week 2: Properties of Regular Languages

This Lecture Covers Chapter 4 of HMU: Properties of Regular Languages
slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher convenor \& lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

> Pumping Lemma for regular languages
> Some more properties of regular languages
> Decision properties of regular languages
> Equivalence and minimization of automata

Additional Reading: Chapter 4 of HMU.

Pumping Lemma

> We know: If a language is given by a regular expression, or a DFA, it is regular.
> What can we say if a language is defined by enumeration or by a predicate?
> Is $L=\left\{w \in\{0,1\}^{*}: w\right.$ does not contain 10$\}$ regular?
> Is $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ regular?
> How do we answer such questions without delving into each
> Is there an inherent structure to the strings belonging to a regular language?

Lemma 4.1.1 (Pumping Lemma for Regular Languages)

Let L be a regular language. There there exists an $n \in \mathbb{N}, n \geq 1$ (depending on L) such that for any string $w \in L$ with $|w| \geq n$, there exist strings x, y, z such that:
(1) $w=x y z$
(2) $|x y| \leq n$
(3) $|y|>0$
(4) $x y^{i} z \in L$ for $i \in \mathbb{N} \cup\{0\}$

Proof of the Pumping Lemma

$>$ Let DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accept L, and let $n:=|Q|$.
> The claim is vacuously true if L contains only strings of length $n-1$ or less.
>Suppose L contains a string $w=s_{1} \cdots s_{k} \in L$ with $|w|=k \geq n$.
> Then, there must be a sequence of transitions that move A from q_{0} to some final state upon reading w.

$>$ SOME state must be visited (at least) twice. Let $q_{i_{a}}=q_{i_{b}}$ for $i_{0} \leq i_{a}<i_{b} \leq i_{n}$.

> (4) holds since the path for $x y^{i} z$ is derived from the above either by deleting the subpath between $q_{i_{a}}$ and $q_{i_{b}}$ or by repeating it. All such paths end in $q_{i_{k}} \in F$.

Applications of the Pumping Lemma

Using the Pumping Lemma, we can show
$>L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.
> Suppose it is. By the pumping lemma, there exists $k \geq 1$ such that any $w \in L$, $|w| \geq k$ can be split as $w=x y z,|y| \geq 1$ and $|x y| \leq k$ s.t. $x y^{i} z \in L$ for all $i \geq 0$.
> let's apply this to the string $w=0^{k} 1^{k} \in L$:

>As $|x y| \leq k$, this means that $x=0^{i}$ and $y=0^{j}, z=0^{p} 1^{k}$ with $i+j+p=k$.
$>B y$ the pumping lemma, $x y^{0} z \in L$ but $x y^{0} z=0^{i} 0^{p} y^{k}$ and $i+p \neq k$ as $j=|y| \geq 1$, contradiction.
$>L=\left\{w \in\{0,1\}^{*}:|w|\right.$ is a prime $\}$ is not regular.
$>L=\left\{w w^{R}: w \in\{0,1\}^{*}\right\}$ is not regular. [$w^{R}=w$ read from right to left].

Additional Properties of Regular Languages

> We already know regular languages are closed under:
> union, intersection, concatenation, Kleene-* closure, and difference.
>We'll see three more operations under which regular languages are closed.
$>$ Let L^{R} be the language obtained by reversing each string $\left((01)^{R}=10\right)$

Theorem 4.2.1

Let L be regular. Then $L^{R}:=\left\{w^{R}: w \in L\right\}$ is also regular.

Proof of Theorem 4.2.1

$>$ Let langauge L be accepted by DFA A.

> Let A^{\prime} be the DFA obtained by: (a) Reversing each arrow in A; (b) swapping final and initial states; and (c) introduce ϵ-transitions to make initial state (of A^{\prime}) unique.
> Then L^{R} is accepted by A^{\prime}.

Closure under Homomorphisms

$>$ A homomorphism is a map $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$.
> The map can be extended to strings by defining $s_{1} \cdots s_{k} \stackrel{h}{\mapsto} h\left(s_{1}\right) \cdots h\left(s_{k}\right)$.

Theorem 4.2.2

Let L be regular. Then $h(L):=\{h(w): w \in L\}$ is also regular.

Proof of Theorem 4.2.2

> Let E be the regular expression corresponding to L
$>$ Let $h(E)$ be the expression obtained by replacing symbols $s \in \Sigma_{1}$ by $h(s)$.
> Then $h(E)$ is a regular expression over Σ_{2}
> By a straightforward induction argument, we can show that $L(h(E))=h(L(E))$

Closure under Inverse Homomorphisms

Theorem 4.2.3

Let L be regular. Then $h^{-1}(L):=\{w: h(w) \in L\}$ is also regular.

Proof of Theorem 4.2.3

$>$ Let DFA $A=\left(Q, \Sigma_{2}, \delta, q_{0}, F\right)$ accept L
> Let DFA $B=\left(Q, \Sigma_{1}, \gamma, q_{0}, F\right)$ where

$$
\gamma(q, s)=\hat{\delta}(q, h(s))
$$

[Depending on the input B mimics none, one, or many transitions of A]
> By definition, $\epsilon \in L(A)$ iff $q_{0} \in F$ iff $\epsilon \in L(B)$
> By induction, we can show that

$$
s_{1} \cdots s_{k} \in L(B) \Leftrightarrow h\left(s_{1}\right) \cdots h\left(s_{k}\right) \in L(A)=L
$$

> Hence, B accepts $h^{-1}(L)$.

Decision Properties

>DFAs and regular expressions are finite representations of regular languages
>How do we ascertain if a particular property is satisfied by a language?
> Is the language accepted by a DFA non-empty?
> Does the language accepted by a DFA contain a given string w ?
> Is the language accepted by a DFA infinite?
> Do two given DFAs accept the same language?
> Given two DFAs A and B, is $L(A) \subseteq L(B)$?
> We will look at the above 5 questions assuming that regular languages are defined by DFAs. (If the language is specified by an expression, we can convert it to a DFA!)

Decision Properties (Emptiness, Membership, Infiniteness)

> Emptiness: If one is given a DFA with n states that accepts L, we can find all the states reachable from the initial state in $O\left(n^{2}\right)$ time. If no final state is reachable, L must be empty.
> Membership: If one is given a DFA with n states that accepts L, given string w, we can simply identify the transitions corresponding to w one symbol at a time. If the last state is an accepting state, then w must be in the language. This takes no more than $O(|w|)$ time steps.
> Infiniteness: We can reduce the problem of infiniteness to finding a cycle in the directed graph (a.k.a. transition diagram) of the DFA.
> First, delete any node unreachable from the initial node ($O\left(n^{2}\right.$) complexity).
> Next, delete nodes that cannot reach any final node ($O\left(n^{3}\right)$ complexity).
> Use depth-first search (DFS) to find a cycle in the remaining graph $\left(O\left(n^{2}\right)\right.$ complexity).
> Q: How do runtimes change if we have an NFA?

Decision Properties (Equivalence)

> Equivalence: Given $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{A 0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{B 0}, F_{B}\right)$, how do we ascertain if $L(A)=L(B)$?

$$
L(A)=L(B) \Leftrightarrow \begin{aligned}
& L(A) \cap L(B)^{c}=\emptyset \\
& L(A)^{c} \cap L(B)=\emptyset
\end{aligned}
$$

Why is this true?

Thus:

$$
\begin{aligned}
& A \cap B=A=B \quad \text { iH } \\
& A \cap B^{c}=A^{c} \cap B=\varnothing
\end{aligned}
$$

Decision Properties (Equivalence)

> Equivalence: Given $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{A 0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{B 0}, F_{B}\right)$, how do we ascertain if $L(A)=L(B)$?

$$
L(A)=L(B) \Leftrightarrow \begin{aligned}
& L(A) \cap L(B)^{c}=\emptyset \\
& L(A)^{c} \cap L(B)=\emptyset
\end{aligned}
$$

Run A and B in parallel. (Not their complement-versions!)
$>L(A) \cap L(B)^{c}$: Accept if resp. paths end in F_{A} and F_{B}^{c}.
$>L(A)^{c} \cap L(B)$: Accept if resp. paths end in F_{A}^{c} and F_{B}.
> Use product DFA: Construct $C=\left(Q_{C}, \Sigma, \delta_{C}, q_{C 0}, F_{C}\right)$ defined by

$$
\begin{array}{rlrl}
Q_{C} & =Q_{A} \times Q_{B} & & \text { [Cartesian Product] } \\
q_{C 0} & =\left(q_{A 0}, q_{B 0}\right) & & \\
\delta_{C}\left(\left(q, q^{\prime}\right), s\right) & =\left(\delta_{A}(q, s), \delta_{B}\left(q^{\prime}, s\right)\right) & & {[\text { Both DFAs are simulated in parallel] }} \\
F_{C} & =\left(F_{A} \times F_{B}^{c}\right) \cup\left(F_{A}^{c} \times F_{B}\right) & \text { [accept strings in exactly one of } L(A) \text { or } L(B)] \\
& L(A)=L(B) \Leftrightarrow L(C)=\emptyset
\end{array}
$$

(and you know how to check for an empty language of a DFA!)

Decision Properties (Inclusion)

> Inclusion: Given $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{A 0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{B 0}, F_{B}\right)$, how do we ascertain if $L(A) \subseteq L(B)$?

$$
L(A) \subseteq L(B) \Leftrightarrow L(A) \cap L(B)^{c}=\emptyset
$$

Why is this true?

-
What now? Everything as before! Only now $F_{C}=F_{A} \times F_{B}^{c}$.

DFA State Minmimization

> Given two DFAs, we know how to test if they accept the same language.
> Is there a unique minimal DFA for a given regular language?
> Given a DFA, can we reduce the number of states without altering the language it accepts?

Clearly, the two DFAs accept the same language and state C is unnecessary.
> How do we (identify and) remove 'unnecessary' states without altering the underlying language?

DFA State Minimimization

>State minimization requires a notion of equivalence or distinguishability of states.
> Clearly, distinguishability of two states must be based on finality
states p and q are equivalent $\Leftrightarrow \hat{\delta}(p, w) \in F$ whenever $\hat{\delta}(q, w) \in F$ or indistinguishable \quad for every $w \in \Sigma^{*}$.
states p and q are distinguishable \Leftrightarrow exactly one of $\hat{\delta}(p, w)$ or $\hat{\delta}(q, w)$ is in F for some $w \in \Sigma^{*}$.
> Table Filling Algorithm identifies equivalent and distinguishable pairs of states.
>Any final state is distinguishable from a non-final state (and vice versa)
> If (a) p and q are distinguishable; and there exist states p^{\prime}, q^{\prime}, and symbol s such that (b) $\hat{\delta}\left(p^{\prime}, s\right)=p$ and (c) $\hat{\delta}\left(q^{\prime}, s\right)=q$, then p^{\prime} and q^{\prime} are also distinguishable

Identifying pairs of (In)distinguishable States: An Example

> Fill in \times whenever one component of pair is final, and other is not.
$>$ Fill in \times if 1 moves the pair of states to a distinguishable pair
> Fill in \times if 0 moves the pair of states to a distinguishable pair
> Repeat until no progress
(This slide is added to the handout so you can try it yourself!)

Identifying pairs of (In)distinguishable States: An Example

> Fill in \times whenever one component of pair is final, and other is not.
> Fill in \times if 1 moves the pair of states to a distinguishable pair
> Fill in \times if 0 moves the pair of states to a distinguishable pair
> Repeat until no progress

Theorem 4.4.1

Any two states without a \times sign are equivalent.
>Proof idea: If two states are distinguishable, the algorithm will fill a \times eventually.

Table-filling Algorithm

> Delete states not reachable from start states
> Delete any non-starting state that cannot reach any final state
> Find distinguishable and equivalent pairs of states
> Find equivalence classes of indistinguishable states. In this example: $\{A\},\{B\},\{C, E\},\{D, F\},\{G\}$

Color-blind?
red: A / B, blue: $A / E, A / C, B / E, B / C, D / G, F / G$

Table-filling Algorithm

> Delete states not reachable from start states
> Delete any non-starting state that cannot reach any final state
> Find distinguishable and equivalent pairs of states
> Find equivalence classes of indistinguishable states. In this example: $\{A\},\{B\},\{C, E\},\{D, F\},\{G\}$
> Collapse each equivalence class of states to a state
> Delete parallel transitions with same label.
Remark: The resultant transition diagram will be a DFA.

Table-filling: Other Uses

> Test equivalence of languages accepted by 2 DFAs.
$>$ Given $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{A 0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{B 0}, F_{B}\right)$:
$>$ Rename states in Q_{B} so that Q_{A} and Q_{B} are disjoint.
> View A and B together as one DFA
(Ignore the fact that there are 2 start states)
> Run table-filling on $Q_{A} \cup Q_{B}$.
$>q_{A 0}$ and $q_{B 0}$ are indistinguishable $\Leftrightarrow L(A)=L(B)$.
[Why?] If w distinguishes $q_{A 0}$ from $q_{B 0}$ then w cannot be in both $L(A)$ and $L(B)$
> Suppose a DFA A cannot be minimized further by table-filling. Then, A has the least number of states among all DFAs that accept $L(A)$

