 0) contains strings that change state q_i to q_j directly
 - $\Rightarrow R(i,j,\mathbf{0}) \subseteq \{\epsilon\} \cup \Sigma$

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.
 - > R(i, j, 0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_{ℓ} , $\ell < 0$.
 - \Rightarrow No intermediate nodes
 - \Rightarrow R(i, j, 0) contains strings that change state q_i to q_j directly
 - $\Rightarrow R(i,j,\mathbf{0}) \subseteq \{\epsilon\} \cup \Sigma$
 - $\Rightarrow R(i, j, 0)$ is a regular language [Corollary 2]

Proof of Theorem 3.2.4 (Cont'd)

- > L(A) will be regular if each R(i, j, k) to be regular. We now proceed by induction to show that each R(i, j, k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j \in \{0, 1, ..., n-1\}$.
 - > R(i, j, 0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_{ℓ} , $\ell < 0$.
 - \Rightarrow No intermediate nodes
 - \Rightarrow R(i,j,0) contains strings that change state q_i to q_j directly
 - $\Rightarrow R(i,j,\mathbf{0}) \subseteq \{\epsilon\} \cup \Sigma$
 - $\Rightarrow R(i, j, 0)$ is a regular language [Corollary 2]
- > Induction: Let $R(i, j, \ell)$ be regular for $i, j \in \{0, ..., n-1\}$ and $0 \le \ell < k$. Consider R(i, j, k) for $i, j \in \{0, ..., n-1\}$.

Proof of Theorem 3.2.4 (Cont'd)

> The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \ldots, q_{k-1}\}.$

Proof of Theorem 3.2.4 (Cont'd)

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \ldots, q_{k-1}\}$.
- > Partition R(i, j, k) as follows:

Proof of Theorem 3.2.4 (Cont'd)

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \ldots, q_{k-1}\}$.
- > Partition R(i, j, k) as follows:

Case (a): Strings whose paths **do not have** q_{k-1} as an intermediate node.

Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

Proof of Theorem 3.2.4 (Cont'd)

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \ldots, q_{k-1}\}$.
- > Partition R(i, j, k) as follows:

Case (a): Strings whose paths do not have q_{k-1} as an intermediate node.

Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

> $R(i, j, k) = \{ Case (a) strings \} \cup \{ Case (b) strings \}.$

Proof of Theorem 3.2.4 (Cont'd)

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \ldots, q_{k-1}\}$.
- > Partition R(i, j, k) as follows:

Case (a): Strings whose paths **do not have** q_{k-1} as an intermediate node.

Case (b): Strings whose paths do **pass through** q_{k-1} as an intermediate node.

- > $R(i, j, k) = \{ Case (a) strings \} \cup \{ Case (b) strings \}.$
- > Case (a) Strings are exactly those in R(i, j, k-1)

Proof of Theorem 3.2.4 (Cont'd)

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \ldots, q_{k-1}\}$.
- > Partition R(i, j, k) as follows:

Case (a): Strings whose paths **do not have** q_{k-1} as an intermediate node.

Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

- > $R(i, j, k) = \{ Case (a) strings \} \cup \{ Case (b) strings \}.$
- > Case (a) Strings are exactly those in R(i, j, k-1)
- > Hence, $R(i,j,k) = R(i,j,k-1) \cup \{ \text{Case (b) strings} \}.$

> Each case (b) string is the concatenation of 3 strings:

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)

 q_i

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)
 - 2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_0, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^*$

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)
 - 2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_0, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^*$
 - 3. A string that takes q_{k-1} back to q_j via a path that uses only q_0, \ldots, q_{k-2} as intermediate nodes, i.e., i.e., R(k-1, j, k-1)

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)
 - 2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_0, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^*$
 - 3. A string that takes q_{k-1} back to q_j via a path that uses only q_0, \ldots, q_{k-2} as intermediate nodes, i.e., i.e., R(k-1, j, k-1)

Thus,

$$R(i,j,k) = R(i,j,k-1) \cup [R(i,k-1,k-1)R(k-1,k-1,k-1)^*R(k-1,j,k-1)]$$

> From Thm 3.2.2, it follows that R(i, j, k) is regular for any i, j, k. Thus, L(A) is regular.

Equivalence of Languages

- > The following are indeed equivalent:
 - > The class of regular languages
 - > The class of languages accepted by DFAs

 - > The class of languages accepted by $\epsilon\text{-NFAs}$

> Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)

- > Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
- > They are *also* closed under:

- > Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
- > They are *also* closed under:
 - > Complementation: Given DFA $A = (Q, \Sigma, \delta, q_0, F)$, DFA $A' = (Q, \Sigma, \delta, q_0, F^c)$ accepts $L(A)^c$.

(Where $F^c = Q \setminus F$ and L^c_{Σ} (for some language L over Σ) is $\Sigma^* \setminus L_{\Sigma}$)

- > Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
- > They are *also* closed under:
 - > Complementation: Given DFA $A = (Q, \Sigma, \delta, q_0, F)$, DFA $A' = (Q, \Sigma, \delta, q_0, F^c)$ accepts $L(A)^c$.
 - > Intersection:

De Morgan's Law: $R_1 \cap R_2 = (R_1^c \cup R_2^c)^c$

(Where $F^c = Q \setminus F$ and L^c_{Σ} (for some language L over Σ) is $\Sigma^* \setminus L_{\Sigma}$)

> We can also define **abstract** regular expressions over languages over Σ .

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let \mathcal{V} be a set of variables (which will be interpreted as languages)

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every $M \in \mathcal{V}$

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every $M \in \mathcal{V}$
- > **Remark:** Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every $M \in \mathcal{V}$
- > **Remark:** Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.
- > Unlike concrete regular expressions (such as 1*, 0 + 1), abstract regular expressions (such as M*, M + N) don't stand for a unique language.

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every $M \in \mathcal{V}$
- > **Remark:** Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.
- > Unlike concrete regular expressions (such as 1^* , 0 + 1), abstract regular expressions (such as M^* , M + N) don't stand for a **unique** language.
- > However, we can **evaluate** abstract regular expressions by **assigning** any languages to variables, and inductively interpreting:
 - > Variable^{*} \longrightarrow Kleene-* closure of its language
 - \succ Sum of variables \longrightarrow union of the languages assigned to them
 - \succ Concatenation of variables \longrightarrow concatenation of their the languages

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every $M\in\mathcal{V}$
- > **Remark:** Even though \mathcal{V} could be infinite, every regular expression consists only of finitely many variables.
- > Unlike concrete regular expressions (such as 1^* , 0 + 1), abstract regular expressions (such as M^* , M + N) don't stand for a **unique** language.
- > However, we can **evaluate** abstract regular expressions by **assigning** any languages to variables, and inductively interpreting:
 - > Variable^{*} \longrightarrow Kleene-* closure of its language
 - \succ Sum of variables \longrightarrow union of the languages assigned to them
 - \succ Concatenation of variables \longrightarrow concatenation of their the languages
- > We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions $E_1 = E_2 \Leftrightarrow$ For any assignment of languages to the variables contained in E_1, E_2 , their evaluations equal (i.e., $L(E_1) = L(E_2)$)

Pascal Bercher

week 1: Regular Expressions and Languages

Semester 1, 2023

Algebraic Laws of Abstract Regular Expressions

> Commutativity: L + M = M + L (Union is commutative) $LM \neq ML$ (Concatenation is not commutative)

- > Associativity: (L + M) + N = L + (M + N) (Union is associative) (LM)N = L(MN) (Concatenation is associative)
- > Identity: $\emptyset + L = L + \emptyset = L$ (\emptyset is the identity element for +) $\epsilon L = L\epsilon = L$ (ϵ is the identity element for concatenation)
- > Annihilator: $\emptyset L = L \emptyset = \emptyset$
- > Idempotent: L + L = L
- > Distributive: L(M + N) = LM + LN(M + N)L = ML + NL
- > Kleene *: $(L^*)^* = L^*$; $\emptyset^* = \epsilon$; $\epsilon^* = \epsilon$.